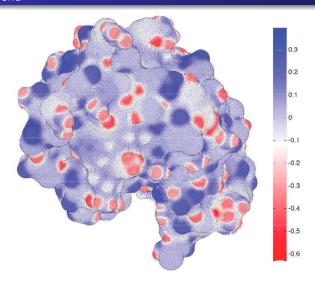
Improved Solvation Models using Boundary Integral Equations

Matthew Knepley and Jaydeep Bardhan

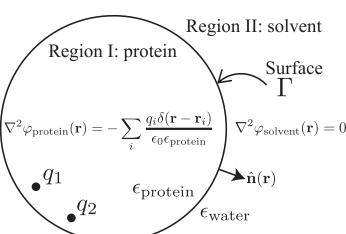
Computational and Applied Mathematics Rice University

SIAM Conference on the Life Sciences Minneapolis, MN August 9, 2018



Collaborators

- Amir Molvai Tabrizi (postdoc, NE)
- Tom Klotz (grad student, Rice)
- Spencer Goossens (grad student, NE)
- Ali Rahimi (grad student, NE)


Solvation computation can benefit from non-Poisson models.

The Natural World

Induced Surface Charge on Lysozyme

Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_k}{4\pi ||\vec{r} - \vec{r}_k||}$$
$$(\mathcal{I} + \hat{\epsilon} \mathcal{D}^*) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2 \frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

M. Knepley (Rice) Solvation LS18 7/52

Mathematical Model

This is equivalent to a PDE model for the potentials $\Phi_{I,II}$ in the two regions, and boundary conditions at the solute surface:

$$\begin{aligned} \epsilon_{I} \Delta \Phi_{I} &= \sum_{k=1}^{Q} q_{k} \delta(\vec{r} - \vec{r}_{k}) \\ \epsilon_{II} \Delta \Phi_{II} &= 0 \\ \Phi_{I}|_{r=b} &= \Phi_{II}|_{r=b} \\ \epsilon_{I} \frac{\partial \Phi_{I}}{\partial r}|_{r=b} &= \epsilon_{II} \frac{\partial \Phi_{II}}{\partial r}|_{r=b} \end{aligned}$$

8/52

M. Knepley (Rice) Solvation LS18

Mathematical Model

The reaction potential is given by

$$\phi^{R}(\vec{r}) = \int_{\Gamma} \frac{\sigma(\vec{r}')d^{2}\vec{r}'}{4\pi\epsilon_{1}||\vec{r} - \vec{r}'||} = C\sigma$$

which defines G_{es} , the electrostatic part of the solvation free energy

$$egin{aligned} \Delta \emph{G}_{\textit{es}} &= rac{1}{2} \left\langle \emph{q}, \emph{\phi}^{\emph{R}}
ight
angle \ &= rac{1}{2} \left\langle \emph{q}, \emph{L} \emph{q}
ight
angle \ &= rac{1}{2} \left\langle \emph{q}, \emph{C} \emph{A}^{-1} \emph{B} \emph{q}
ight
angle \end{aligned}$$

where

$$Bq = -\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial n(\vec{r})} \frac{q(\vec{r}') d^3 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||}$$

$$A\sigma = \mathcal{T} + \hat{\epsilon} \mathcal{D}^*$$

Outline

- Some History
- Improving the Poisson Operator

M. Knepley (Rice) Solvation

Generalized Born Approximation

The pairwise energy between charges is defined by the *Still equation*:

$$G_{es}^{ij} = rac{1}{8\pi} \left(rac{1}{\epsilon_{II}} - rac{1}{\epsilon_{I}}
ight) \sum_{i,j}^{N} rac{q_{i}q_{j}}{r_{ij}^{2} + R_{i}R_{j}e^{-r_{ij}^{2}/4R_{i}R_{j}}}$$

where the effective Born radius is

$$R_i = \frac{1}{8\pi} \left(\frac{1}{\epsilon_{II}} - \frac{1}{\epsilon_{I}} \right) \frac{1}{E_i}$$

where E_i is the *self-energy* of the charge q_i , the electrostatic energy when atom i has unit charge and all others are neutral.

