Incorporation of Multicore FEM Integration
Routines into Scientific Libraries

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

SIAM Annual Meeting 2012
Minneapolis, MN July 9-13, 2012

/7\ RUSH UNIVERSITY
s MEDICAL CENTER

M. Knepley (UC)

Collaborators

Andy R. Terrel

e Andreas Kldckner
e Jed Brown
e Robert Kirby

M. Knepley (UC) SIAM SIAM 3/21

http://andy.terrel.us/Professional/
http://mathema.tician.de/
http://www.59a2.org/research/
http://www.math.ttu.edu/~kirby/

To be widely accepted,

M. Knepley (UC) SIAM SIAM 4/21

To be widely accepted,

GPU computing must be
transparent to the user,

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
Infrastructure.

M. Knepley (UC) SIAM SIAM 4/21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements

M. Knepley (UC) SIAM SIAM 5/21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent

M. Knepley (UC) SIAM SIAM 5/21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent
@ Entire problem can be @ Problem definition requires
phrased in the interface general code
o Ax=0>b e Physics, boundary conditions

M. Knepley (UC) SIAM SIAM 5/21

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent
@ Entire problem can be @ Problem definition requires
phrased in the interface general code
o Ax=0>b e Physics, boundary conditions
@ Standalone component @ Crucial interaction with other

simulation components
e Discretization, mesh/geometry

M. Knepley (UC) SIAM SIAM 5/21

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh

element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

M. Knepley (UC) Y SIAM 6/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual
@ User provides point-wise physics functions
M. Knepley (UC) SIAM SIAM 6/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions
@ Loops are done in batches, remainder cells handled by CPU

M. Knepley (UC) SIAM SIAM 6/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions

@ Loops are done in batches, remainder cells handled by CPU
@ One batch integration method with compile-time sizes
e CPU, multicore CPU, MIC, GPU, etc.

M. Knepley (UC) SIAM SIAM 6/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual

@ User provides point-wise physics functions

@ Loops are done in batches, remainder cells handled by CPU
@ One batch integration method with compile-time sizes
e CPU, multicore CPU, MIC, GPU, etc.

@ PETSc ex52 is a single-field example

M. Knepley (UC) SIAM SIAM 6/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

FEM Integration Model

Proposed by Jed Brown
We consider weak forms dependent only on fields and gradients,

/ng-fo(u,Vu)qLqu:ﬁ(u,Vu)zo. (1)

Discretizing we have

y el [BTWC’fO(UQ,qu)+ZD{WQﬁk(UQ,qu) =0 (2
e k

fn pointwise physics functions

u? field at a quad point

W49 diagonal matrix of quad weights

B,D basis function matrices which
reduce over quad points

& assembly operator

M. Knepley (UC) SIAM SIAM 7/21

Why Quadrature?

Quadrature can handle

@ many fields (linearization)
@ non-affine elements (Argyris)
@ non-affine mappings (isoparametric)

@ functions not in the FEM space

Optimizations for Quadrature Representations of Finite Element Tensors through Automated
Code Generation, ACM TOMS, Kristian B. Qlgaard and Garth N. Wells

Finite Element Integration on GPUs, ACM TOMS, Andy R. Terrel and Matthew G. Knepley

M. Knepley (UC) SIAM SIAM 8/21

http://arxiv.org/abs/1104.0199
http://arxiv.org/abs/1104.0199
http://arxiv.org/abs/1103.0066

Physics code

V- Vu

M. Knepley (UC) SIAM SIAM 9/21

Physics code

V- Vu

__device__ vecType f1(realType u[], vecType gradU[], int comp) ({
return gradU[comp];

}

M. Knepley (UC) SIAM SIAM 9/21

Physics code

Vi (Vu+vuT)

M. Knepley (UC) SIAM SIAM 9/21

Physics code

Vi (Vu+vuT)

__device__ vecType f1(realType u[], vecType gradU[], int comp) ({

vecType f1;

switch (comp) {

case O0:
f1.x = 0.5«(gradU[0].x + gradU[0].x);
fi.y = 0.5«(gradU[0].y + gradU[1].x);
break;

case 1:
f1.x = 0.5+(gradU[1].x + gradU[0].y);
fi.y = 0.5«(gradU[1].y + gradU[1].y);

return f1;

