Tree-based methods on GPUs

Felipe Cruz¹ and Matthew Knepley^{2,3}

¹Department of Mathematics University of Bristol

²Computation Institute University of Chicago

³Department of Molecular Biology and Physiology Rush University Medical Center

Shanghai Supercomputing Center Shanghai, China July 11, 2009

Outline

- Introduction
- Short Introduction to FMN
- Serial Implementation
- Multicore Interfaces
- Multicore Implementation

Scientific Computing Challenge

How do we create reusable implementations which are also efficient?

SSC

Scientific Computing Insight

Structures are conserved, but tradeoffs change.

- Sparse matrix-vector product has a common structure
- Different storage formats are chosen based upon
 - architecture
 - PDE

- Sparse matrix-vector product has a common structure
- Different storage formats are chosen based upon
 - architecture
 - PDE

- Sparse matrix-vector product has a common structure
- Different storage formats are chosen based upon
 - architecture
 - PDE

$$A x = b$$
{ b, Ab, A(Ab), A(A(Ab)), ...}

- Krylov solvers have a common structure
- Different solvers are chosen based upon
 - problem characteristics
 - architecture

$$A x = b$$
{ b, Ab, A(Ab), A(A(Ab)), ...}

- Krylov solvers have a common structure
- Different solvers are chosen based upon
 - problem characteristics
 - architecture

$$A x = b$$
{ b, Ab, A(Ab), A(A(Ab)), ...}

- Krylov solvers have a common structure
- Different solvers are chosen based upon
 - problem characteristics
 - architecture

This is how treecodes work:

- Hierarchical algorithms have a common structure
- Different analytical and geometric decisions depend upon
 - problem configuration
 - accuray requirements

This is how treecodes work:

- Hierarchical algorithms have a common structure
- Different analytical and geometric decisions depend upon
 - problem configuration
 - accuray requirements

This is how treecodes work:

- Hierarchical algorithms have a common structure
- Different analytical and geometric decisions depend upon
 - problem configuration
 - accuray requirements

This is how biology works:

- For ion channels, Nature uses the same
 - protein building blocks
 - energetic balances
- Different energy terms predominate for different uses

This is how biology works:

- For ion channels, Nature uses the same
 - protein building blocks
 - energetic balances
- Different energy terms predominate for different uses

This is how biology works:

- For ion channels, Nature uses the same
 - protein building blocks
 - energetic balances
- Different energy terms predominate for different uses

Divide the work into levels:

- Model
- Algorithm
- Implementation

SSC

Divide the work into levels:

- Model
- Algorithm
- Implementation

Spiral Project:

- Discrete Fourier Transform (DSP)
- Fast Fourier Transform (SPL)
- C Implementation (SPL Compiler)

SSC

Divide the work into levels:

- Model
- Algorithm
- Implementation

FLAME Project:

- Abstract LA (PME/Invariants)
- Basic LA (FLAME/FLASH)
- Scheduling (SuperMatrix)

Divide the work into levels:

- Model
- Algorithm
- Implementation

FEniCS Project:

- Navier-Stokes (FFC)
- Finite Element (FIAT)
- Integration/Assembly (FErari)

Divide the work into levels:

- Model
- Algorithm
- Implementation

Treecodes:

- Kernels with decay (Coulomb)
- Treecodes (PetFMM)
- Scheduling (PetFMM-GPU)

Divide the work into levels:

- Model
- Algorithm
- Implementation

Treecodes:

- Kernels with decay (Coulomb)
- Treecodes (PetFMM)
- Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

Spiral

- Spiral Team, http://www.spiral.net
- Uses an intermediate language, SPL, and then generates C
- Works by circumscribing the algorithmic domain

FLAME & FLASH

- Robert van de Geijn, http://www.cs.utexas.edu/users/flame
- FLAME is an Algorithm-By-Blocks interface
- FLASH/SuperMatrix is a runtime system

Outline

- Introduction
- Short Introduction to FMM
 - Spatial Decomposition
 - Data Decomposition
- Serial Implementation
- Multicore Interfaces
- Multicore Implementation

FMM Applications

FMM can accelerate both integral and boundary element methods for:

- Laplace
- Stokes
- Elasticity

FMM Applications

FMM can accelerate both integral and boundary element methods for:

