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Never believe anything

until you run it.



What are Composable Solvers?

Optimal solvers often

have many subsolves,

pieced together.



What are Composable Solvers?

PETSc is designed to easily:
▶ Replicate solvers from papers

▶ Combine disparate solvers (precondition)

▶ Additively
▶ Multiplicatively
▶ Hierarchically
▶ In subdomains
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What are Composable Solvers?

Linear
(Brown, Matthew G. Knepley, May, et al. 2012)

Nonlinear
(Brune, Matthew G. Knepley, B. F. Smith, and Tu

2015)



Outline

Stokes Solvers

Allen-Cahn Solver

Patch Solvers

Preconditioners for Faults

Lessons



Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

(
A B

BT 0

)

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Block-Jacobi (Exact), Cohouet & Chabard, IJNMF, 1988.

-ksp_type gmres -pc_type fieldsplit -pc_fieldsplit_type additive
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi

(
A 0
0 I

)

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://onlinelibrary.wiley.com/doi/10.1002/fld.1650080802/full


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Block-Jacobi (Inexact), Cohouet & Chabard, IJNMF, 1988.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type additive
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi

(
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)

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://onlinelibrary.wiley.com/doi/10.1002/fld.1650080802/full


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Gauss-Seidel (Inexact), Elman, DTIC, 1994.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type multiplicative
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi

(
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0 I

)

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA598913


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Gauss-Seidel (Inexact), Elman, DTIC, 1994.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type multiplicative
-pc_fieldsplit_0_fields 1 -pc_fieldsplit_1_fields 0
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi
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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA598913


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Diagonal Schur Complement, Olshanskii, et.al., Numer. Math., 2006.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type diag
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none

(
Â 0
0 −Ŝ

)

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://link.springer.com/article/10.1007/s00211-006-0031-4


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Lower Schur Complement, May and Moresi, PEPI, 2008.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type lower
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none

(
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BT Ŝ

)

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.sciencedirect.com/science/article/pii/S003192010800191X


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Upper Schur Complement, May and Moresi, PEPI, 2008.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none
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)

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.sciencedirect.com/science/article/pii/S003192010800191X


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Uzawa Iteration, Uzawa, 1958

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_type richardson -fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_ksp_max_it 1
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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Full Schur Complement, Schur, 1905.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

SIMPLE, Patankar and Spalding, IJHMT, 1972.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_inner_ksp_type preonly
-fieldsplit_pressure_inner_pc_type jacobi

-fieldsplit_pressure_upper_ksp_type preonly
-fieldsplit_pressure_upper_pc_type jacobi
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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.sciencedirect.com/science/article/pii/0017931072900543


Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Least-Squares Commutator, Kay, Loghin and Wathen, SISC, 2002.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-pc_fieldsplit_schur_precondition self
-fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-5 -fieldsplit_pressure_pc_type lsc
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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://epubs.siam.org/doi/abs/10.1137/S106482759935808X


Solver Configuration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Additive Schwarz + Full Schur Complement, Elman, Howle, Shadid, Shuttleworth, and
Tuminaro, SISC, 2006.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type additive
-pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full

-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type preonly
-fieldsplit_temperature_pc_type lu


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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex31.c.html
http://epubs.siam.org/doi/abs/10.1137/040608817


Solver Configuration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Upper Schur Comp. + Full Schur Comp. + Least-Squares Comm.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full

-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type gmres
-fieldsplit_temperature_pc_type lsc
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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex31.c.html


The Great Solver Schism: Monolithic or Split?

Monolithic Split

▶ Direct solvers
▶ Coupled Schwarz
▶ Coupled Neumann-Neumann

(use unassembled matrices)
▶ Coupled Multigrid

▶ Physics-split Schwarz
(based on relaxation)

▶ Physics-split Schur
(based on factorization)
▶ SIMPLE, PCD, LSC
▶ segregated smoothers
▶ Augmented Lagrangian

Need to understand

▶ Local spectral properties
▶ Compatibility properties

▶ Global coupling strengths

Preferred data structures depend on which method is used.



PETSc People

Barry Smith Jed Brown
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Programming with Options

ex55: Allen-Cahn problem in 2D
▶ constant mobility
▶ triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly
-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5
-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
-snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags


Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags


Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags


Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags


Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner
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Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags
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Firedrake People

Lawrence Mitchell Patrick Farrell



Parameter-Robust Smoothers

Smoothers for

L + αK

can suffer as α → ∞ if

N (K) ̸= ∅.



