Geodynamic Simulator Building

Matthew Knepley and Margarete Jadamec

Computer Science and Engineering & Geology University at Buffalo

SIAM Parallel Processing, Tokyo, Kantō JP March 10, 2018

A (10) A (10)

A Simulator is more Useful when the Researcher Builds it Themselves

Matt (Buffalo)

Outline

Interaction of Discretizations and Solvers

How do I handle

many different mesh types simply and efficiently?

Matt (Buffalo)

PP18

4/36

Most packages handle one kind of mesh,

or have completely separate code paths

for different meshes

Most packages handle one kind of mesh, or have completely separate code paths for different meshes

This strategy means there is

a lot more code to maintain,

and results in technical debt.

Matt (Buffalo)

PP18

6/36

This strategy means there is

a lot more code to maintain,

and results in technical debt.

The Plex abstraction allows us to write code for

parallel distribution and load balancing, traversal for function/operator assembly, coarsening and refinement, generation of missing edges/faces, and surface extraction,

The Plex abstraction allows us to write code for parallel distribution and load balancing, traversal for function/operator assembly, coarsening and refinement, generation of missing edges/faces, and surface extraction.

The Plex abstraction allows us to write code for parallel distribution and load balancing, traversal for function/operator assembly, coarsening and refinement, generation of missing edges/faces, and surface extraction,

7/36

parallel distribution and load balancing, traversal for function/operator assembly, coarsening and refinement,

generation of missing edges/faces, and surface extraction,

7/36

parallel distribution and load balancing, traversal for function/operator assembly, coarsening and refinement, generation of missing edges/faces, and surface extraction,

parallel distribution and load balancing, traversal for function/operator assembly, coarsening and refinement, generation of missing edges/faces, and surface extraction,

parallel distribution and load balancing, traversal for function/operator assembly, coarsening and refinement, generation of missing edges/faces, and surface extraction,

just once.

Sample Meshes

Interpolated triangular mesh

8/36

э

Sample Meshes

Optimized triangular mesh

イロト イヨト イヨト イヨト

Sample Meshes Interpolated guadrilateral mesh

10/36

Sample Meshes

Optimized quadrilateral mesh

			= -040	- T
Matt (Buffalo)	PETSc	PP18	11/36	5

Sample Meshes

Interpolated tetrahedral mesh

Outline

イロト イヨト イヨト イヨト

PvLith

Example: PyLith

Many cell types

Surface extraction

Hybrid meshes

			=
Matt (Buffalo)	PETSc	PP18	14/36

Example: PyLith

Many cell types Surface extraction

Hybrid meshes

			= 940
Matt (Buffalo)	PETSc	PP18	14/36

Example: PyLith

Many cell types

Surface extraction

Hybrid meshes

			= -) < (-
Matt (Buffalo)	PETSc	PP18	14/36

Example: PyLith

Aagaard, Knepley, Williams, J. of Geophysical Research, 2013.

Matt (Buffalo)	PETSc	PP18	14/36

PvLith

Example: PyLith

Many cell types

Surface extraction

Hybrid meshes

A D N A B N A B N A B N

Matt (Buffalo)	PETSc	PP18	14/36

Example: PyLith

Aagaard, Knepley, Williams, J. of Geophysical Research, 2013.

Matt (Buffalo)	PETSc	PP18	14/36

DMNetwork

Outline

DMNetwork

Matt ((Buffalo)
initiati (Dunaio

イロト イヨト イヨト イヨト

2

DMNetwork

Example: DMNetwork

Plex on 30K cores of Edisor for a finite volume hydraulic flow application

	Table	e IV. Execution Time of Tran	isient State on Edi	son		
No. of	Variables	Maximum Variables	Linear	Preconditio	ner 🗡	$\top \Sigma \mathcal{O}$
Cores		per Core	Block Jacobi	ASM		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(in millions)	(in thousands)		ov. 1	0	- X-4. '
240	16	106	9.9 (48)	7.3(25)	6.4	$\cdot \cdot \gamma $).
960	63	106	10.6(55)	7.0(24)	6.2	
3,840	253	106	10.4(53)	7.3(24)	6.7	/ 1
15,360	1,012	104	11.9 (53)	11.4 (26)	9.9	
30,720	2,023	117	20.0 (53)	17.6 (26)	17.2 (20)	

