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Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent
@ Entire problem can be @ Problem definition requires
phrased in the interface general code
o Ax=0>b e Physics, boundary conditions
@ Standalone component @ Crucial interaction with other

simulation components
e Discretization, mesh/geometry
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PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh

element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual
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PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions

@ Loops are done in batches, remainder cells handled by CPU
@ One batch integration method with compile-time sizes
e CPU, multicore CPU, MIC, GPU, etc.

@ PETSc ex52 is a single-field example
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FEM Integration Model

Proposed by Jed Brown
We consider weak forms dependent only on fields and gradients,

/ng-fo(u,Vu)qLqu:ﬁ(u,Vu)zo. (1)

Discretizing we have

y el [BTWC’fO(UQ,qu)+ZD{WQﬁk(UQ,qu) =0 (2
e k

fn pointwise physics functions

u?  field at a quad point

W49  diagonal matrix of quad weights

B,D basis function matrices which
reduce over quad points

& assembly operator
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Why Quadrature?

Quadrature can handle

@ many fields (linearization)
@ non-affine elements (Argyris)
@ non-affine mappings (isoparametric)

@ functions not in the FEM space

Optimizations for Quadrature Representations of Finite Element Tensors through Automated
Code Generation, ACM TOMS, Kristian B. Qlgaard and Garth N. Wells

Finite Element Integration on GPUs, ACM TOMS, Andy R. Terrel and Matthew G. Knepley
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Physics code

V- Vu
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Physics code

V- Vu

__device__ vecType f1(realType u[], vecType gradU[], int comp) ({
return gradU[comp];

}
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Physics code

Vi (Vu+vuT)

__device__ vecType f1(realType u[], vecType gradU[], int comp) ({

vecType f1;

switch (comp) {

case O0:
f1.x = 0.5«(gradU[0].x + gradU[0].x);
fi.y = 0.5«(gradU[0].y + gradU[1].x);
break;

case 1:
f1.x = 0.5+(gradU[1].x + gradU[0].y);
fi.y = 0.5«(gradU[1].y + gradU[1].y);

return f1;
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Physics code

Vi Vu+ ¢ik?u

__device__ vecType f1(realType u[], vecType gradU[],
return gradU[comp];

}

__device__ realType fO(realType u[], vecType gradU[],
return k«k+u[0];
}
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Physics code

Vi Vu— (V- ¢)p

void f1 (PetscScalar u[], const PetscScalar gradU[],
const Petscint dim SPATIAL _DIM _0;
const Petscint Ncomp = NUM_BASIS COMPONENTS 0;
Petscint comp, d;

[o N | | I

for(comp = 0; comp < Ncomp; ++comp) {
for(d = 0; d < dim; ++d) {
f1 [compxdim+d] = gradU[compxdim+d];

f1 [comp=dim+comp] —= u[Ncomp];
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Physics code

Vi voe TVu— (V- ¢)p

void f1 (PetscScalar u[], const PetscScalar gradU[],
const Petscint dim SPATIAL_DIM 0;
const Petscint Ncomp = NUM_BASIS COMPONENTS 0;
Petscint comp, d;

Q-

for(comp = 0; comp < Ncomp; ++comp) {
for(d = 0; d < dim; ++d) {

PetscScalar f1[])

f1 [comp+dim+d] = nu_O+exp(-betaxu[Ncomp+1])=gradU[comp=dim+d];

f1 [comp=dim+comp] —= u[Ncomp];
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Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for Too many passes through global
each Quad Point memory

Vectorize over Basis Coef Some threads idle when sizes
and Quad Points are different
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Thread Transposition

Evaluate basis and process
values at quadrature points
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Quadrature Phase
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Performance Expectations
Element Integration

FEM Integration, at the element level,
is also limited by memory bandwidth,
rather than by peak flop rate.

@ We expect bandwidth ratio speedup (3x—6x for most systems)
@ Input for FEM is a vector of coefficients (auxiliary fields)

@ Output is a vector of coefficients for the residual
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2D P; Laplacian Performance

Performance on SNES Example 52 - NVIDIA GTX 580
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Reaches 100 GF/s by 100K elements
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2D P; Laplacian Performance

Performance on SNES Example 52
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Linear scaling for both GPU and CPU integration
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2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
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2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda
—with-cudac="nvcc -m64’ —with-cuda-arch=sm_10
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2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda

—with-cusp-dir=/PETSc3/multicore/cusp
—with-thrust-dir=/PETSc3/multicore/thrust
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2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda

—with-cuda-only
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2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda

—with-precision=single
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2D P; Laplacian Performance

Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly

--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625

--order=1 --blockExp 4
CPU="dm_view show_residual=0 compute_function batch’

GPU="dm_view show_residual=0 compute_function batch gpu
gpu_batches=8’
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2D P; Rate-of-Strain Performance

CPUVs. GPU Flop Rate for 2D P, Lagrange ['Elasticity’]
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2D P; Rate-of-Strain Performance

Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly

--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625

--operator=elasticity --order=1 --blockExp 4

CPU="dm_view op_type=elasticity show_residual=0
compute_function batch’

GPU="dm_view op_type=elasticity show_residual=0
compute_function batch gpu gpu_batches=8’
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PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields

@ Retain sparsity of the Jacobian
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PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields
@ Retain sparsity of the Jacobian

Solver integration is seamless:
@ Nested Block preconditioners from the command line

@ Segregated KKT MG smoothers from the command line

@ Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature
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Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
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How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
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Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization
@ Kernel fusion is easy @ Kernel fusion is really hard
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