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Main Point

Solvation computation
can benefit from

non-Poisson models.
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Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Bioelectrostatics
Physical Model

Electrostatic Potential ϕ

Region II: solvent
Region I: protein

Surface
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Bioelectrostatics
Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced
surface charge σ,

σ(⃗r) + ϵ̂

∫
Γ

∂

∂n(⃗r)
σ(⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
= −ϵ̂

Q∑
k=1

∂

∂n(⃗r)
qk

4π||⃗r − r⃗k ||

(I + ϵ̂D∗)σ(⃗r) =

where we define
ϵ̂ = 2

ϵI − ϵII
ϵI + ϵII

< 0
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Bioelectrostatics
Mathematical Model

This is equivalent to a PDE model for the potentials ΦI,II in the two
regions, and boundary conditions at the solute surface:

ϵI∆ΦI =
Q∑

k=1

qkδ(⃗r − r⃗k )

ϵII∆ΦII = 0
ΦI |r=b = ΦII |r=b

ϵI
∂ΦI

∂r
|r=b = ϵII

∂ΦII

∂r
|r=b

M. Knepley (Rice) Solvation LS18 8 / 52



Bioelectrostatics
Mathematical Model

The reaction potential is given by

ϕR (⃗r) =
∫
Γ

σ(⃗r ′)d2r⃗ ′

4πϵ1||⃗r − r⃗ ′||
= Cσ

which defines Ges, the electrostatic part of the solvation free energy

∆Ges =
1
2

〈
q, ϕR

〉
=

1
2
⟨q,Lq⟩

=
1
2

〈
q,CA−1Bq

〉
where

Bq = −ϵ̂
∫
Ω

∂

∂n(⃗r)
q(⃗r ′)d3r⃗ ′

4π||⃗r − r⃗ ′||
Aσ = I + ϵ̂D∗

M. Knepley (Rice) Solvation LS18 9 / 52



Some History

Outline

1 Some History

2 Improving the Poisson Operator
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Some History

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:

Gij
es =

1
8π

(
1
ϵII

− 1
ϵI

) N∑
i,j

qiqj

r2
ij + RiRje

−r2
ij /4Ri Rj

where the effective Born radius is

Ri =
1

8π

(
1
ϵII

− 1
ϵI

)
1
Ei

where Ei is the self-energy of the charge qi , the electrostatic energy
when atom i has unit charge and all others are neutral.
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Some History

GB Problems

No global potential solution, only energy
No analysis of the error

For example, Salsbury 2006 consists of parameter tuning

No path for systematic improvement
For example, Sigalov 2006 changes the model

The same atoms have different radii in different
molecules,
solvents
temperatures

LOTS of parameters
Nina, Beglov, Roux 1997
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Some History

Implicit Solvent Models

State-of-the-art solvation models still use the same
variation in radii

Biomolecular electrostatics —
I want your solvation (model),

J. Bardhan, Comp. Sci. & Disc., 5(1), (2012)
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Improving the Poisson Operator

Outline

1 Some History

2 Improving the Poisson Operator
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Improving the Poisson Operator

Origins of Electrostatic Asymmetry
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Explicit−solvent molecular dynamics FEP

Standard Maxwell boundary condition

Proposed nonlinear boundary condition
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Improving the Poisson Operator

Origins of Electrostatic Asymmetry
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Improving the Poisson Operator

Origins of Electrostatic Asymmetry
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∆

Solvent-exposed 
   charge 

Asymmetry for a deeply
buried charge is exclusively
due to the static potential  

Asymmetry for a solvent-exposed 
charge results from both the static 
potential and the hydrogen-oxygen 
size difference

The nonzero slope at q=0 is the static potential  Deeply buried charge

Symbols: explicit-solvent free-
energy perturbation calculations

Lines: piecewise-linear
model plus static potential
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Improving the Poisson Operator

Main Idea

Maxwell Boundary Condition

Assume the model and energy, and derive the radii,

ϵI
∂ΦI

∂n
= ϵII

∂ΦII

∂n

M. Knepley (Rice) Solvation LS18 18 / 52



Improving the Poisson Operator

Main Idea

Solvation-Layer Interface Condition (SLIC)

Assume the energy and radii, and derive the model.