Maldonado, Abhyankar, Smith, Zhang, ACM TOMS, 2017

Mott	Duffel	\sim
wall	IDulla	υı
	·	- /

Flexible Meshing

Interaction of Discretizations and Solvers

- PCTelescope
- GMG with coefficients
- Comparison of Discretizations

Main Question

How do I handle

many different discretizations simply and efficiently?

Most packages handle one discretization,

FEniCS/Firedrake is a notable exception,

and interface poorly with solvers,

especially hierarchical solvers.

Most packages handle one discretization, FEniCS/Firedrake is a notable exception, and interface poorly with solvers,

especially hierarchical solvers.

Most packages handle one discretization, FEniCS/Firedrake is a notable exception, and interface poorly with solvers, especially hierarchical solvers.

The Section abstraction allows us to write code for

parallel data layout, block/field decompositions, (variable) point-block decompositions, removing Dirichlet conditions, (nonlinear) hierarchical rediscretization, and partial assembly (BDDC/FETI),

The Section abstraction allows us to write code for

parallel data layout,

block/field decompositions,

(variable) point-block decompositions,

removing Dirichlet conditions,

(nonlinear) hierarchical rediscretization,

and partial assembly (BDDC/FETI),
The Section abstraction allows us to write code for

parallel data layout, block/field decompositions,

(variable) point-block decompositions, removing Dirichlet conditions, (nonlinear) hierarchical rediscretization, and partial assembly (BDDC/FETI),

The Section abstraction allows us to write code for

The Section abstraction allows us to write code for

The Section abstraction allows us to write code for

The Section abstraction allows us to write code for

The Section abstraction allows us to write code for

parallel data layout, block/field decompositions, (variable) point-block decompositions, removing Dirichlet conditions, (nonlinear) hierarchical rediscretization, and partial assembly (BDDC/FETI),

just **once**.

A Section is a map

mesh point \implies (size, offset)

< 47 ▶

A Section is a map

mesh point \implies (size, offset)

Data Layout Boundary conditions Fields mesh point \implies # dofs mesh point \implies # constrained dofs mesh point \implies # field dofs

21/36

PP18

A Section is a map

$\text{mesh point} \Longrightarrow \text{(size, offset)}$

Decouples Mesh, Discretization, and Solver

A Section is a map

mesh point \implies (size, offset)

Decouples Mesh, Discretization, and Solver

Assembly gets dofs on each point and mesh traversal, no need for discretization spaces

A Section is a map

mesh point \implies (size, offset)

Decouples Mesh, Discretization, and Solver

Solver gets data layout and ordering, no need for mesh traversal

A Section is a map

mesh point \implies (size, offset)

Decouples Mesh, Discretization, and Solver

Solver gets field and point blocking, no need for discretization spaces

A Section is a map

mesh point \implies (size, offset)

Decouples Mesh, Discretization, and Solver

Provides interface layer between PETSc and discretization packages Firedrake and LibMesh

Outline

Interaction of Discretizations and SolversPCTelescope

- GMG with coefficients
- Comparison of Discretizations

-

PCTelescope

Example: PCTelescope

PCTelescope abstracts the parallel distribution of a linear system, so that

May, Sanan, Rupp, Knepley, Smith, PASC, 2016. slides

	4		≣ *) Q (*
Matt (Buffalo)	PETSc	PP18	23/36

Example: PCTelescope

PCTelescope abstracts the parallel distribution of a linear system, so that

a user can bring their coarse level onto a single process for a direct solve,

```
-pc_type mg
  -pc_mg_levels N
  -mg_coarse_pc_type telescope
   -mg_coarse_pc_telescope_reduction_factor nc
   -mg_coarse_telescope_pc_type lu
```

