Enrichment for Multigrid in PETSc

Matthew Knepley

Computer Science and Engineering & CDSE University at Buffalo

SIAM Computational Science and Engineering, Spokane, WA February 27, 2019

Multigrid can solve hard, complex problems using basis enrichment.

Basis enrichment

consists of pieces, that should be composable.

Matt (Buffalo)

CSE19

Outline

Enrich with What?

2 What do I do with my Enrichment?

3 Example

4 Future Work

Overlapping multicell eigenproblems

- Variational multiscale
- Stuff from Todd Arbogast
- Localized orthogonal decomposition (LOD)

LOD defines localization as *k*-cell neighborhood

Efficient implementation of the LOD method Engwer, Henning, Målqvist, Peterseim, 1602.01658, 2016.

Domain Decomposition

Energy-minimizing extensions to dof support

- Wirebasket (PCEXOTIC)
- Generalized Dryja Smith Widlund (GDSW)
- Need to know nullspace

Extensions are linear solves, not eigensolves

A Parallel Impl. ... with Energy-Minimizing Coarse Space ... Heinlein, Klawonn, Rheinbach, SISC 38(6), 2016.

Multigrid

Generalized eigenmodes of the operator

- Adaptive AMG (α AMG)
- AMGe
- Bootstrap AMG

Get near null modes

Bootstrap AMG Brandt, Brannick, Kahl, Livshits, SISC 33(2), 2011.

Multilevel Eigensolver (MEPS)

Based on a simple relation for some matrix W,

$$\langle x_l, x_l \rangle_{W_l} = \langle P_l x_l, P_L x_l \rangle_{W}$$

where prolongator P_l defines

 $W_l = P_l^{\dagger} W P_l.$

CSE19

12/34

Multilevel Eigensolver (MEPS)

Suppose that

 $A_l x_l = \lambda_l \tilde{M}_l x_l.$

Then

$$\lambda_{I} = \frac{\langle \boldsymbol{x}_{l}, \boldsymbol{x}_{l} \rangle_{\boldsymbol{A}_{l}}}{\langle \boldsymbol{x}_{l}, \boldsymbol{x}_{l} \rangle_{\tilde{\boldsymbol{M}}_{l}}} \\ = \frac{\langle \boldsymbol{P}_{l} \boldsymbol{x}_{l}, \boldsymbol{P}_{l} \boldsymbol{x}_{l} \rangle_{\boldsymbol{A}}}{\langle \boldsymbol{P}_{l} \boldsymbol{x}_{l}, \boldsymbol{P}_{l} \boldsymbol{x}_{l} \rangle_{\tilde{\boldsymbol{M}}}} \\ = RQ(\boldsymbol{P}_{l} \boldsymbol{x}_{l})$$

provides a way to connect levels.

Matt (Buffalo)

A B A A B A

13/34

CSE19

Multilevel Eigensolver (MEPS)

First solve

$$A_l x_l = \lambda_l \tilde{M}_l x_l$$

Then guess

$$\lambda_{l+1} = \lambda_l,$$

$$\boldsymbol{x}_{l+1} = \boldsymbol{P}_l^{l+1} \boldsymbol{x}_l,$$

smooth

$$\left(\boldsymbol{A}_{l+1}-\lambda_{l+1}\tilde{\boldsymbol{M}}_{l+1}\right)\boldsymbol{x}_{l+1}=\boldsymbol{0}.$$

and update

$$\lambda_{l+1} = RQ(x_{l+1}).$$

< 同 > < ∃ >

Multilevel Eigensolver (MEPS)

This relies on \tilde{M} satisfying

$$ilde{M}_{l} pprox P_{l}^{\dagger} ilde{M} P_{l}.$$

Also, I needed to orthogonalize coarse vectors during the iteration on each level.

Used BV from SLEPc

Multilevel Eigensolver (MEPS)

Mode 0 ($\lambda = 0.0014$)

Mode 1 (λ = 1.195)

PETSc

Multilevel Eigensolver (MEPS)

Mode 2 (λ = 1.43)

O N mg_levels_4_Fine Vector 2

Matt (Buffalo)

PETSc

Multilevel Eigensolver (MEPS)

Mode 5 (λ = 1.80)

Mode 7 (λ = 1.80)

Matt (Buffalo)

Why do I think it works?

