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Nonlinear Preconditioning

Left Nonlinear Preconditioning

Nonlinearly preconditioned inexact Newton
algorithms, Cai and D. E. Keyes, SISC, 2002.

A parallel nonlinear additive Schwarz
preconditioned inexact Newton algorithm for
incompressible Navier-Stokes equations,
Hwang, Cai, J. Comp. Phys., 2005.

Field-Split Preconditioned Inexact Newton
Algorithms, Liu, Keyes, SISC, 2015.
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Nonlinear Preconditioning

Right Nonlinear Preconditioning

A parallel two-level domain decomposition based
one-shot method for shape optimization problems,
Chen, Cai, IJNME, 2014.

Nonlinearly preconditioned optimization on
Grassman manifolds for computing approximate
Tucker tensor decompositions,
De Sterck, Howse, SISC, 2015.

Nonlinear FETI-DP and BDDC Methods,
Klawonn, Lanser, Rheinbach, SISC, 2014.
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Nonlinear Preconditioning

Algorithmic Formalism

Composing Scalable Nonlinear Algebraic Solvers,
Brune, Knepley, Smith, Tu, SIAM Review, 2015.

Type Sym Statement Abbreviation
Additive + x + α(M(F ,x,b)− x) M+N

+ β(N (F ,x,b)− x)
Multiplicative ∗ M(F ,N (F ,x,b),b) M∗N
Left Prec. −L M(x −N (F ,x, ),x,b) M−L N
Right Prec. −R M(F(N (F ,x,b)),x,b) M−R N
Inner Lin. Inv. \ y = J⃗(x)−1r⃗(x) = K(J⃗(x),y0,b) N\K
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How Helpful is Theory?

Consider Linear Multigrid,

Local Fourier Analysis (LFA)
Multi-level adaptive solutions to boundary-value problems,
Brandt, Math. Comp., 1977.

Idealized Relaxation (IR)
Idealized Coarse-Grid Correction (ICG)

On Quantitative Analysis Methods for Multigrid Solutions,
Diskin, Thomas, Mineck, SISC, 2005.
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How Helpful is Theory?

How about Nonlinear Multigrid?

Full Approximation Scheme (FAS)
Convergence of the multigrid full approximation scheme for a class
of elliptic mildly nonlinear boundary value problems,
Reusken, Num. Math., 1987.
Analysis only for Picard

Overbroad conclusions based on experiments
Nonlinear Multigrid Methods for Second Order Differential
Operators with Nonlinear Diffusion Coefficient,
Brabazona, Hubbard, Jimack, Comp. Math. App., 2014.

People feel helpless when it fails or stagnates
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How Helpful is Theory?

How about Newton’s Method?
We have an asymptotic theory

On Newton’s Method for Functional Equations,
Kantorovich, Dokl. Akad. Nauk SSSR, 1948.

We need a non-asymptotic theory
The Rate of Convergence of Newton’s Process,
Ptak, Num. Math., 1976.

People feel helpless when it fails or stagnates
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How Helpful is Theory?

How about Nonlinear Preconditioning?

Some guidance
Nonlinear Preconditioning Techniques for Full-Space
Lagrange-Newton Solution of PDE-Constrained Optimzation
Problems,
Yang, Hwang, Cai, SISC, to appear.

Left preconditioning (Newton −L NASM)
handles local nonlinearities

Right preconditioning (Nonlinear Elimination)
handles nonlinear global coupling
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Convergence Rates

Outline

1 Convergence Rates

2 Theory
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Convergence Rates

Rate of Convergence

What should be a Rate of Convergence? [Ptak, 1977]:
1 It should relate quantities which may be measured or estimated

during the actual process
2 It should describe accurately in particular the initial stage of the

process, not only its asymptotic behavior . . .

∥xn+1 − x∗∥ ≤ c∥xn − x∗∥q
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Convergence Rates

Rate of Convergence

What should be a Rate of Convergence? [Ptak, 1977]:
1 It should relate quantities which may be measured or estimated

during the actual process
2 It should describe accurately in particular the initial stage of the

process, not only its asymptotic behavior . . .

∥xn+1 − xn∥ ≤ ω(∥xn − xn−1∥)

where we have for all r ∈ (0,R]

σ(r) =
∞∑

n=0

ω(n)(r) <∞
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Convergence Rates

Nondiscrete Induction

Define an approximate set Z (r), where x∗ ∈ Z (0) implies f (x∗) = 0.
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Convergence Rates

Nondiscrete Induction

Define an approximate set Z (r), where x∗ ∈ Z (0) implies f (x∗) = 0.