May, Sanan, Rupp, Knepley, Smith, PASC, 2016. slides

Matt (Buffalo)	PETSc	PP18	23/36

Example: PCTelescope

PCTelescope abstracts the parallel distribution of a linear system, so that

or recreate the solver from the Gordon Bell Prize Winner 2015.

```
-pc_type mg
-pc_mg_levels NR
-mg_coarse_pc_type telescope
-mg_coarse_pc_telescope_reduction_factor r
-mg_coarse_telescope_pc_type mg
-mg_coarse_telescope_pc_mg_levels NG
-mg_coarse_telescope_pc_mg_galerkin
-mg_coarse_telescope_mg_coarse_pc_type gamg
```

May, Sanan, Rupp, Knepley, Smith, PASC, 2016. slides

Matt (Bu	ffalo	
----------	-------	--

・ロト ・ 一下・ ・ ヨト

PCTelescope

Example: PCTelescope

PCTelescope abstracts the parallel distribution of a linear system, so that

The paper shows scaling up to 32³ processors on Piz Daint.

May, Sanan, Rupp, Knepley, Smith, PASC, 2016. slides

			= -040
Matt (Buffalo)	PETSc	PP18	23/36

Example: PCTelescope

PCTelescope abstracts the parallel distribution of a linear system, so that

The paper shows scaling up to 32³ processors on Piz Daint, and also hybrid CPU-GPU solvers.

May, Sanan, Rupp, Knepley, Smith, PASC, 2016. slides

		ロト・ピート・ビート	2	$\mathcal{O}\mathcal{A}\mathcal{O}$
Matt (Buffalo)	PETSc	PP18		23/36

Outline

Interaction of Discretizations and Solvers

- PCTelescope
- GMG with coefficients
- Comparison of Discretizations

GMG with coefficients

Geometric Multigrid with a Coefficient

Regional mantle convection has highly variable viscosity, due to temperature and strain rate.

Jadamec, Billen, Nature, 2009.

	D (()	- A
Matt (Buttal	0

PETSc

Geometric Multigrid with a Coefficient

We will specify an initial temperature, on some initial mesh, and

let strain develop self-consistently.

Jadamec, Billen, Nature, 2009.

Matt (Buffalo)

Geometric Multigrid with a Coefficient

This temperature must be distributed, matching the mesh partition,

and interpolate/restrict to meshes.

Jadamec, Billen, Nature, 2009.

Matt (Buffalo)

PETSc

PP18

25/36

Geometric Multigrid with a Coefficient: Part I

Create Section mapping temperature to coarse cells, using PetscFECreateDefault() for a DG function space

Distribute the coarse mesh, using DMPlexDistribute()

Distribute the cell temperatures, using DMPlexDistributeField()

Transfer cell temperatures to finer cells (purely local)

Create Section mapping temperature to coarse cells, using PetscFECreateDefault() for a DG function space

Distribute the coarse mesh, using DMPlexDistribute()

Distribute the cell temperatures, using DMPlexDistributeField()

Transfer cell temperatures to finer cells (purely local)

Create Section mapping temperature to coarse cells, using PetscFECreateDefault() for a DG function space

Distribute the coarse mesh, using DMPlexDistribute()

Distribute the cell temperatures, using DMPlexDistributeField()

Transfer cell temperatures to finer cells (purely local)

Create Section mapping temperature to coarse cells, using PetscFECreateDefault() for a DG function space

Distribute the coarse mesh, using DMPlexDistribute()

Distribute the cell temperatures, using DMPlexDistributeField()

Transfer cell temperatures to finer cells (purely local)

Create Section mapping temperature to coarse cells, using PetscFECreateDefault() for a DG function space

Distribute the coarse mesh, using DMPlexDistribute()