- Laplace
- Stokes
- Elasticity

Advantages

- Mesh-free
- O(N) time
- Distributed and multicore (GPU) parallelism
- Small memory bandwidth requirement

Fast Multipole Method

FMM accelerates the calculation of the function:

$$\Phi(x_i) = \sum_j K(x_i, x_j) q(x_j) \tag{1}$$

- Accelerates $\mathcal{O}(N^2)$ to $\mathcal{O}(N)$ time
- The kernel $K(x_i, x_i)$ must decay quickly from (x_i, x_i)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques

Fast Multipole Method

FMM accelerates the calculation of the function:

$$\Phi(x_i) = \sum_j \frac{q_j}{|x_i - x_j|} \tag{1}$$

- Accelerates $\mathcal{O}(N^2)$ to $\mathcal{O}(N)$ time
- The kernel $K(x_i, x_i)$ must decay quickly from (x_i, x_i)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques

PetFMM

PetFMM is an freely available implementation of the Fast Multipole Method http://barbagroup.bu.edu/Barba group/PetFMM.html

- Leverages PETSc
 - Same open source license
 - Uses Sieve for parallelism
- Extensible design in C++
 - Templated over the kernel
 - Templated over traversal for evaluation
- MPI implementation
 - Novel parallel strategy for anisotropic/sparse particle distributions
 - PetFMM—A dynamically load-balancing parallel fast multipole library
 - 86% efficient strong scaling on 64 procs
- Example application using the Vortex Method for fluids
- (coming soon) GPU implementation

PetFMM CPU Performance

Strong Scaling

PetFMM CPU Performance Strong Scaling

Outline

- Short Introduction to FMM
 - Spatial Decomposition
 - Data Decomposition

M. Knepley (UC) SSC 19/76

Spatial Decomposition

Pairs of boxes are divided into near and far:

M. Knepley (UC) SSC 20 / 76

Spatial Decomposition

Pairs of boxes are divided into near and far:

Neighbors are treated as very near.

M. Knepley (UC) SSC 20 / 76

FMM in Sieve

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are definedNeighbors
- Completion moves data for
 - Neighbors
 Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Interaction Lis
- Completion moves data for
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

Outline

- Short Introduction to FMM
 - Spatial Decomposition
 - Data Decomposition

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

Notice this is multiscale since data is divided at each level

Outline

- Introduction
- Short Introduction to FMM
- Serial Implementation
 - Control Flow
 - Interface
- Multicore Interfaces
- Multicore Implementation

Outline

- Serial Implementation
 - Control Flow
 - Interface

FMM Control Flow

Kernel operations will map to GPU tasks.

FMM Control Flow

Parallel Operation

Kernel operations will map to GPU tasks.

Outline

- Serial Implementation
 - Control Flow
 - Interface

Evaluator Interface

- initializeExpansions(tree, blobInfo)
 - Generate multipole expansions on the lowest level
 - Requires loop over cells
 - O(p)
- upwardSweep(tree)
 - Translate multipole expansions to intermediate levels
 - Requires loop over cells and children (support)
 - O(p²)
- downwardSweep(tree)
 - Convert multipole to local expansions and translate local expansions on intermediate levels
 - Requires loop over cells and parent (cone)
 - $O(p^2)$

Evaluator Interface

- evaluateBlobs(tree, blobInfo)
 - Evaluate direct and local field interactions on lowest level
 - Requires loop over cells and neighbors (in section)
 - $O(p^2)$
- evaluate(tree, blobs, blobInfo)
 - Calculate the complete interaction (multipole + direct)

Kernel Interface

Method	Description
P2M(t)	Multipole expansion coefficients
L2P(t)	Local expansion coefficients
M2M(t)	Multipole-to-multipole translation
M2L(t)	Multipole-to-local translation
L2L(t)	Local-to-local translation
evaluate(blobs)	Direct interaction

- Evaluator is templated over Kernel
- There are alternative kernel-independent methods
 - kifmm3d

M. Knepley (UC) GPU SSC 30 / 76

Outline

- Introduction
- Short Introduction to FMM
- Serial Implementation
- Multicore Interfaces
 - GPU Programming
 - FLASH
 - PetFMM
- 5 Multicore Implementation