For Newton’s method, we use

Z (r) =
{

x
∣∣∣∥f ′(x)−1f (x)∥ ≤ r ,d(f ′(x)) ≥ h(r), ∥x − x0∥ ≤ g(r)

}
,

where

d(A) = inf
∥x∥≥1

∥Ax∥,

and h(r) and g(r) are positive functions.
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Convergence Rates

Nondiscrete Induction

Define an approximate set Z (r), where x∗ ∈ Z (0) implies f (x∗) = 0.

For r ∈ (0,R],

Z (r) ⊂ U(Z (ω(r)), r)

implies

Z (r) ⊂ U(Z (0), σ(r)).
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Convergence Rates

Nondiscrete Induction
For the fixed point iteration

xn+1 = Gxn,

if I have

x0 ∈ Z (r0)

and for x ∈ Z (r),

∥Gx − x∥ ≤ r
Gx ∈ Z (ω(r))

then
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Convergence Rates

Nondiscrete Induction
For the fixed point iteration

xn+1 = Gxn,

if I have

x0 ∈ Z (r0)

and for x ∈ Z (r),

∥Gx − x∥ ≤ r
Gx ∈ Z (ω(r))

then

∥xn − x∗∥ ≤ σ(ω(∥xn − xn−1∥))
= σ(∥xn − xn−1∥)− ∥xn − xn−1∥
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Convergence Rates

Newton’s Method

ωN (r) = cr2
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Convergence Rates

Newton’s Method

ωN (r) =
r2

2
√

r2 + a2

σN (r) = r +
√

r2 + a2 − a

where

a =
1
k0

√
1 − 2k0r0,

k0 is the (scaled) Lipschitz constant for f ′, and
r0 is the (scaled) initial residual.
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Convergence Rates

Newton’s Method

ωN (r) =
r2

2
√

r2 + a2

σN (r) = r +
√

r2 + a2 − a

This estimate is tight in that the bounds hold with equality for some
function f ,

f (x) = x2 − a2

using initial guess

x0 =
1
k0
.

Also, if equality is attained for some n0, this holds for all n ≥ n0.
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Convergence Rates

Newton’s Method

ωN (r) =
r2

2
√

r2 + a2

σN (r) = r +
√

r2 + a2 − a

If r ≫ a, meaning we have an inaccurate guess,

ωN (r) ≈ 1
2

r ,

whereas if r ≪ a, meaning we are close to the solution,

ωN (r) ≈ 1
2a

r2.
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Convergence Rates

Left vs. Right

Left:

F(x) =⇒ x −N (F , x ,b)

Right:

x =⇒ y = N (F , x ,b)

Heisenberg vs. Schrödinger Picture
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Convergence Rates

M−R N

We start with x ∈ Z (r), apply N so that

y ∈ Z (ωN (r)),

and then apply M so that

x ′ ∈ Z (ωM(ωN (r))).

Thus we have

ωM−RN = ωM ◦ ωN
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Theory

Outline

1 Convergence Rates

2 Theory
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Theory

Non-Abelian

N −R NRICH

ωN ◦ ωNRICH =
1
2

r2
√

r2 + a2
◦ cr ,

=
1
2

c2r2
√

c2r2 + a2
,

=
1
2

cr2√
r2 + (a/c)2

,

=
1
2

c
r2

√
r2 + ã2

,
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Theory

Non-Abelian

N −R NRICH: 1
2c r2

√
r2+ã2

NRICH −R N

ωNRICH ◦ ωN = cr ◦ 1
2

r2
√

r2 + a2
,

=
1
2

c
r2

√
r2 + a2

,

=
1
2

c
r2

√
r2 + a2

.
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Theory

Non-Abelian

N −R NRICH: 1
2c r2

√
r2+ã2

NRICH −R N : 1
2c r2

√
r2+a2

The first method also changes the onset of second
order convergence.
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Theory

Composed Rates of Convergence

Theorem
If ω1 and ω2 are convex rates of convergence, then
ω = ω1 ◦ ω2 is a rate of convergence.
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Theory

Composed Rates of Convergence

Theorem
If ω1 and ω2 are convex rates of convergence, then
ω = ω1 ◦ ω2 is a rate of convergence.

First we show that

ω(s) ≤ s
r
ω(r),

which means that convex rates of convergence are
non-decreasing.

