Tools for Plasma Kinetics Simulation in PETSc

Matthew Knepley, Joseph Pusztay, Mark Adams

Computer Science and Engineering University at Buffalo

SIAM Computational Science and Engineering, Cyberspace March 1, 2021

Collaborators

Plasma Collaboration

Projection and Discrete Gradients

Mark Adams

Joe Pusztay

Dan Finn

Collaborators

Metriplectic Simulation

Runaway Electrons

Eero Hirvijoki

Dylan Brennan

Outline

Structure-Preserving Evolution

Collisions

Vlasov Equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} + \frac{d\mathbf{v}}{dt} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

We will need

- Particle discretization
- Symplectic integrators

Vlasov-Poisson Equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \frac{q \nabla \phi}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$
$$-\Delta \phi = \rho$$

We will need

- FEM discretization
- ► FEM-Particle map

Weak Equivalence

$$f_{FEM} = \sum_{i} \phi_{i} \mathbf{f}_{i}$$
 $f_{PM} = \sum_{p} \delta(\mathbf{x} - \mathbf{x}_{p}) \delta(\mathbf{v} - \mathbf{v}_{p}) \mathbf{w}_{p}$

Require that moments are preserved

$$\int \phi_i f_{FEM} = \int \phi_i f_{PM}$$
$$Mf = M_P w$$

where M is the mass matrix, and

$$[M_P]_{ip} = \int \phi_i \,\delta(\mathbf{x} - \mathbf{x}_p)$$
$$= \phi_i(\mathbf{x}_p)$$

Projections

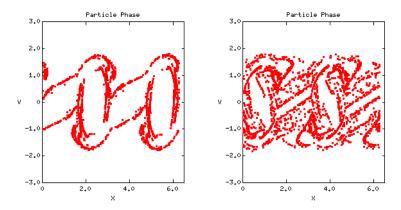
Particle \rightarrow FEM (deposition)

$$egin{aligned} M\mathrm{f} &= M_P\mathrm{w} \ \mathrm{f} &= M^{-1}M_P\mathrm{w} \end{aligned}$$

 $\text{FEM} \rightarrow \text{Particle}$

$$\mathbf{w} = M_P^+ M \mathbf{f}$$

Examples



Two stream instability test in PETSc

(MollenAdamsKnepleyHagerChang 2021)

Vlasov-Poisson-Landau Equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \frac{q \nabla \phi}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = C(f) -\Delta \phi = \rho$$

We will need

- Action of the Landau operator
- Metriplectic integrator

Symmetries must be present in the discrete system:

- Conservation of mass
- Conservation of momentum
- Conservation of energy
- Monotonicity of entropy

Long Time Evolution

Tools we will need:

- Symplectic integrator will preserve moments
- Projection will preserve moments
- Discrete Landau must preserve moments
- DG integrator to preserve monotonic entropy
- Splitting should not destroy these properties

Discrete Gradients

Discrete Gradient integrators

$$\frac{f^{n+1} - f^n}{\Delta t} = S(f^n, f^{n+1}) \nabla F(f^n, f^{n+1})$$

satisfy a secant condition

$$(f^{n+1} - f^n) \cdot \nabla F(f^n, f^{n+1}) = F(f^{n+1}) - F(f^n).$$

Monotonicity of entropy means monotonicity of free energy:

$$S(f^{n+1}) - S(f^n) = (E(f^{n+1}) - F(f^{n+1})) - (E(f^n) - F(f^n))$$
$$= -(F(f^{n+1}) - F(f^n))$$
$$= -(f^{n+1} - f^n) \cdot \nabla F$$
$$= -\Delta t \nabla F \cdot S \cdot \nabla F$$
$$\ge 0$$

since our S is symmetric negative semi-definite.

Outline

Structure-Preserving Evolution

Collisions Collisions in the FE Basis Collision in the Particle Basis

Outline

Collisions Collisions in the FE Basis Collision in the Particle Basis

Landau Operator Strong Form

 α (α)

$$= \sum_{\beta} \nu_{\alpha\beta} \frac{m_0}{m_{\alpha}} \nabla \cdot \int d\mathbf{v}' \, \mathbf{U}(\mathbf{v}, \mathbf{v}') \left(\frac{m_0}{m_{\alpha}} f_{\beta}(\mathbf{v}') \nabla f_{\alpha}(\mathbf{v}) - f_{\alpha}(\mathbf{v}) \nabla' f_{\beta}(\mathbf{v}') \frac{m_0}{m_{\beta}} \right)$$

$$\mathbf{U}(\mathbf{v},\mathbf{v}') = \frac{1}{|\mathbf{v} - \mathbf{v}'|} \mathbf{I} - \frac{(\mathbf{v} - \mathbf{v}') \otimes (\mathbf{v} - \mathbf{v}')}{|\mathbf{v} - \mathbf{v}'|^3}$$

$$\nu_{\alpha\beta} = \frac{e_{\alpha}^2 e_{\eta}^2 \ln \Lambda_{\alpha\beta}}{8\pi m_0^2 \epsilon_0^2}$$

 m_0 = reference mass

Landau Operator Weak Form

$$\sum_{\beta} \nu_{\alpha\beta} \frac{m_0^2}{m_\alpha} \int d\mathbf{v}' \,\nabla' \psi(\mathbf{v}') \cdot \left(\frac{1}{m_\alpha} \mathbf{K}(f_\beta, \mathbf{v}') \phi(\mathbf{v}') + \frac{1}{m_\beta} \mathbf{D}(f_\beta, \mathbf{v}') \cdot \nabla' \phi(\mathbf{v}') \right)$$

$$\mathbf{K}(f, \mathbf{v}) = \int d\mathbf{v}' \, \mathbf{U}(\mathbf{v}, \mathbf{v}') \cdot \nabla' f(\mathbf{v}')$$
$$\mathbf{D}(f, \mathbf{v}) = \int d\mathbf{v}' \, \mathbf{U}(\mathbf{v}, \mathbf{v}') f(\mathbf{v}')$$