Parameter-Robust Smoothers

Smoothers for

−∇ · 2νϵ(u) + (u · ∇)u − α∇(∇ · u)

can suffer as α → ∞ if

N (∇(∇ · u)) ̸= ∅.



Parameter-Robust Smoothers

The Schur complement is almost

S−1 ≈ −(ν + α)M−1
p

but the velocity smoother is hard.



Parameter-Robust Smoothers

Patch smoothers satisfying

N (K) =
∑

i

Vi
⋂

N (K)

are robust.
(Schöberl 1999)



Parameter-Robust Smoothers



Parameter-Robust Smoothers
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PRECONDITIONERS FOR MHD B1031

Fig. 3.1. Star patch for \BbbB \BbbD \BbbM 2-elements.

Since the augmented Lagrangian term has a large kernel that consists of all
solenoidal vector fields, a robust multigrid scheme as described in section 3.3 must
be used to solve the augmented momentum block. For the H(div) \times L2-conforming
discretization the star iteration [25, section 4] can be used as a robust relaxation
method. The subspace decomposition is defined as

Vi = \{ v \in Vh : supp(v) \subset Ki\} ,(3.28)

where Ki is the patch of elements sharing the vertex i in the mesh. Example patches
are shown in Figure 3.1. Since we use a structure-preserving discretization, the prop-
erties of the de Rham complexes (2.12) and (2.13) imply that (3.28) fulfils the kernel
decomposition property (3.25). This property was also used in [6] to construct a
robust smoother for the H(div) and H(curl) Riesz maps and in [29] for the Stokes
equations. In this case we may employ the standard prolongation operator induced
by the finite element discretization, because the uniformly refined mesh hierarchy we
consider is nested.

The velocity block further includes terms given by the convection-diffusion term
(u \cdot \nabla )u, the linearization of the Lorentz force SBn \times (u\times Bn), and the stabilization
term (2.15). Numerical experiments in [24] and in the next section 4 show that
these terms only degrade the performance of the preconditioner at high Reynolds
and coupling numbers. As we have mentioned before, these somewhat surprising
numerical observations are not backed up by theory since these terms do not fit in
the framework of section 3.3, and applying geometric multigrid methods to problems
with strong advection typically requires special care. The kernel of the stabilization
\scrS \scrT (u,v) consists of all C1 vector fields. Therefore, the stabilization term slightly
degrades the performance of the solver, but the impact is not very significant as the
factor \mu h2

\partial K is small.

3.5. Solver for the electromagnetic block. The weak formulation of the
electromagnetic block is given by

(E,F) - 1

Rem
(B, curlF) + \delta (un \times B,F) = 0 \forall F \in H0(curl,\Omega ),(3.29)

\eta 

\Delta t
(B,C) + (curlE,C) +

1

Rem
(divB,divC) = (f ,C) \forall C \in H0(div,\Omega ).

Recall that \eta , \delta \in \{ 0, 1\} distinguish between the stationary (\eta = 0) and transient
(\eta = 1) cases and the Picard (\delta = 0) and Newton (\delta = 1) linearizations. Eliminating
E, this corresponds to a mixed formulation of
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Parameter-Robust Smoothers
Incompressible Navier-Stokes

PRECONDITIONERS FOR HIGH-RE 3D STATIONARY FLOW 13

Continuation

Newton solver with line search

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization on assembled matrix

Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Matrix-free additive star iteration

Fig. 5.1: An outline of the algorithm for solving (1.1).

We use flexible GMRES [63] as the outermost solver for the linearized Newton
system, as we employ GMRES in the multigrid relaxation. If the pressure is only
defined up to a constant, then the appropriate nullspace is passed to the Krylov solver
and the solution orthogonalized against the nullspace at every iteration. The solve is
done matrix-free, i.e. the entire sparse Jacobian matrix is not assembled; instead its
action is computed by finite element assembly every time it is required. We use the
full block factorization preconditioner

(5.1) P�1 =

✓
I �Ã�1

� BT

0 I

◆✓
Ã�1

� 0

0 S̃�1

◆✓
I 0

�BÃ�1
� I

◆

with approximate inner solves Ã�1
� and S̃�1 for the augmented momentum block and

the Schur complement respectively. The diagonal, upper and lower triangular variants
described in [56, 42] also converge well, but these took longer runtimes in preliminary
experiments.