Distribute the cell temperatures, using DMPlexDistributeField()

Transfer cell temperatures to finer cells (purely local)

GMG with coefficients

Geometric Multigrid with a Coefficient: Part II

Interpolation

Interpolation is straightforward

DMRefine(coarseMesh, comm, &fineMesh); DMCreateInterpolation(coarseMesh, fineMesh, &I, &Rscale); MatMult(I, coarseTemp, fineTemp);

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

GMG with coefficients

Geometric Multigrid with a Coefficient: Part II

Interpolation is straightforward

DMRefine(coarseMesh, comm, &fineMesh); DMCreateInterpolation(coarseMesh, fineMesh, &I, &Rscale); MatMult(I, coarseTemp, fineTemp);

PP18

GMG with coefficients

Geometric Multigrid with a Coefficient: Part II

Now we restrict the input temperature to coarser meshes.

DMCreateInterpolation(coarseMesh, fineMesh, &I, &Rscale); MatMultTranspose(I, fineTemp, coarseTemp); VecPointwiseMult(coarseTemp, coarseTemp, Rscale);

GMG with coefficients

Geometric Multigrid with a Coefficient: Part II

Now we restrict the input temperature to coarser meshes.

DMCreateInterpolation(coarseMesh, fineMesh, &I, &Rscale); MatMultTranspose(I, fineTemp, coarseTemp); VecPointwiseMult(coarseTemp, coarseTemp, Rscale);

→ ∃ → < ∃ →</p>

A D M A A A M M

29/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Fine Grid, Level 3)

29/36

Geometric Multigrid with a Coefficient: Part II

Mantle Temperature (Fine Grid, Level 3)

29/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 2, Q1 Restriction)

29/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 1, Q1 Restriction)

29/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 0, Q1 Restriction)

The power mean could better preserve low temperatures

$$\bar{x} = \left(\sum_{i} x_{i}^{p}\right)^{\frac{1}{p}}$$

A D M A A A M M

Geometric Multigrid with a Coefficient: Part II Interpolation

The power mean could better preserve low temperatures

$$\bar{x} = \left(\sum_{i} x_{i}^{p}\right)^{\frac{1}{p}}$$

DMCreateInterpolation(coarseMesh, fineMesh, &I, &Rscale); MatShellSetOperation(I, MATOP_MULT_TRANSPOSE, MatMultTransposePowerMean_SeqAIJ); MatMultTranspose(I, fineTemp, coarseTemp); VecPointwiseMult(coraseTemp, coarseTemp, Rscale); VecPow(coarseTemp, p);

< ロ > < 同 > < 回 > < 回 >

The power mean could better preserve low temperatures

$$\bar{x} = \left(\sum_{i} x_{i}^{p}\right)^{\frac{1}{p}}$$

It reuses the parallel MatMultTranspose () implementation.

iviali (Bullaio

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Fine Grid, Level 3)

31/36

Geometric Multigrid with a Coefficient: Part II

Mantle Temperature (Level 2, Harmonic Restriction)

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 1, Harmonic Restriction)

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 0, Harmonic Restriction)

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 2, p = -1.5 Restriction)

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 1, p = -1.5 Restriction)

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 0, p = -1.5 Restriction)

31/36

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 0, Q1 Restriction)

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 0, Harmonic Restriction)