11/52

M. Knepley (Rice) Solvation LS18

GB Problems

- No global potential solution, only energy
- No analysis of the error
 - For example, Salsbury 2006 consists of parameter tuning
- No path for systematic improvement
 - For example, Sigalov 2006 changes the model
- The same atoms have different radii in different
 - molecules.
 - solvents
 - temperatures
- LOTS of parameters
 - Nina, Beglov, Roux 1997

GB Problems

TABLE 2: Atomic Born Radii Derived from Solvent Electrostatic Charge Distribution Tested with Free Energy Perturbation Methods in an Explicit Solvent^a

 No global potential C				41 (8)		
No analysis of the (CA		AT THE RESERVE	atom	radius (Å)		
No analysis of the (CA		No global potential		Backb	one	
 No analysis of the (CA) For example, Salsbury No path for system Property of the CA and th		140 global potoritial	C			
 For example, Salsbury No path for system 		Al I ' CII	0		carbonyl oxygen	
 For example, Salsbury No path for system 		No analysis of the a				
 For example, Salsbury No path for system 		140 analyolo of the t	CA			
No path for system		Faulassanda, Calabania	CA	2.38	Gly only	
No path for system Side Chains		 For example, Salsbury 				
NO Dain for Sysiem Side Chains		Nia saula fassassassas	H*	0.00	all hydrogens	
		No pain for system		Side Ch	nains	
CD 2.07 all residues	_		CD	2.67	all residues	
• For example, Sigalov 2 CG* 2.46 Val, Ile, Arg, Lys, Met, Phe, Thr, Trp, Gln, Glu		 For example, Sigalov 2 	CG*	2.46		
CD* 2.44 Ile, Leu, Arg, Lys		T	CD*			
• The same atoms h: CD, CG 1.98 Asp, Glu, Asn, Gln ren	•	The same atoms hi	CD, CG			rent
		The same atoms in				CIT
CE*, CD*, CZ, 2.00 Tyr, Phe rings						
 molecules, CE*, CD*, CZ*, CH2 1.78 Trp ring only 		molecules,				
CE 2.10 Met only						
• solvents CZ, CE 2.80 Arg, Lys		solvents				
OE*, OD* 1.42 Glu, Asp, Asn, Gln OG* 1.64 Ser, Thr						
• temperatures OH 1.64 Ser, Thr OH 1.85 Tyr only		temperatures				
AUTO AUT AUT AUT			NILLS NIL NIZ			
• LOTS of parameter NET, NEL, ND 2 2.15 Arg, Lys	_	I OTS of narameter	NE2 ND2			
NEZ, NDI His only		LOTO OF Parameter	NE2 ND1			
		NI D I D 40				
Nina, Beglov, Roux 19 S*		 Nina, Beglov, Roux 19 	S*			

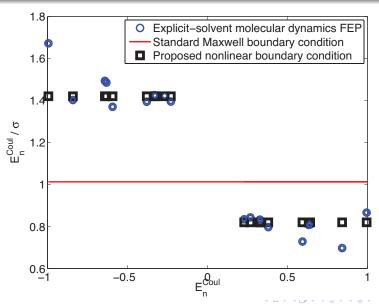
^a Patches N-term and C-term CAT, CAY: 2.06 Å. CY: 2.04 Å. OY: 1.52 Å. NT: 2.23 Å. * refers to a wild card character.

Implicit Solvent Models

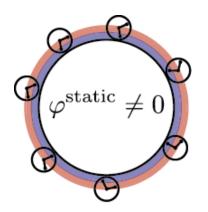
State-of-the-art solvation models still use the same variation in radii