We use one F-cycle of the geometric multigrid algorithm described in section 4 as
Ã�1

� . The problem on each level is constructed by rediscretization; fine grid functions,
such as the current iterate in the Newton scheme, are transferred to the coarse levels
via injection. On all levels except for the coarsest, the only matrices assembled are the
local problems on each star patch (for the relaxation) and each coarser cell (for the
prolongation). For each relaxation sweep we perform 6 (in 2D) or 10 (in 3D) GMRES
iterations preconditioned by the additive star iteration; at lower Reynolds numbers
this can be reduced, but we found that these expensive smoothers represented the
optimal tradeo↵ between inner and outer work at higher Reynolds numbers. The
coarsest level is assembled explicitly as a global sparse matrix and solved with the
SuperLU DIST sparse direct solver [52, 51]. For scalability, the coarse grid solve
is agglomerated onto a single compute node using PETSc’s telescoping facility [55].
As all inner solvers are additive, the convergence of the solver is independent of the
parallel decomposition (up to roundo↵).

5.2. Software implementation. The solver proposed in the previous section is
complex, and relies heavily on PETSc’s capability for the arbitrarily nested composi-

(Farrell, Mitchell, and Wechsung 2019)



Mesh Topology

Hasse Diagram (Wikipedia 2015)
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Mesh Topology

DMPlex (Lange, Mitchell, Matthew G. Knepley, and

Gorman 2016)
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Parameter-Robust Smoothers

Solver for the H(div) Riesz map
-ksp_type cg
-pc_type mg
-mg_levels_ksp_type richardson
-mg_levels_ksp_richardson_scale 0.333333
-mg_levels_pc_type patch
-mg_levels_patch_pc_patch_local_type additive
-mg_levels_patch_pc_patch_construct_type star
-mg_levels_patch_pc_patch_construct_dim 0

(Farrell, Matthew G Knepley, Mitchell, and Wechsung
2021)



Parameter-Robust Smoothers

Many papers followed
(Adler, Benson, et al. 2021)

(Adler, He, et al. 2022)

(Laakmann, Farrell, and Mitchell 2022)

(Abu-Labdeh, MacLachlan, and Farrell 2023)

(Laakmann, Hu, and Farrell 2023)

on different problems.
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Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Fig. 4.1. Graphical outline of the solver.

imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine
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imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine
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imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine

D
ow

nl
oa

de
d 

03
/1

3/
25

 to
 6

8.
13

3.
27

.1
29

 b
y 

M
at

th
ew

 K
ne

pl
ey

 (k
ne

pl
ey

@
gm

ai
l.c

om
). 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

(Laakmann, Farrell, and Mitchell 2022)



Outline

Stokes Solvers

Allen-Cahn Solver

Patch Solvers

Preconditioners for Faults

Lessons



PyLith

A modern, community simulator for crustal deformation

Brad Aagaard

Charles Williams

Open-source, community code

▶ Modular design
▶ Testing
▶ Documentation
▶ Distribution

PyLith 1.0 released in 2007



PyLith

A modern, community simulator for crustal deformation

Elasticity
(Aagaard, Matthew G. Knepley, and Williams 2013)

Poroelasticity
(Walker, Matthew G. Knepley, Aagaard, and Williams
2023)



What research questions is PyLith designed to address?

Quasi-static modeling associated with earthquakes

▶ Strain accumulation from interseismic deformation
▶ What is the stressing rate on faults X and Y?
▶ Where is strain accumulating in the crust?

▶ Coseismic stress changes and fault slip
▶ What was the slip distribution in earthquake A?
▶ How did earthquake A change the stresses on faults X and Y?

▶ Postseismic relaxation of the crust
▶ What rheology is consistent with postseismic deformation?
▶ Can aseismic creep or afterslip explain the deformation?



What research questions is PyLith designed to address?