This implies that compositions of convex rates of con-
vergence are also convex and non-decreasing.

M. Knepley (Rice) Composed Nonlinear SIAMPP 16 / 22



Theory

Composed Rates of Convergence

Theorem
If ω1 and ω2 are convex rates of convergence, then
ω = ω1 ◦ ω2 is a rate of convergence.

Then we show that

ω(r) < r ∀r ∈ (0,R)

by contradiction.
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Theory

Composed Rates of Convergence

Theorem
If ω1 and ω2 are convex rates of convergence, then
ω = ω1 ◦ ω2 is a rate of convergence.

This is enough to show that

ω1(ω2(r)) < ω1(r),

and in fact

(ω1 ◦ ω2)
(n)(r) < ω

(n)
1 (r).
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Theory

Multidimensional Induction Theorem
Preconditions

Theorem
Let

p (1 for our case) and m (2 for our case) be two positive integers,
X be a complete metric space and D ⊂ X p,
G : D → X p and F : D → X p+1 be defined by Fu = (u,Gu),
Fk = PkF, −p + 1 ≤ k ≤ m, the components of F ,
P = Pm,
Z (r) ⊂ D for each r ∈ T p,
ω be a rate of convergence of type (p,m) on T ,
u0 ∈ D and r0 ∈ T p.
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Theory

Multidimensional Induction Theorem

Theorem
If the following conditions hold

u0 ∈ Z (r0),

PFZ (r) ⊂ Z (ω̃(r)),
∥Fku − Fk+1u∥ ≤ ωk (r),

for all r ∈ T p, u ∈ Z (r), and k = 0, . . . ,m − 1, then
1 u0 is admissible, and ∃x∗ ∈ X such that (Pkun)n≥0 → x∗,
2 and the following relations hold for n > 1,

Pun ∈ Z (ω̃(r0)),

∥Pkun − Pk+1un∥ ≤ ω
(n)
k (r0), 0 ≤ k ≤ m − 1,

∥Pkun − x∗∥ ≤ σk (ω̃(r0)), 0 ≤ k ≤ m;
M. Knepley (Rice) Composed Nonlinear SIAMPP 18 / 22
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2 and the following relations hold for n > 1,
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Theory

Multidimensional Induction Theorem

Theorem
If the following conditions hold

u0 ∈ Z (r0),

PFZ (r) ⊂ Z (ω ◦ ψ(r)),
∥F0u − F1u∥ ≤ r ,
∥F1u − F2u∥ ≤ ψ(r),for all r ∈ T p, u ∈ Z (r), and k = 0, . . . ,m − 1, then

1 u0 is admissible, and ∃x∗ ∈ X such that (Pkun)n≥0 → x∗,
2 and the following relations hold for n > 1,
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Theory

Composed Newton Methods

Theorem
Suppose that we have two nonlinear solvers

M, Z1, ω,
N , Z0, ψ,

and consider M−R N , meaning a single step of N for each step of M.

Concretely, take M to be the Newton iteration, and N the Chord
method. Then the assumptions of the theorem above are satisfied
using Z = Z1 and

ω(r) = {ψ(r), ω ◦ ψ(r)},

giving us the existence of a solution, and both a priori and a posteriori
bounds on the error.
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Theory

Example

f (x) = x2 + (0.0894427)2

n ∥xn+1 − xn∥ ∥xn+1 − xn∥ − w (n)(r0) ∥xn − x∗∥ − s(w (n)(r0))

0 1.9990e+00 < 10−16 < 10−16

1 9.9850e-01 < 10−16 < 10−16

2 4.9726e-01 < 10−16 < 10−16

3 2.4470e-01 < 10−16 < 10−16

4 1.1492e-01 < 10−16 < 10−16

5 4.5342e-02 < 10−16 < 10−16

6 1.0251e-02 < 10−16 < 10−16

7 5.8360e-04 < 10−16 < 10−16

8 1.9039e-06 < 10−16 < 10−16

9 2.0264e-11 < 10−16 < 10−16

10 0.0000e+00 < 10−16 < 10−16
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Theory

Example

Matrix iterations also 1D scalar once you diagonalize
Pták’s nondiscrete induction and its application to matrix iterations, Liesen, IMA J. Num. Anal.,

2014.
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Theory

Conclusions

Nonlinear Preconditioning
is a powerful technique,
but we need more

theoretical guidance,
algorithmic structure,

and rules of thumb.
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