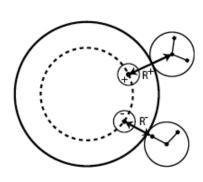
Biomolecular electrostatics —

I want your solvation (model),

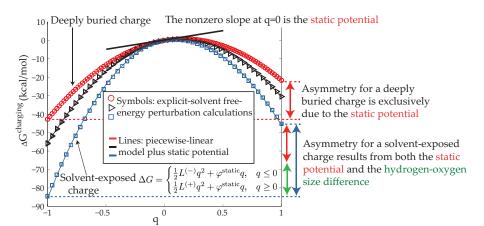

J. Bardhan, Comp. Sci. & Disc., **5**(1), (2012)

Outline


- Some History
- Improving the Poisson Operator


M. Knepley (Rice) Solvation LS18 14/52

Origins of Electrostatic Asymmetry



Origins of Electrostatic Asymmetry

Origins of Electrostatic Asymmetry

M. Knepley (Rice) Solvation LS18 17/52

Maxwell Boundary Condition

Assume the model and energy, and derive the radii,

$$\epsilon_I \frac{\partial \Phi_I}{\partial \mathbf{n}} = \epsilon_{II} \frac{\partial \Phi_{II}}{\partial \mathbf{n}}$$

Solvation-Layer Interface Condition (SLIC)

Assume the energy and radii, and derive the model.

$$(\epsilon_I - \Delta \epsilon h(E_n)) \frac{\partial \Phi_I}{\partial n} = (\epsilon_{II} - \Delta \epsilon h(E_n)) \frac{\partial \Phi_{II}}{\partial n}$$

Main Idea

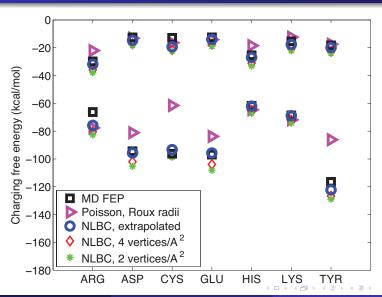
Using our correspondence with the BIE form,

$$\left(\mathcal{I} + h(E_n) + \hat{\epsilon} \left(-\frac{1}{2}\mathcal{I} + \mathcal{D}^*\right)\right) \sigma = \hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial G}{\partial n}$$

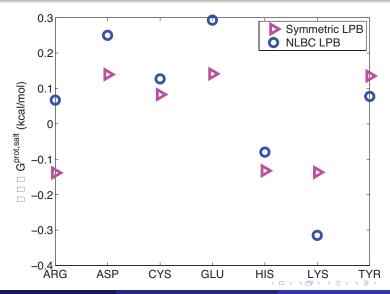
where h is a diagonal nonlinear integral operator.

M. Knepley (Rice) Solvation LS18 18/52

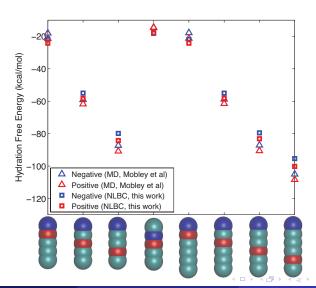
SLIC

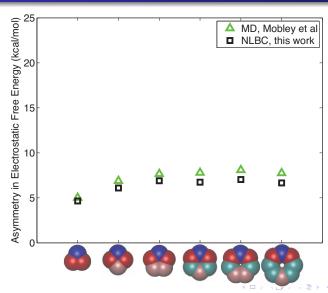

Boundary Perturbation

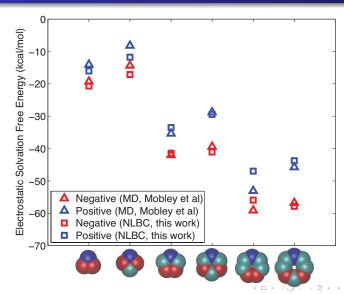
$$h(E_n) = \alpha \tanh (\beta E_n - \gamma) + \mu$$


where

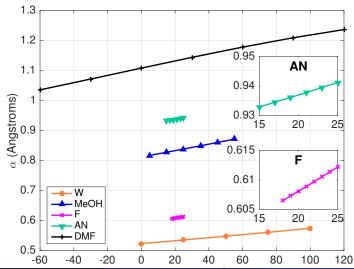
- α Size of the asymmetry
- β Width of the transition region
- γ The transition field strength
- μ Assures h(0) = 0, so $\mu = -\alpha \tanh(-\gamma)$