M. Knepley (UC) SIAM SIAM 9/21

Physics code

Vi Vu+ ¢ik?u

M. Knepley (UC) SIAM SIAM 9/21

Physics code

Vi Vu+ ¢ik?u

__device__ vecType f1(realType u[], vecType gradU[],
return gradU[comp];

}

__device__ realType fO(realType u[], vecType gradU[],
return k«k+u[0];
}

M. Knepley (UC) SIAM

int comp)
int comp)
SIAM

{

{

9/21

Physics code

Vi Vu— (V- ¢)p

M. Knepley (UC) SIAM SIAM 9/21

Physics code

Vi Vu— (V- ¢)p

void f1 (PetscScalar u[], const PetscScalar gradU[],
const Petscint dim SPATIAL _DIM _0;
const Petscint Ncomp = NUM_BASIS COMPONENTS 0;
Petscint comp, d;

[o N | | I

for(comp = 0; comp < Ncomp; ++comp) {
for(d = 0; d < dim; ++d) {
f1 [compxdim+d] = gradU[compxdim+d];

f1 [comp=dim+comp] —= u[Ncomp];

M. Knepley (UC) SIAM

PetscScalar f1[])

SIAM

{

9/21

Physics code

Vi voe TVu— (V- ¢)p

M. Knepley (UC) SIAM SIAM 9/21

Physics code

Vi voe TVu— (V- ¢)p

void f1 (PetscScalar u[], const PetscScalar gradU[],
const Petscint dim SPATIAL_DIM 0;
const Petscint Ncomp = NUM_BASIS COMPONENTS 0;
Petscint comp, d;

Q-

for(comp = 0; comp < Ncomp; ++comp) {
for(d = 0; d < dim; ++d) {

PetscScalar f1[])

f1 [comp+dim+d] = nu_O+exp(-betaxu[Ncomp+1])=gradU[comp=dim+d];

f1 [comp=dim+comp] —= u[Ncomp];

M. Knepley (UC) SIAM

SIAM

{

9/21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

M. Knepley (UC) SIAM SIAM 10/21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

M. Knepley (UC) SIAM SIAM 10/21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for Too many passes through global
each Quad Point memory

M. Knepley (UC) SIAM SIAM 10/21

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for Too many passes through global
each Quad Point memory

Vectorize over Basis Coef Some threads idle when sizes
and Quad Points are different

M. Knepley (UC) SIAM SIAM 10/21

Thread Transposition

Evaluate basis and process
values at quadrature points

Map values at quadrature P R
- |
points to coefficients -7 il o fo)] !
———————————————— - |
L — — | !
t t
'n m (A | oo
| | — -/
| | PR
B t A ‘ ‘
1 \, \, \/ 3, Continue with kernel | 3
|
e e e U | I
| 1 ; |
I ! | -/
; | PR
|
| 3 3 3 3 | !
‘oo ool /. | |
| 1
~ < |
=~ k \ Jo

M. Knepley (UC) SIAM SIAM 11/21

Quadrature Phase

Nsge

o
I
3
=
EE)(eEE)(EE)I(EE)EE)
FF)LEFRF)LFEF Lk F - F)
- o) FE)(EFEFE)| [FFE =
F)lFrRF)JLFEFR)ILFEFRILEFR)
- N N
s|s EEBEER EEBEER]|]o
5 !
D e e ~
|
I i FEFE B (FEB(FEEFEB
:,,TTU,,TTU ,,TTU,TTU;)
P K
2 2

Basis Phase

Np =2

12/21

SIAM

SIAM

M. Knepley (UC)

Performance Expectations
Element Integration

FEM Integration, at the element level,
is also limited by memory bandwidth,
rather than by peak flop rate.

@ We expect bandwidth ratio speedup (3x—6x for most systems)
@ Input for FEM is a vector of coefficients (auxiliary fields)

@ Output is a vector of coefficients for the residual

M. Knepley (UC) SIAM SIAM 13/21

2D P; Laplacian Performance

Performance on SNES Example 52 - NVIDIA GTX 580

300
250 F 1
o
- 200 8
e
[
:
c 150+ 4
S
T
5
o
£ 100 1
o = blockExp 3
== blockExp 4
50 L === blockExp 5 (]
== blockExp 6
m— blockExp 7
0

o 200000 400000 600000 800000 1000000 1200000
Number of Dof

Reaches 100 GF/s by 100K elements

M. Knepley (UC) SIAM SIAM 14/21

2D P; Laplacian Performance

Performance on SNES Example 52

0.09 : T T T .
—— GPU-16 IntegBatchCPU
008F CPU-16 IntegBatchCPU
—— GPU-16 IntegBatchGPU
0.07 — GPU-16 IntegGPUONIy
0.06 |-
% 0.05F
u
E
= 0.04
0.03f
0.02}
0.01f
0.00 L=
0 50000 100000 150000 200000 250000 300000