31/36

Geometric Multigrid with a Coefficient: Part II Interpolation

Mantle Temperature (Level 0, Q1 Avg - Harmonic Avg)


```
-snes rtol 1e-7 -snes atol 1e-12 -snes linesearch maxstep 1e20
-ksp rtol 1e-5
-pc type fieldsplit
  -pc fieldsplit diag use amat
  -pc_fieldsplit_type schur
  -pc_fieldsplit_schur_factorization_type full
  -pc_fieldsplit_schur_precondition all
    -fieldsplit_velocity_ksp_type gmres
      -fieldsplit velocity ksp rtol 1e-8
    -fieldsplit velocity pc type mg
      -fieldsplit_velocity_pc_mg_levels n
        -fieldsplit velocity mg levels ksp type gmres
          -fieldsplit_velocity_mg_levels_ksp_max_it 4
          -fieldsplit_velocity_mg_levels_pc_type pbjacobi
          -fieldsplit_velocity_mg_levels_pc_pbjacobi_variable
          -fieldsplit_velocity_mg_levels_pc_use_amat
    -fieldsplit_pressure_pc_type asm
      -fieldsplit_pressure_sub_pc_type ilu
      -fieldsplit pressure ksp rtol 1e-4
      -fieldsplit pressure ksp max it 20
```

・ロト ・四ト ・ヨト ・ヨト

```
-snes_rtol 1e-7 -snes_atol 1e-12 -snes_linesearch_maxstep 1e20
-ksp rtol 1e-5
-pc type fieldsplit
  -pc fieldsplit diag use amat
  -pc_fieldsplit_type schur
  -pc_fieldsplit_schur_factorization_type full
  -pc_fieldsplit_schur_precondition all
    -fieldsplit_velocity_ksp_type gmres
      -fieldsplit velocity ksp rtol 1e-8
    -fieldsplit velocity pc type mg
      -fieldsplit_velocity_pc_mg_levels n
        -fieldsplit velocity mg levels ksp type gmres
          -fieldsplit_velocity_mg_levels_ksp_max_it 4
          -fieldsplit_velocity_mg_levels_pc_type pbjacobi
          -fieldsplit_velocity_mg_levels_pc_pbjacobi_variable
          -fieldsplit_velocity_mg_levels_pc_use_amat
    -fieldsplit_pressure_pc_type asm
      -fieldsplit_pressure_sub_pc_type ilu
      -fieldsplit pressure ksp rtol 1e-4
      -fieldsplit pressure ksp max it 20
```

・ロト ・四ト ・ヨト ・ヨト

-snes rtol 1e-7 -snes atol 1e-12 -snes linesearch maxstep 1e20 -ksp rtol 1e-5 -pc type fieldsplit -pc_fieldsplit_diag_use_amat -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type full -pc_fieldsplit_schur_precondition all -fieldsplit_velocity_ksp_type gmres -fieldsplit velocity ksp rtol 1e-8 -fieldsplit velocity pc type mg -fieldsplit_velocity_pc_mg_levels n -fieldsplit velocity mg levels ksp type gmres -fieldsplit_velocity_mg_levels_ksp_max_it 4 -fieldsplit_velocity_mg_levels_pc_type pbjacobi -fieldsplit_velocity_mg_levels_pc_pbjacobi_variable -fieldsplit_velocity_mg_levels_pc_use_amat -fieldsplit_pressure_pc_type asm -fieldsplit_pressure_sub_pc_type ilu

```
-fieldsplit pressure ksp rtol 1e-4
```

```
-fieldsplit pressure ksp max it 20
```

・ロト ・四ト ・ヨト ・ヨト

```
-snes rtol 1e-7 -snes atol 1e-12 -snes linesearch maxstep 1e20
-ksp rtol 1e-5
-pc type fieldsplit
  -pc fieldsplit diag use amat
  -pc_fieldsplit_type schur
  -pc_fieldsplit_schur_factorization_type full
  -pc_fieldsplit_schur_precondition all
    -fieldsplit_velocity_ksp_type gmres
      -fieldsplit velocity ksp rtol 1e-8
    -fieldsplit velocity pc type mg
      -fieldsplit_velocity_pc_mg_levels n
        -fieldsplit velocity mg levels ksp type gmres
          -fieldsplit_velocity_mg_levels_ksp_max_it 4
          -fieldsplit_velocity_mg_levels_pc_type pbjacobi
          -fieldsplit_velocity_mg_levels_pc_pbjacobi_variable
          -fieldsplit_velocity_mg_levels_pc_use_amat
    -fieldsplit_pressure_pc_type asm
      -fieldsplit_pressure_sub_pc_type ilu
      -fieldsplit pressure ksp rtol 1e-4
      -fieldsplit_pressure_ksp_max_it 20
```