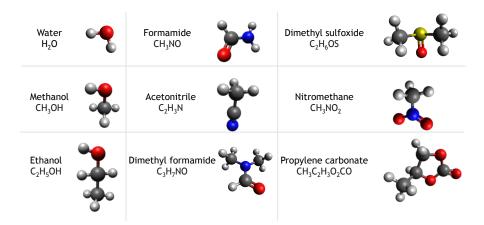

Residues

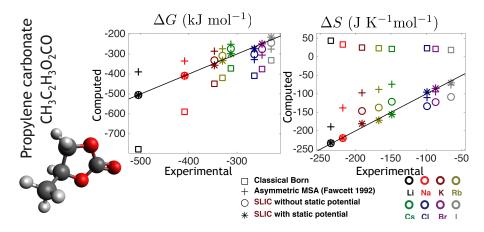

Protonation

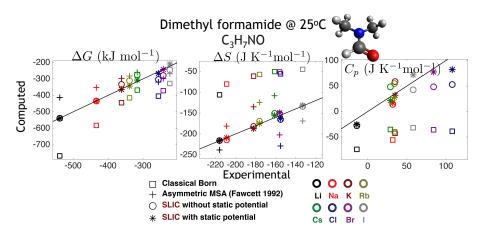

Synthetic Molecules

Synthetic Molecules




Synthetic Molecules


Thermodynamics


The parameters show linear temperature dependence

Solvent	r_s (Å)	$\epsilon_{out}(T)$	$\epsilon_{out}(25^{\circ}\mathrm{C})$
W	1.370	$\epsilon_{out} = 87.740 - 4.0008e - 1 T + 9.398e - 4 T^2 - 1.410e - 6 T^3$	78.3
MeOH	1.855	$\log_{10} \epsilon_{out} = \log_{10}(32.63) - 2.64e - 3(T - 25)$	32.6
EtOH	2.180	$\log_{10} \epsilon_{out} = \log_{10}(24.30) - 02.70e - 3 (T - 25)$	24.3
F	1.725	$\epsilon_{out} = 109 - 7.2e - 1 \ (T - 20)$	105.4
AN	2.135	$\epsilon_{out} = 37.50 - 1.6e - 1 \ (T - 20)$	36.7
DMF	2.585	$\epsilon_{out} = 42.04569 - 2.204448e - 1 T + 7.718531e - 4 T^2 - 1.000389e - 6 T^3$	37.0
DMSO	2.455	$\epsilon_{out} = -60.5 + (5.7e4/(T + 273.15)) - (7.5e6/(T + 273.15)^2)$	46.3
NM	2.155	$\log_{10} \epsilon_{out} = \log_{10}(35.8) - 1.89e - 3 (T - 30)$	36.6
PC	2.680	$\epsilon_{out} = 56.670738 + 2.58431e - 1 T - 7.7143e - 4 T^2$	62.6

Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan, Generalising the mean spherical approximation as a multiscale, nonlinear boundary condition at the solute-solvent interface, Molecular Physics (2016).

Thermodynamic Predictions

Courtesy A. Molvai Tabrizi

Solvent	lon	ΔG (kJ mol ⁻¹)	ΔS (J K ⁻¹ mol ⁻¹)	C _p (J K ^{- 1} mol ^{- 1})
W	F-	-430 (-429)	-67 (-115)	-86 (-45)
MeOH	Rb+	-326(-319)	-178 (-175)	55
MeOH	F-	-415	-116	-79 (-131)
EtOH	Rb+	-319 (-313)	-197 (-187)	128
Lton	F-	-405	-145	-153 (-194)
F	Rb ⁺	-340 (-334)	-135 (-130)	27
	F-	-418	-128	36 (28)
AN	F-	-390	-192	147
DMF	F-	-389	-230	105
DMSO	Rb ⁺	-348 (-339)	-151 (-180)	32
DINISO	F-	-400	-160	186(60)
NM	Rb+	-324 (-318)	-186 (-183)	19
14///	F-	-391	-182	95(71)
PC	F-	-394	-149	67

Experimental Data in Parentheses

Thermodynamic Predictions

Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, S. Goossens, A. Rahimi, M.G. Knepley, and J.P. Bardhan, Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition. Journal of Chemical Physical (2017).