We can measure the eigen-residual

$$\|\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{x}-\lambda\boldsymbol{x}\|_2$$

for each coarse basis vector.

We see
$$10^{-3}$$
- 10^{-5} .

Its unclear (to me) how accurate this basis needs to be for fast convergence.

Wall (Dunaio	Matt (Buffa	lo
--------------	--------	-------	----

Outline

Enrich with What?

2 What do I do with my Enrichment?

3 Example

4 Future Work

Alternatives

Homogenization

Solve full problem in new basis

Domain Decomposition

Add in solution from coarse problem

Linear Algebra

Augment Krylov basis (DGMRES)

Multigrid

Optimize the prolongator P_l^{l+1}

- Reproduce coarse modes accurately
- Minimize energy of interpolant

Solve L_2 least squares problem for each row

- BAMG: coarse-fine point division
- BGMG: one function discretized on both levels

$$\min_{P_{ij}} \sum_{k} w_{k} \| f_{i}^{F,k} - \sum_{j} P_{ij} f_{j}^{C,k} \|_{2}$$

Adaptation API

Adapting the Prolongator:

DMAdaptInterpolator(DM dmc, DM dmf, Mat In, KSP smoother, PetscInt Nc, Vec vf[], Vec vc[], Mat *InAdapt, void *user); DMCheckInterpolator(DM dmf, Mat In, PetscInt Nc, Vec vc[], Vec vf[], PetscReal tol);

Multilevel Eigensolver in PCMG:

PCMGComputeCoarseSpace(PC pc, PetscInt I, PCMGCoarseSpaceType cstype, PetscInt Nc, Vec cspace[], Vec *space[]); PCMGAdaptInterpolator(PC pc, PetscInt I, KSP csmooth, KSP fsmooth, PetscInt Nc, Vec cspace[], Vec fspace[]); PCMGRecomputeLevelOperators(PC pc, PetscInt I);

21/34

Adaptation Commandline

PCMG adaptation:

```
-pc_mg_adapt_interp
-pc_mg_adapt_interp_coarse_space
<polynomial,harmonic,eigenvector>
-pc_mg_adapt_interp_n <k>
```

Multilevel Eigensolve:

```
-pc_mg_mesp_ksp_type richardson
-pc_mg_mesp_ksp_richardson_self_scale
-pc_mg_mesp_ksp_max_it 100
-pc_mg_mesp_pc_type <none, jacobi>
```

Why do I think it works?

We can measure

$$\|f^F - Pf^C\|_{\infty}$$
 and $\|f^F - Pf^C\|_2$

for each coarse basis vector.

We cannot just use max-norm since the *interpolator sparsity pattern* near boundaries can be very restricted.

Outline

Enrich with What?

What do I do with my Enrichment?

Future Work

A (10) A (10) A (10)

This example comes from

Optimal Interpolation & Compatible Relaxation in Classical AMG Brannick, Cao, Kahl, Falgout, Hu, SISC 40(3), 2018.

It solves

$$-\nabla \cdot \nu(\vec{x})\nabla u - 20e^{-\left|\vec{x}-\vec{x}_{0}\right|^{2}} = 0,$$

where $\nu \in [10^{-k}, 1]$ in a checkerboard pattern.

CSE19

25/34

Example

Checkerboard Example

Coefficient 64x64 k = 3

Matt (Buffalo)

CSE19

26/34

Example

Checkerboard Example Solution 64x64 k = 3

Standard PETSc GMG:

KSP Residual norm 2,643944129967e-01 1 KSP Residual norm 2.573911048750e-01 KSP Residual norm 2,573256470533e-01 2 3 KSP Residual norm 2,571837465231e-01 Residual norm 2,562369395483e-01 4 KSP KSP Residual norm 2,562233942117e-01 5 KSP Residual norm 2,561877374398e-01 6 ٠ ٠ Residual norm 4,333658836503e-09 81 KSP 82 KSP Residual norm 2,870042453496e-09 KSP Residual norm 1,724444567606e-09 83

A (10) A (10) A (10)