(Hirvijoki2017)

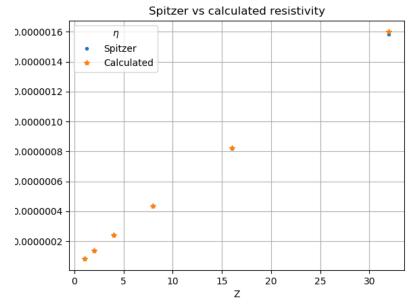
Implementation

- Conservative projection to/from FEM
- \triangleright Constant order Q_k
- Adaptive p4est grid

(A dams Hirvijoki Knepley Brown Is a a cMills 2017)

Spitzer Resistivity

(AdamsKneplevBrennan2021)



Outline

Collisions Collisions in the FE Basis Collision in the Particle Basis

Particle Landau

(Hirvijoki2021)

If we ignore position, we have

$$\frac{d\mathbf{v}_p}{dt} = \frac{\nu}{m} \sum_{p'} w_{p'} \mathbf{Q} \left(\mathbf{v}_p - \mathbf{v}_{p'} \right) \Gamma(S, p, p')$$

where \mathbf{Q} is the Landau tensor,

$$\mathbf{Q}(\mathbf{v}) = \frac{1}{\|\mathbf{v}\|} \mathbf{I} - \frac{\mathbf{v} \otimes \mathbf{v}}{\|\mathbf{v}\|^3}$$

$$\Gamma(S, p, p') = \frac{1}{w_p} \frac{\partial S}{\partial \mathbf{v}_p} - \frac{1}{w_{p'}} \frac{\partial S}{\partial \mathbf{v}_{p'}}$$

$$S = -\int d\mathbf{v} f(\mathbf{v}) \ln f(\mathbf{v})$$

Particle Landau

(Hirvijoki2021)

If we ignore position, we have

$$\frac{d\mathbf{v}_p}{dt} = \frac{\nu}{m} \sum_{p'} w_{p'} \mathbf{Q} \left(\mathbf{v}_p - \mathbf{v}_{p'} \right) \Gamma(S, p, p')$$

where \mathbf{Q} is the Landau tensor,

$$\mathbf{Q}(\mathbf{v}) = \frac{1}{\|\mathbf{v}\|} \mathbf{I} - \frac{\mathbf{v} \otimes \mathbf{v}}{\|\mathbf{v}\|^3}$$

$$\Gamma(S, p, p') = \frac{1}{w_p} \frac{\partial S}{\partial \mathbf{v}_p} - \frac{1}{w_{p'}} \frac{\partial S}{\partial \mathbf{v}_{p'}}$$

$$S = -\sum_{p} w_p \ln w_p$$

Particle Landau

(Hirvijoki2021)

If we ignore position, we have

$$\frac{d\mathbf{v}_p}{dt} = \frac{\nu}{m} \sum_{p'} w_{p'} \mathbf{Q} \left(\mathbf{v}_p - \mathbf{v}_{p'} \right) \Gamma(S, p, p')$$

where \mathbf{Q} is the Landau tensor,

$$\mathbf{Q}(\mathbf{v}) = \frac{1}{\|\mathbf{v}\|} \mathbf{I} - \frac{\mathbf{v} \otimes \mathbf{v}}{\|\mathbf{v}\|^3}$$

$$\Gamma(S, p, p') = \frac{1}{w_p} \frac{\partial S}{\partial \mathbf{v}_p} - \frac{1}{w_{p'}} \frac{\partial S}{\partial \mathbf{v}_{p'}}$$

$$S_{\epsilon} = -\int d\mathbf{v} \sum_{p} w_{p} \psi_{\epsilon}(\mathbf{v} - \mathbf{v}_{p}) \ln \left(\sum_{p'} w_{p'} \psi_{\epsilon}(\mathbf{v} - \mathbf{v}_{p'}) \right)$$

Particle Landau (Hirvijoki2021)

$$\frac{\mathbf{v}_p^{n+1} - \mathbf{v}_p^n}{\Delta t} = \frac{\nu}{m} \sum_{p'} w_{p'} \mathbf{Q} \left(\mathbf{v}_p^{n+1/2} - \mathbf{v}_{p'}^{n+1/2} \right) \Gamma(S_{\epsilon}^n, p, p')$$

where \mathbf{Q} is the Landau tensor,

$$\mathbf{Q}(\mathbf{v}) = \frac{1}{\|\mathbf{v}\|} \mathbf{I} - \frac{\mathbf{v} \otimes \mathbf{v}}{\|\mathbf{v}\|^3}$$

$$\Gamma(S, p, p') = \frac{1}{w_p} \frac{\partial S}{\partial \mathbf{v}_p} - \frac{1}{w_{p'}} \frac{\partial S}{\partial \mathbf{v}_{p'}}$$

$$S_{\epsilon} = -\int d\mathbf{v} \sum_{p} w_{p} \psi_{\epsilon}(\mathbf{v} - \mathbf{v}_{p}) \ln \left(\sum_{p'} w_{p'} \psi_{\epsilon}(\mathbf{v} - \mathbf{v}_{p'}) \right)$$

Future Work

- Prove that splitting preserves structure
- Scalability tests
- Higher order Discrete Gradients
- Mixed-Poisson FEM

References I