Main Successes of SLIC

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Main Successes of SLIC

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

33/52

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

33/52

Accurate transfer free energy

- for water-octanol system
- on par with explicit-solvent MD
- Reinterpretation of Mean Spherical Approximation
 - Explains temperature dependence of model coefficients

Accurate transfer free energy

- for water-octanol system
- on par with explicit-solvent MD
- Reinterpretation of Mean Spherical Approximation
 - Explains temperature dependence of model coefficients

What is missing from SLIC?

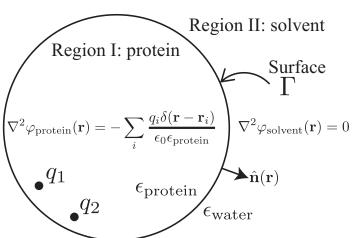
- Large packing fraction
 - No charge oscillation or overcharging
 - Classical DFT?
 (Gillespie, Microfluidics and Nanofluidics, 2015)
- No dielectric saturation
 - Possible with different condition
- No long range correlations
 - Use nonlocal dielectric

Future Work

- More complex solutes
 - Better nonlinear solvers
- Mixtures
 - Preliminary work is accurate
- Integration into community code
 - Psi4, QChem, APBS

Thank You!

http://cse.buffalo.edu/~knepley


Outline

Approximate Boundary Conditions

Bioelectrostatics

Physical Model

M. Knepley (Rice) Solvation LS18 39/52

Kirkwood's Solution (1934)

The potential inside Region I is given by

$$\Phi_I = \sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} + \psi,$$

and the potential in Region II is given by

$$\Phi_{II} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{nm}}{r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

(ロ) (레) (토) (토) (토) (의 (연)

40/52

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$\psi = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{nm} r^{n} P_{n}^{m} (\cos \theta) e^{im\phi}.$$

and the source distribution is also expanded

$$\sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{nm}}{\epsilon_1 r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

< □ ▶ ◀圖 ▶ ◀불 ▶ ◀불 ▶ □ 불 · 쒸익()

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

$$\Phi_{I|r=b} = \Phi_{II|r=b}$$

$$\epsilon_{I} \frac{\partial \Phi_{I}}{\partial r}|_{r=b} = \epsilon_{II} \frac{\partial \Phi_{II}}{\partial r}|_{r=b}$$

we can eliminate C_{nm} , and determine the reaction potential coefficients in terms of the source distribution,

$$B_{nm} = \frac{1}{\epsilon_I b^{2n+1}} \frac{(\epsilon_I - \epsilon_{II})(n+1)}{\epsilon_I n + \epsilon_{II}(n+1)} E_{nm}.$$

< □ > < □ > < Ē > < Ē > E 900

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$egin{aligned} A_{CFA} &= \mathcal{I}\left(1+rac{\hat{\epsilon}}{2}
ight) \ A_{P} &= \mathcal{I} \end{aligned}$$

have an equivalent PDE formulation,


$$\epsilon_{I} \Delta \Phi_{CFA,P} = \sum_{k=1}^{Q} q_{k} \delta(\vec{r} - \vec{r}_{k}) \qquad \qquad \frac{\epsilon_{I}}{\epsilon_{II}} \frac{\partial \Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial \Phi_{II}}{\partial r} - \frac{\partial \psi_{CFA}}{\partial r}|_{r=b}$$

$$\begin{split} \epsilon_{II} \Delta \Phi_{CFA,P} &= 0 & \text{or} \\ \Phi_{I}|_{r=b} &= \Phi_{II}|_{r=b} & \frac{3\epsilon_{I} - \epsilon_{II}}{\epsilon_{I} + \epsilon_{II}} \frac{\partial \Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial \Phi_{II}}{\partial r} - \frac{\partial \psi_{P}}{\partial r}|_{r=b}, \end{split}$$

where Φ_1^C is the Coulomb field due to interior charges.

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.

BEM eigenvector $e_i \cdot e_i$ BIBEE/P eigenvector

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
- Examine the effect of the operator on a
- Use completeness of the spherical harmonic basis

45/52

M. Knepley (Rice) Solvation LS18

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^* is compact and has a pure point spectrum
- Examine the effect of the operator on a

45/52

M. Knepley (Rice) Solvation LS18

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis.