Adaptive GMG with 8 eigenvectors:

KSP Residual norm 2,643944129967e-01 1 KSP Residual norm 2.622984060861e-01 KSP Residual norm 2,242690218384e-01 2 3 KSP Residual norm 1.853298561871e-01 4 KSP Residual norm 1,482379261196e-01 KSP Residual norm 1,039149927776e-01 5 KSP Residual norm 6,282001523842e-02 6 ٠ ٠ KSP Residual norm 7,334589478602e-09 33 34 KSP Residual norm 4.163311731389e-09 35 KSP Residual norm 2,338748316520e-09

< 🗇 🕨 < 🖻 🕨

Adaptive GMG with 1 eigenvector:

0	KSP	Residual	norm	2.643944129967e-01
1	KSP	Residual	norm	1.368739283743e-01
2	KSP	Residual	norm	2.229521556344e-02
3	KSP	Residual	norm	1.673518835746e-03
4	KSP	Residual	norm	1.403981092990e-04
5	KSP	Residual	norm	1.147445564476e-05
6	KSP	Residual	norm	8.831252126121e-07
7	KSP	Residual	norm	7.332391283986e-08
8	KSP	Residual	norm	5.999730555945e-09
9	KSP	Residual	norm	4.943868744122e-10

- < ⊒ →

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Adaptive GMG with 2 eigenvectors:

KSP Residual norm 2,643944129967e-01 1 KSP Residual norm 1.419407097359e-01 KSP Residual norm 9.135393298863e-02 2 3 KSP Residual norm 3.020106692060e-02 4 KSP Residual norm 1.210952999077e-02 KSP Residual norm 4,286622379522e-03 5 KSP Residual norm 1,913486044360e-03 6 ٠ ٠ KSP Residual norm 1,485802738171e-08 21 KSP Residual norm 5.589085527836e-09 22 KSP Residual norm 2,201671896250e-09

< A > < A > >

Standard PETSc GMG:

```
Residual norm 2,643944129967e-01
   KSP
  1
   KSP
        Residual norm 2.574526515771e-01
  2 KSP
       Residual norm 2.574284005602e-01
  3 KSP
       Residual norm 2,573988430822e-01
        Residual norm 2.570713945704e-01
   KSP
   KSP Residual norm 2,569879721799e-01
  5
   KSP Residual norm 2,567320802002e-01
  6
  ٠
  ٠
        Residual norm 4,486735550171e-09
260
    KSP
261
   KSP
        Residual norm 3.311768847514e-09
262 KSP Residual norm 2,312191750445e-09
```

A (10) A (10) A (10)

Adaptive GMG with 1 eigenvector:

0	KSP	Residual	norm	2.643944129967e-01
1	KSP	Residual	norm	1.299664043058e-01
2	KSP	Residual	norm	2.192319438963e-02
3	KSP	Residual	norm	1.651881252886e-03
4	KSP	Residual	norm	1.347033005332e-04
5	KSP	Residual	norm	1.063898499377e-05
6	KSP	Residual	norm	8.034146403034e-07
7	KSP	Residual	norm	6.704449807355e-08
8	KSP	Residual	norm	5.531374943735e-09
9	KSP	Residual	norm	4.471792062324e-10

- < ⊒ →

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Standard PETSc GMG on quads:

```
Residual norm 2,643871530208e-01
   KSP
  1
   KSP
        Residual norm 2.584172081575e-01
  2 KSP
       Residual norm 2.572661193862e-01
  3 KSP Residual norm 2,550802805550e-01
        Residual norm 2.529879158256e-01
   KSP
   KSP Residual norm 2,522691968307e-01
  5
   KSP Residual norm 2,514243101722e-01
  6
  ٠
  ٠
207
        Residual norm 2,969084590440e-09
    KSP
2.08
   KSP
        Residual norm 2,673859078427e-09
209 KSP Residual norm 2,432348693080e-09
```

A (10) A (10) A (10)

Adaptive GMG with 1 eigenvector on quads:

0	KSP	Residual	norm	2.643871530208e-01
1	KSP	Residual	norm	7.741923747475e-02
2	KSP	Residual	norm	1.537706401791e-02
3	KSP	Residual	norm	1.613987533605e-03
4	KSP	Residual	norm	8.169056466595e-05
5	KSP	Residual	norm	9.163477739245e-06
6	KSP	Residual	norm	7.982598339429e-07
7	KSP	Residual	norm	6.736115781708e-08
8	KSP	Residual	norm	7.180920762406e-09
9	KSP	Residual	norm	7.742861190126e-10

CSE19

Adaptive GMG with 1 eigenvector on 128x128:

0	KSP	Residual	norm	1.329466728347e-01
1	KSP	Residual	norm	7.237500958468e-02
2	KSP	Residual	norm	1.438549155985e-02
3	KSP	Residual	norm	1.891895494543e-03
4	KSP	Residual	norm	6.980593794529e-05
5	KSP	Residual	norm	1.131139401771e-05
6	KSP	Residual	norm	1.058946413598e-06
7	KSP	Residual	norm	9.961020640464e-08
8	KSP	Residual	norm	1.188564376601e-08
9	KSP	Residual	norm	1.388263057429e-09
LO	KSP	Residual	norm	1.380589117211e-10

< 🗇 🕨 < 🖃 >

Adaptive GMG with 1 eigenvector on 256x256:

0	KSP	Residual	norm	6.666002610424e-02
1	KSP	Residual	norm	5.245837884989e-02
2	KSP	Residual	norm	1.186051192857e-02
3	KSP	Residual	norm	1.484602815289e-03
4	KSP	Residual	norm	8.401165001048e-05
5	KSP	Residual	norm	1.156096091669e-05
6	KSP	Residual	norm	1.014700764074e-06
7	KSP	Residual	norm	1.128389370980e-07
8	KSP	Residual	norm	1.135388821859e-08
9	KSP	Residual	norm	1.219154510549e-09
LΟ	KSP	Residual	norm	1.663780386661e-10

< ∃ >

< 🗇 🕨 < 🖃 >

Adaptive GMG with 1 eigenvector on 512x512:

KSP Residual norm 3.337648678109e-02 KSP Residual norm 3,111433698057e-02 KSP Residual norm 1.065894924276e-02 2 3 KSP Residual norm 9,640896517047e-04 KSP Residual norm 9.820033295993e-05 KSP Residual norm 8.393723404542e-06 5 KSP Residual norm 1.022686427555e-06 6 KSP Residual norm 1,113263119115e-07 7 Residual norm 1.030057125946e-08 8 KSP KSP Residual norm 1,385292895835e-09 9 10 KSP Residual norm 2,268336022704e-10

A (10) A (10) A (10)

Adaptive GMG with 1 eigenvector on 1024x1024:

KSP Residual norm 1,669983694677e-02 KSP Residual norm 1,639873418320e-02 KSP Residual norm 9,242836605258e-03 2 3 KSP Residual norm 6.300719730305e-04 KSP Residual norm 1.050428485267e-04 Residual norm 6.586618545239e-06 5 KSP KSP Residual norm 1.028698937734e-06 6 KSP Residual norm 1,125558670293e-07 7 Residual norm 9.578610906761e-09 8 KSP KSP Residual norm 1.466361824205e-09 9 10 KSP Residual norm 2,232688949097e-10 11 KSP Residual norm 2.040775816394e-11

A (10) A (10) A (10)

Example

Checkerboard Example Solution $1024 \times 1024 \ k = 4$

Matt (Buffalo)

CSE19

31/34

Outline

Enrich with What?

What do I do with my Enrichment?

3 Example

4 Future Work

32/34

A (10) A (10) A (10)

Can I Try It?

Repository:

https://bitbucket.org/petsc/petsc/

Branch:

knepley/feature-plex-adaptive-interpolation

< 🗇 🕨 < 🖃 >

More general interpolator sparsity pattern

Could adaptively find spartsity pattern like SPAI

Smoothing in MESP should be FAS

Should use SNES

Inverse, Shifted Inverse, and Rayleigh Quotient Iteration as Newton's Method Tapia, Dennis, Schäfermeyer, SIAM Review 60(1), 2018.

Better examples

• Stokes with variable coefficient using Braess-Sarazin/Vanka