
Incorporation of Multicore FEM Integration
Routines into Scientific Libraries

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

SIAM Annual Meeting 2012
Minneapolis, MN July 9–13, 2012

M. Knepley (UC) SIAM SIAM 1 / 21

Collaborators

Andy R. Terrel

Andreas Klöckner

Jed Brown

Robert Kirby
M. Knepley (UC) SIAM SIAM 3 / 21

http://andy.terrel.us/Professional/
http://mathema.tician.de/
http://www.59a2.org/research/
http://www.math.ttu.edu/~kirby/

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) SIAM SIAM 4 / 21

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) SIAM SIAM 4 / 21

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) SIAM SIAM 4 / 21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) SIAM SIAM 5 / 21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) SIAM SIAM 5 / 21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) SIAM SIAM 5 / 21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) SIAM SIAM 5 / 21

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) SIAM SIAM 6 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) SIAM SIAM 6 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) SIAM SIAM 6 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) SIAM SIAM 6 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

User provides point-wise physics functions
Loops are done in batches, remainder cells handled by CPU
One batch integration method with compile-time sizes

CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example
M. Knepley (UC) SIAM SIAM 6 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

FEM Integration Model
Proposed by Jed Brown

We consider weak forms dependent only on fields and gradients,∫
Ω
ϕ · f0(u,∇u) +∇ϕ : f⃗1(u,∇u) = 0. (1)

Discretizing we have

∑
e

ET
e

[
BT W qf0(uq,∇uq) +

∑
k

DT
k W q f⃗ k

1 (u
q,∇uq)

]
= 0 (2)

fn pointwise physics functions
uq field at a quad point
W q diagonal matrix of quad weights
B,D basis function matrices which

reduce over quad points
E assembly operator

M. Knepley (UC) SIAM SIAM 7 / 21

Why Quadrature?

Quadrature can handle

many fields (linearization)

non-affine elements (Argyris)

non-affine mappings (isoparametric)

functions not in the FEM space

Optimizations for Quadrature Representations of Finite Element Tensors through Automated
Code Generation, ACM TOMS, Kristian B. Ølgaard and Garth N. Wells

Finite Element Integration on GPUs, ACM TOMS, Andy R. Terrel and Matthew G. Knepley

M. Knepley (UC) SIAM SIAM 8 / 21

http://arxiv.org/abs/1104.0199
http://arxiv.org/abs/1104.0199
http://arxiv.org/abs/1103.0066

Physics code

∇ϕi · ∇u

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · ∇u

__device__ vecType f1 (realType u [] , vecType gradU [] , i n t comp) {
return gradU [comp] ;

}

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · (∇u +∇uT)

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · (∇u +∇uT)

__device__ vecType f1 (realType u [] , vecType gradU [] , i n t comp) {
vecType f1 ;

switch (comp) {
case 0:

f1 . x = 0 . 5 * (gradU [0] . x + gradU [0] . x) ;
f1 . y = 0 . 5 * (gradU [0] . y + gradU [1] . x) ;
break ;

case 1:
f1 . x = 0 . 5 * (gradU [1] . x + gradU [0] . y) ;
f1 . y = 0 . 5 * (gradU [1] . y + gradU [1] . y) ;

}
return f1 ;

}

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · ∇u + ϕik2u

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · ∇u + ϕik2u

__device__ vecType f1 (realType u [] , vecType gradU [] , i n t comp) {
return gradU [comp] ;

}

__device__ realType f0 (realType u [] , vecType gradU [] , i n t comp) {
return k * k *u [0] ;

}

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · ∇u − (∇ · ϕ)p

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · ∇u − (∇ · ϕ)p

void f1 (PetscScalar u [] , const PetscScalar gradU [] , PetscScalar f1 []) {
const PetscInt dim = SPATIAL_DIM_0 ;
const PetscInt Ncomp = NUM_BASIS_COMPONENTS_0;
PetscInt comp , d ;

for (comp = 0; comp < Ncomp; ++comp) {
for (d = 0 ; d < dim ; ++d) {

f1 [comp* dim+d] = gradU [comp* dim+d] ;
}
f1 [comp* dim+comp] −= u [Ncomp] ;

}
}

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · ν0e−βT∇u − (∇ · ϕ)p

M. Knepley (UC) SIAM SIAM 9 / 21

Physics code

∇ϕi · ν0e−βT∇u − (∇ · ϕ)p

void f1 (PetscScalar u [] , const PetscScalar gradU [] , PetscScalar f1 []) {
const PetscInt dim = SPATIAL_DIM_0 ;
const PetscInt Ncomp = NUM_BASIS_COMPONENTS_0;
PetscInt comp , d ;

for (comp = 0; comp < Ncomp; ++comp) {
for (d = 0 ; d < dim ; ++d) {

f1 [comp* dim+d] = nu_0 * exp(− beta *u [Ncomp+ 1]) * gradU [comp* dim+d] ;
}
f1 [comp* dim+comp] −= u [Ncomp] ;