- Note that, for a spherical boundary, \mathcal{D}^* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = rac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
 $B_{nm}^{CFA} = rac{1}{\epsilon_2} rac{1}{2n+1} \gamma_{nm}$
 $B_{nm}^P = rac{1}{\epsilon_1 + \epsilon_2} rac{1}{n+rac{1}{2}} \gamma_{nm}.$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm} = B_{nm}^{CFA} = B_{nm}^P = \frac{1}{\epsilon(2n+1)} \gamma_{nm}$$

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = rac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
 $B_{nm}^{CFA} = rac{1}{\epsilon_2} rac{1}{2n+1} \gamma_{nm}$
 $B_{nm}^P = rac{1}{\epsilon_1 + \epsilon_2} rac{1}{n+rac{1}{2}} \gamma_{nm}.$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

Solvation M. Knepley (Rice) LS18 46/52

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$B_{00}=B_{00}^{\mathit{CFA}}=rac{\gamma_{00}}{\epsilon_{2}},$$

whereas BIBEE/P approaches the exact response in the limit $n o \infty$

$$\lim_{n o\infty}B_{nm}=\lim_{n o\infty}B_{nm}^P=rac{1}{(\epsilon_1+\epsilon_2)n}\gamma_{nm}$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$B_{00}=B_{00}^{CFA}=\frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \to \infty$:

$$\lim_{n\to\infty}B_{nm}=\lim_{n\to\infty}B_{nm}^P=\frac{1}{(\epsilon_1+\epsilon_2)n}\gamma_{nm}.$$

Asymptotics

In the limit $\epsilon_1/\epsilon_2 \rightarrow 0$,

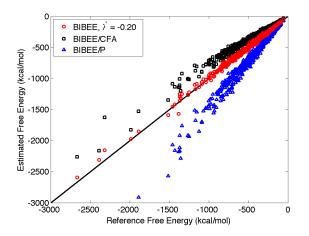
M. Knepley (Rice)

$$\begin{split} &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm} = \frac{\gamma_{nm}}{\epsilon_2(n+1)} \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^{CFA} = \frac{\gamma_{nm}}{\epsilon_2(2n+1)}, \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^P = \frac{\gamma_{nm}}{\epsilon_2\left(n+\frac{1}{2}\right)}, \end{split}$$

so that the approximation ratios are given by

$$\frac{B_{nm}^{CFA}}{B_{nm}} = \frac{n+1}{2n+1}, \qquad \frac{B_{nm}^P}{B_{nm}} = \frac{n+1}{n+\frac{1}{2}}.$$

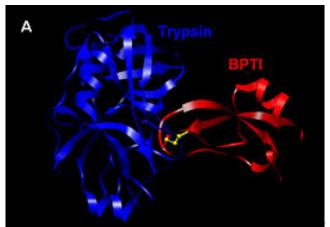
Solvation


4 D > 4 E > 4 E > 2 *)4(*

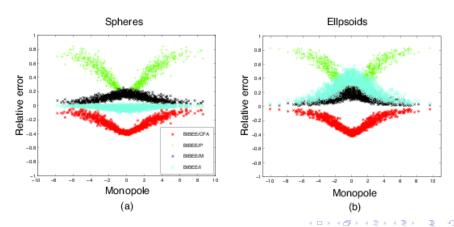
LS18

48/52

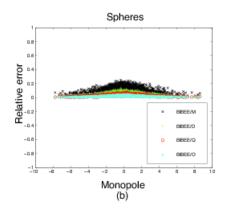
Improved Accuracy

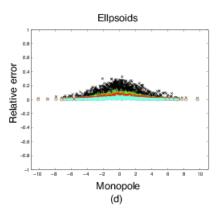

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.


Basis Augmentation

We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using *electrostatic component analysis* to identify residue contributions to binding and molecular recognition.


Basis Augmentation


Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE/I is accurate for spheres, but must be extended for ellipses.

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5% accuracy for all synthetic proteins tested.