Number of Dof

Linear scaling for both GPU and CPU integration

M. Knepley (UC) SIAM SIAM 15/21

2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco

M. Knepley (UC) SIAM SIAM 16/21

2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator

M. Knepley (UC) SIAM SIAM 16/21

2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda

M. Knepley (UC) SIAM SIAM 16/21

2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda
—with-cudac="nvcc -m64’ —with-cuda-arch=sm_10

M. Knepley (UC) SIAM SIAM 16/21

2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda

—with-cusp-dir=/PETSc3/multicore/cusp
—with-thrust-dir=/PETSc3/multicore/thrust

M. Knepley (UC) SIAM SIAM 16/21

2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda

—with-cuda-only

M. Knepley (UC) SIAM SIAM 16/21

2D P; Laplacian Performance

Configuring PETSc

$PETSC_DIR/configure
—download-triangle —download-chaco
—download-scientificpython —download-fiat —download-generator
—with-cuda

—with-precision=single

M. Knepley (UC) SIAM SIAM 16/21

2D P; Laplacian Performance

Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly

--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625

--order=1 --blockExp 4
CPU="dm_view show_residual=0 compute_function batch’

GPU="dm_view show_residual=0 compute_function batch gpu
gpu_batches=8’

M. Knepley (UC) SIAM SIAM 17/21

2D P; Rate-of-Strain Performance

CPUVs. GPU Flop Rate for 2D P, Lagrange ['Elasticity’]

100000

80000

60000

MFlops/s

40000

20000

Interleave Stores = 1
Loop Unrolling full

— NVIDIA bs64 cel is unroll
— NVIDIA bs64 ce2 is unroll
~— NVIDIA bs64 ce4 is unroll
~— NVIDIA bs128 cel is unroll
— NVIDIA bs128 ce2 is unroll
NVIDIA bs128 ce4 is unroll
— NVIDIA bs256 cel is unroll
— NVIDIA bs256 ce2 is unroll
— NVIDIA bs256 ce4 is unroll

50000

100000
Number of Elements.

150000 200000

Reaches 100 GF/s by 100K elements

M. Knepley (UC)

SIAM

SIAM

2D P; Rate-of-Strain Performance

Running the example

$PETSC_DIR/src/benchmarks/benchmarkExample.py
--daemon --num 52 DMComplex
--events IntegBatchCPU IntegBatchGPU IntegGPUOnly

--refine 0.0625 0.00625 0.000625 0.0000625 0.00003125
0.000015625 0.0000078125 0.00000390625

--operator=elasticity --order=1 --blockExp 4

CPU="dm_view op_type=elasticity show_residual=0
compute_function batch’

GPU="dm_view op_type=elasticity show_residual=0
compute_function batch gpu gpu_batches=8’

M. Knepley (UC) SIAM SIAM 19/21

PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields

@ Retain sparsity of the Jacobian

M. Knepley (UC) SIAM SIAM 20/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields
@ Retain sparsity of the Jacobian

Solver integration is seamless:
@ Nested Block preconditioners from the command line

@ Segregated KKT MG smoothers from the command line

@ Fully composable with AMG, LU, Schur complement, etc.

M. Knepley (UC) SIAM SIAM 20/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields
@ Retain sparsity of the Jacobian

Solver integration is seamless:
@ Nested Block preconditioners from the command line

@ Segregated KKT MG smoothers from the command line

@ Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature

M. Knepley (UC) SIAM SIAM 20/21

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates

M. Knepley (UC) SIAM SIAM 21/21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization

M. Knepley (UC) SIAM SIAM 21/21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging

M. Knepley (UC) SIAM SIAM 21/21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization

M. Knepley (UC) SIAM SIAM 21/21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization
@ Kernel fusion is easy @ Kernel fusion is really hard

M. Knepley (UC) SIAM SIAM 21/21

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