}
}

M. Knepley (UC) SIAM SIAM 9 / 21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) SIAM SIAM 10 / 21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) SIAM SIAM 10 / 21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) SIAM SIAM 10 / 21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) SIAM SIAM 10 / 21

Thread Transposition

Map values at quadrature

points to coefficients

t5
t4
t3

t2
t1
t0

t5
t4
t3

t2
t1
t0

t5
t4
t3

t2
t1
t0

Continue with kernel

Evaluate basis and process

values at quadrature points

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

M. Knepley (UC) SIAM SIAM 11 / 21

Basis Phase

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

Quadrature Phase

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TTNt = 24

Nt = 24

Nbc = 12

Nbs = 6

Nsbc = 3

Nsqc = 2

Nbl = 2 Nbl = 2

M. Knepley (UC) SIAM SIAM 12 / 21

Performance Expectations
Element Integration

FEM Integration, at the element level,
is also limited by memory bandwidth,

rather than by peak flop rate.

We expect bandwidth ratio speedup (3x–6x for most systems)

Input for FEM is a vector of coefficients (auxiliary fields)

Output is a vector of coefficients for the residual

M. Knepley (UC) SIAM SIAM 13 / 21

2D P1 Laplacian Performance

Reaches 100 GF/s by 100K elements
M. Knepley (UC) SIAM SIAM 14 / 21

2D P1 Laplacian Performance

Linear scaling for both GPU and CPU integration
M. Knepley (UC) SIAM SIAM 15 / 21

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) SIAM SIAM 16 / 21

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) SIAM SIAM 16 / 21

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) SIAM SIAM 16 / 21

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) SIAM SIAM 16 / 21

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) SIAM SIAM 16 / 21

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) SIAM SIAM 16 / 21

2D P1 Laplacian Performance
Configuring PETSc

$PETSC_DIR/configure
–download-triangle –download-chaco
–download-scientificpython –download-fiat –download-generator
–with-cuda
–with-cudac=’nvcc -m64’ –with-cuda-arch=sm_10
–with-cusp-dir=/PETSc3/multicore/cusp
–with-thrust-dir=/PETSc3/multicore/thrust
–with-cuda-only
–with-precision=single

M. Knepley (UC) SIAM SIAM 16 / 21

2D P1 Laplacian Performance
Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly
--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625
--order=1 --blockExp 4
CPU=’dm_view show_residual=0 compute_function batch’
GPU=’dm_view show_residual=0 compute_function batch gpu
gpu_batches=8’

M. Knepley (UC) SIAM SIAM 17 / 21

2D P1 Rate-of-Strain Performance

Reaches 100 GF/s by 100K elements

M. Knepley (UC) SIAM SIAM 18 / 21

2D P1 Rate-of-Strain Performance
Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly
--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625
--operator=elasticity --order=1 --blockExp 4
CPU=’dm_view op_type=elasticity show_residual=0
compute_function batch’
GPU=’dm_view op_type=elasticity show_residual=0
compute_function batch gpu gpu_batches=8’

M. Knepley (UC) SIAM SIAM 19 / 21

PETSc Multiphysics
Each block of the Jacobian is evaluated separately:

Reuse single-field code

Vectorize over cells, rather than fields

Retain sparsity of the Jacobian

Solver integration is seamless:
Nested Block preconditioners from the command line

Segregated KKT MG smoothers from the command line

Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature

M. Knepley (UC) SIAM SIAM 20 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

PETSc Multiphysics
Each block of the Jacobian is evaluated separately:

Reuse single-field code

Vectorize over cells, rather than fields

Retain sparsity of the Jacobian

Solver integration is seamless:
Nested Block preconditioners from the command line

Segregated KKT MG smoothers from the command line

Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature

M. Knepley (UC) SIAM SIAM 20 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

PETSc Multiphysics
Each block of the Jacobian is evaluated separately:

Reuse single-field code

Vectorize over cells, rather than fields

Retain sparsity of the Jacobian

Solver integration is seamless:
Nested Block preconditioners from the command line

Segregated KKT MG smoothers from the command line

Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature

M. Knepley (UC) SIAM SIAM 20 / 21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) SIAM SIAM 21 / 21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) SIAM SIAM 21 / 21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) SIAM SIAM 21 / 21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) SIAM SIAM 21 / 21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) SIAM SIAM 21 / 21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