(ϵI −∆ϵh(En))
∂ΦI

∂n
= (ϵII −∆ϵh(En))

∂ΦII

∂n
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Improving the Poisson Operator

Main Idea

Using our correspondence with the BIE form,(
I + h(En) + ϵ̂

(
−1

2
I +D∗

))
σ = ϵ̂

Q∑
k=1

∂G
∂n

where h is a diagonal nonlinear integral operator.
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Improving the Poisson Operator

SLIC
Boundary Perturbation

h(En) = α tanh (βEn − γ) + µ

where
α Size of the asymmetry
β Width of the transition region
γ The transition field strength
µ Assures h(0) = 0, so µ = −α tanh(−γ)
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Improving the Poisson Operator

Accuracy of SLIC
Residues
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Improving the Poisson Operator

Accuracy of SLIC
Protonation
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Improving the Poisson Operator

Accuracy of SLIC
Synthetic Molecules
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Improving the Poisson Operator

Accuracy of SLIC
Synthetic Molecules
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Improving the Poisson Operator

Accuracy of SLIC
Synthetic Molecules
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Improving the Poisson Operator

Thermodynamics
The parameters show linear temperature dependence
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Improving the Poisson Operator

Model Validation
Courtesy A. Molvai Tabrizi

Northeastern University | Mechanical and Industrial Engineering Bardhan Lab

Model validation and verification using experiment

Water 
H2O

Ethanol 
C2H5OH

Methanol 
CH3OH

Formamide 
CH3NO

Acetonitrile 
C2H3N

Dimethyl formamide 
C3H7NO

Dimethyl sulfoxide 
C2H6OS

Nitromethane 
 CH3NO2

Propylene carbonate 
CH3C2H3O2CO

14 19
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Improving the Poisson Operator

Model Validation
Courtesy A. Molvai Tabrizi
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Improving the Poisson Operator

Model Validation
Courtesy A. Molvai Tabrizi

Northeastern University | Mechanical and Industrial Engineering Bardhan Lab
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Improving the Poisson Operator

Model Validation
Courtesy A. Molvai Tabrizi

Northeastern University | Mechanical and Industrial Engineering Bardhan Lab

Experimental

Co
m

pu
te

d

Dimethyl formamide @ 25oC 
C3H7NO

17 19

Model validation and verification using experiment
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Improving the Poisson Operator

Model Validation
Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan,
Generalising the mean spherical approximation as a
multiscale, nonlinear boundary condition at the
solute-solvent interface,
Molecular Physics (2016).
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Improving the Poisson Operator

Thermodynamic Predictions
Courtesy A. Molvai Tabrizi

Experimental Data in Parentheses
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Improving the Poisson Operator

Thermodynamic Predictions
Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, S. Goossens, A. Rahimi, M.G.
Knepley, and J.P. Bardhan,
Predicting solvation free energies and
thermodynamics in polar solvents and mixtures using
a solvation-layer interface condition.
Journal of Chemical Physical (2017).
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Improving the Poisson Operator

Main Successes of SLIC

Accurate charging free energy
using crystal radii (no fitting/temp dep)

for (de-)protonation

for individual atoms

for mixtures
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Improving the Poisson Operator

Main Successes of SLIC

Accurate transfer free energy
for water-octanol system

on par with explicit-solvent MD

Reinterpretation of
Mean Spherical Approximation

Explains temperature dependence
of model coefficients
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Improving the Poisson Operator

What is missing from SLIC?

Large packing fraction
No charge oscillation or overcharging
Classical DFT?
(Gillespie, Microfluidics and Nanofluidics, 2015)

No dielectric saturation
Possible with different condition

No long range correlations
Use nonlocal dielectric
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Future Work

Future Work

More complex solutes
Better nonlinear solvers

Mixtures
Preliminary work is accurate

Integration into community code
Psi4, QChem, APBS

M. Knepley (Rice) Solvation LS18 36 / 52



Thank You!

http://cse.buffalo.edu/~knepley

http://cse.buffalo.edu/~knepley


Future Work Approximate Boundary Conditions

Outline

Approximate Boundary Conditions
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Future Work Approximate Boundary Conditions

Bioelectrostatics
Physical Model

Electrostatic Potential ϕ

Region II: solvent
Region I: protein

Surface
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Future Work Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The potential inside Region I is given by

ΦI =
Q∑

k=1

qk

ϵ1
∣∣⃗r − r⃗k

∣∣ + ψ,

and the potential in Region II is given by

ΦII =
∞∑

n=0

n∑
m=−n

Cnm

rn+1 Pm
n (cos θ)eimϕ.