Dynamic modeling associated with earthquakes

▶ Modeling of strong ground motions
▶ Forecasting the amplitude and spatial variation

in ground motion for scenario earthquakes
▶ Coseismic stress changes and fault slip

▶ How did earthquake A change the stresses on faults X and Y?
▶ Earthquake rupture behavior

▶ What fault constitutive models/parameters are consistent with
the observed rupture propagation in earthquake A?



What research questions is PyLith designed to address?

Volcanic deformation from magma reservoirs and dikes

▶ Inflation
▶ What is the geometry of the magma chamber?
▶ What is the potential for an eruption?

▶ Eruption
▶ Where is the deformation occurring?
▶ What is the ongoing potential for an eruption?

▶ Dike intrusions
▶ What is the geometry of the intrusion?
▶ What is the pressure change and opening/dilatation?



2D Crustal Strike-Slip
2019 Ridgecrest

ux = 0

uy = 0

ux = 0

uy = 0

d = d1(x) RL

d = d2(x) LL

d = d3(x) LL
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2D Crustal Strike-Slip
2019 Ridgecrest



Cohesive Formulation
(a) Original mesh
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Governing Equations

∫

Ωf

ρ(x)
∂v
∂t

dΩ =

∫

Γf+

σ · n + λ dΓ +

∫

Γf−
σ · n − λ dΓ

u+ − u− = d(x, t)



Test Mesh



Test Mesh
3D



Jacobian

We have a saddle-point system,

(
E C

CT 0

)(
u
λ

)
=

(
f
d

)



Jacobian



Jacobian



Schur complement Solver

-ksp_gmres_restart 100
-pc_type fieldsplit
-pc_use_amat
-pc_fieldsplit_type schur

-pc_fieldsplit_schur_factorization_type lower
-pc_fieldsplit_schur_precondition selfp
-pc_fieldsplit_schur_scale 1.0

-fieldsplit_displacement_ksp_type preonly
-fieldsplit_displacement_pc_type ml

-fieldsplit_lagrange_multiplier_fault_ksp_type preonly
-fieldsplit_lagrange_multiplier_fault_pc_type ml



Schur complement Solver

-snes_ksp_ew
-snes_ksp_ew_rtol0 1e-4

-ksp_gmres_restart 100

-fieldsplit_displacement_ksp_type gmres
-fieldsplit_displacement_ksp_max_it 10



Schur complement Solver

▶ S = −CTEC connects both sides

▶ Difficult to precondition S

▶ Not scalable with problem size



Reordering

Using topology and layout information,

in DMPlex and PetscSection,

we compute a reordering

and blocking automatically.



Reordering

Mat Object: Jacobian 1 MPI process
type: seqaij
rows=24, cols=24, bs=2 variable blocks set
total: nonzeros=320, allocated nonzeros=320
total number of mallocs used during MatSetValues calls=0
IS Object: Block Sizes 1 MPI process
type: general

Number of indices in set 5
0 12
1 6
2 2
3 2
4 2



Reordering



Reordering

Mat Object: Jacobian 1 MPI process
type: seqaij
rows=45, cols=45, bs=3 variable blocks set
total: nonzeros=1341, allocated nonzeros=1341
total number of mallocs used during MatSetValues calls=0
IS Object: Block Sizes 1 MPI process
type: general

Number of indices in set 5
0 27
1 9
2 3
3 3
4 3



Reordering



Multigrid Solver

-dm_reorder_section
-dm_reorder_section_type cohesive

-ksp_gmres_restart 100
-pc_type gamg
-mg_fine_pc_type vpbjacobi



Multigrid Solver

-mg_levels_pc_type pbjacobi

-pc_gamg_coarse_eq_limit 200

-mg_fine_ksp_max_it 5
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Software Lessons

Expose better abstractions

at runtime

that compose together.

(Brown, Matthew G. Knepley, and B. Smith 2015)
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Software Lessons

Build in Layers

to allow targeted APIs

that preserve understandability.

(B. F. Smith and Gropp 1996)
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Software Lessons

Build in Layers

to allow targeted APIs

that preserve understandability.

(B. F. Smith and Gropp 1996)



Coming Soon

▶ Multilevel Hybrid Kinetic-Moment Simulation

▶ Beuler-Farrell Multigrid for Variational Inequalities

▶ Massively Parallel Ray-tracing in Plasma Atmosphere

▶ Online Surrogate Modeling with Machine Learning
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