・ロト ・四ト ・ヨト ・ヨト

```
-snes rtol 1e-7 -snes atol 1e-12 -snes linesearch maxstep 1e20
-ksp rtol 1e-5
-pc type fieldsplit
  -pc fieldsplit diag use amat
  -pc_fieldsplit_type schur
  -pc_fieldsplit_schur_factorization_type full
  -pc_fieldsplit_schur_precondition all
    -fieldsplit_velocity_ksp_type gmres
      -fieldsplit velocity ksp rtol 1e-8
    -fieldsplit velocity pc type mg
      -fieldsplit_velocity_pc_mg_levels n
        -fieldsplit velocity mg levels ksp type gmres
          -fieldsplit_velocity_mg_levels_ksp_max_it 4
          -fieldsplit_velocity_mg_levels_pc_type pbjacobi
          -fieldsplit_velocity_mg_levels_pc_pbjacobi_variable
          -fieldsplit_velocity_mg_levels_pc_use_amat
    -fieldsplit_pressure_pc_type asm
      -fieldsplit_pressure_sub_pc_type ilu
      -fieldsplit pressure ksp rtol 1e-4
      -fieldsplit pressure ksp max it 20
```

・ロト ・四ト ・ヨト ・ヨト

```
-snes rtol 1e-7 -snes atol 1e-12 -snes linesearch maxstep 1e20
-ksp rtol 1e-5
-pc type fieldsplit
  -pc fieldsplit diag use amat
  -pc_fieldsplit_type schur
  -pc_fieldsplit_schur_factorization_type full
  -pc_fieldsplit_schur_precondition all
    -fieldsplit_velocity_ksp_type gmres
      -fieldsplit velocity ksp rtol 1e-8
    -fieldsplit velocity pc type mg
      -fieldsplit_velocity_pc_mg_levels n
        -fieldsplit velocity mg levels ksp type gmres
          -fieldsplit_velocity_mg_levels_ksp_max_it 4
          -fieldsplit_velocity_mg_levels_pc_type pbjacobi
          -fieldsplit_velocity_mg_levels_pc_pbjacobi_variable
          -fieldsplit_velocity_mg_levels_pc_use_amat
    -fieldsplit_pressure_pc_type asm
      -fieldsplit_pressure_sub_pc_type ilu
      -fieldsplit pressure ksp rtol 1e-4
      -fieldsplit pressure ksp max it 20
```

・ロト ・四ト ・ヨト ・ヨト

Outline

Interaction of Discretizations and Solvers

- PCTelescope
- GMG with coefficients
- Comparison of Discretizations

-∢ ∃ ▶

Interaction of Discretizations and Solvers

Comparison of Discretizations

Example: TAS Performance Analysis

Static Scaling (1K procs)

Chang, Fabien, Knepley, Mills, submitted, 2018.

man (Banalo)

PP18

• • • • • • • • • • • • •

34/36

Interaction of Discretizations and Solvers

Comparison of Discretizations

Example: TAS Performance Analysis

Accuracy Scaling (1K procs)

Chang, Fabien, Knepley, Mills, submitted, 2018.

Matt ((Buffalo)	
initiati (Dunaio)	

34/36

Conclusions

Abstractions for Topology and Geometry, Data Layout, and **Operator Composition** let the User construct the Simulator.

A (10) > A (10) > A (10)

Conclusions

http://bitbucket.org/petsc/petsc http://github.com/petsc/petsc

.

Interaction of Discretizations and Solvers

Comparison of Discretizations

Example: Magma Dynamics

Show magma performance using FAS

Knepley, Melt in the Mantle Program, Newton Institute, 2016.

36/36

PP18