M. Knepley (Rice) Solvation LS18 40 / 52



Future Work Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The reaction potential ψ is expanded in a series

ψ =
∞∑

n=0

n∑
m=−n

BnmrnPm
n (cos θ)eimϕ.

and the source distribution is also expanded

Q∑
k=1

qk

ϵ1
∣∣⃗r − r⃗k

∣∣ = ∞∑
n=0

n∑
m=−n

Enm

ϵ1rn+1 Pm
n (cos θ)eimϕ.
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Future Work Approximate Boundary Conditions

Kirkwood’s Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

ΦI |r=b = ΦII |r=b

ϵI
∂ΦI

∂r
|r=b = ϵII

∂ΦII

∂r
|r=b

we can eliminate Cnm, and determine the reaction potential coefficients
in terms of the source distribution,

Bnm =
1

ϵIb2n+1
(ϵI − ϵII)(n + 1)
ϵIn + ϵII(n + 1)

Enm.
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Future Work Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

ACFA = I
(

1 +
ϵ̂

2

)
AP = I

have an equivalent PDE formulation,

ϵI∆ΦCFA,P =
Q∑

k=1

qkδ(⃗r − r⃗k )
ϵI
ϵII

∂ΦC
I

∂r
|r=b =

∂ΦII

∂r
− ∂ψCFA

∂r
|r=b

ϵII∆ΦCFA,P = 0 or

ΦI |r=b = ΦII |r=b
3ϵI − ϵII
ϵI + ϵII

∂ΦC
I

∂r
|r=b =

∂ΦII

∂r
− ∂ψP

∂r
|r=b,

where ΦC
1 is the Coulomb field due to interior charges.
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Future Work Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral opera-
tor approximations have eigenspaces are identical to that of the original
operator.

BEM eigenvector ei · ej BIBEE/P eigenvector
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Future Work Approximate Boundary Conditions

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

Start with the fundamental solution to Laplace’s equation G(r , r ′)

Note that
∫
Γ G(r , r ′)σ(r ′)dΓ satisfies the bulk equation

and decay at infinity

Insertion into the approximate BC gives the
BIBEE boundary integral approximation
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Future Work Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

Note that, for a spherical boundary,
D∗ is compact and has a pure point spectrum

Examine the effect of the operator on a
unit spherical harmonic charge distribution

Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.
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Future Work Approximate Boundary Conditions

Series Solutions

Note that the approximate solutions are separable:

Bnm =
1

ϵ1n + ϵ2(n + 1)
γnm

BCFA
nm =

1
ϵ2

1
2n + 1

γnm

BP
nm =

1
ϵ1 + ϵ2

1
n + 1

2

γnm.

If ϵI = ϵII = ϵ, both approximations are exact:

Bnm = BCFA
nm = BP

nm =
1

ϵ(2n + 1)
γnm.
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Future Work Approximate Boundary Conditions

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

B00 = BCFA
00 =

γ00

ϵ2
,

whereas BIBEE/P approaches the exact response in the limit n → ∞:

lim
n→∞

Bnm = lim
n→∞

BP
nm =

1
(ϵ1 + ϵ2)n

γnm.
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Future Work Approximate Boundary Conditions

Asymptotics

In the limit ϵ1/ϵ2 → 0,

lim
ϵ1/ϵ2→0

Bnm =
γnm

ϵ2(n + 1)

lim
ϵ1/ϵ2→0

BCFA
nm =

γnm

ϵ2(2n + 1)
,

lim
ϵ1/ϵ2→0

BP
nm =

γnm

ϵ2
(
n + 1

2

) ,
so that the approximation ratios are given by

BCFA
nm

Bnm
=

n + 1
2n + 1

,
BP

nm
Bnm

=
n + 1
n + 1

2

.
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Future Work Approximate Boundary Conditions

Improved Accuracy
BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.
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Future Work Approximate Boundary Conditions

Basis Augmentation
We examined the more complex problem of protein-ligand binding
using trypsin and bovine pancreatic trypsin inhibitor (BPTI),
using electrostatic component analysis to identify residue contributions
to binding and molecular recognition.
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Future Work Approximate Boundary Conditions

Basis Augmentation
Looking at an ensemble of synthetic proteins, we can see that
BIBEE/CFA becomes more accurate as the monopole moment
increases, and BIBEE/P more accurate as it decreases. BIBEE/I is
accurate for spheres, but must be extended for ellipses.
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Future Work Approximate Boundary Conditions

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the
octopole, to recover 5% accuracy for all synthetic proteins tested.
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