Outline

- Multicore Interfaces
 - GPU Programming
 - FLASH
 - PetFMM

GPU vs. CPU

A GPU looks like a big CPU with no virtual memory:

- Many more hardware threads encourage concurrency
- Makes bandwidth limitations even more acute
- Shared memory is really a user-managed cache
- Texture memory is also a specialized cache
- User also manages a very small code segment

GPU vs. CPU

Power usage can be very different:

Platform	TF	KW	GB/s	Price (\$)	GF/\$	GF/W
IBM BG/P	14	40.00	57.0*	1,800,000	0.008	0.35
IBM BlueGene	280	5000	???	350,000,000	0.0008	0.55
NVIDIA C1060	1	0.19	102.0	1,475	0.680	5.35
ATI 9250	1	0.12	63.5	840	1.220	8.33

Table: Comparison of Supercomputing Hardware.

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

- Protoypical operation is Triad (WAXPY): $\mathbf{w} = \mathbf{v} + \alpha \mathbf{x}$
- Measures the memory bandwidth bottleneck (much below peak)
- Datasets outstrip cache

M. Knepley (UC)

Machine	Peak (MF/s)	Triad (MB/s)	MF/MW	Eq. MF/s
Matt's Laptop	1700	1122.4	12.1	93.5 (5.5%)
Intel Core2 Quad	38400	5312.0	57.8	442.7 (1.2%)
Tesla 1060C	984000	102000.0*	77.2	8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/

34 / 76

Analysis of Sparse Matvec (SpMV)

Assumptions

- No cache misses
- No waits on memory references

Notation

- m Number of matrix rows
- nz Number of nonzero matrix elements
 - V Number of vectors to multiply

We can look at bandwidth needed for peak performance

$$\left(8 + \frac{2}{V}\right) \frac{m}{nz} + \frac{6}{V} \text{ byte/flop}$$
 (2)

or achieveable performance given a bandwith BW

$$\frac{Vnz}{(8V+2)m+6nz}BW \text{ Mflop/s}$$
 (3)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp, Kaushik, Keyes, and Smith.

Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt's laptop can achieve at most

$$\frac{1}{(8+2)\frac{1}{7}+6} \text{ bytes/flop(1122.4 MB/s)} = 151 \text{ MFlops/s}, \qquad (4)$$

which is a dismal 8.8% of peak.

Can improve performance by

- Blocking
- Multiple vectors

but operation issue limitations take over.

Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt's laptop can achieve at most

$$\frac{1}{(8+2)\frac{1}{7}+6} \text{ bytes/flop(1122.4 MB/s)} = 151 \text{ MFlops/s}, \qquad (4)$$

which is a dismal 8.8% of peak.

Better approaches:

- Unassembled operator application (Spectral elements, FMM)
 - N data, N² computation
- Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)
 - N data, N^k computation

(D) 《 B) 《 E) 《 E) 및 이익은

GPU programming in General

- What design ideas are useful?
- How do we customize them for GPUs?
- Can we show an example?

Break Operations Into Small Chunks

Usually called modularity

- Also called orthogonality or separation of concerns
- Allows reduction of complexity
 - eXtreme programming
- Just concerned with functionality

Break Operations Into Small Chunks GPU Differences

We now have to worry about code size!

- 16K total for NVIDIA 1060C board
 - Instructions can be a significant portion of memory usage
- Have to split operations which logically belong together
- Also allows aggregation of memory access
 - Computation can be regrouped
- Needs tools to manage many small tasks

Break Operations Into Small Chunks Example

Reduction over a dataset

- For instance, computation of finite element integrals
- Break into computation and aggregation stages
- Model this by:
 - Maximum flop rate stage
 - Bandwidth limited stage

Break Operations Into Small Chunks Example

Reduction over a dataset

- For instance, computation of Multipole-to-Local transform
- Break into computation and aggregation stages
- Model this by:
 - Maximum flop rate stage
 - Bandwidth limited stage

Reorder for Locality

Exploits "nearby" operations to aggregate computation

- Can be temporal or spatial
- Usually exploits a cache
- Difficult to predict/model on a modern processor

Reorder for Locality GPU Differences

We have to manage our "cache" explicitly

- The NVIDIA 1060C shared memory is only 16K for 32 threads
- We must also manange "main memory" explicitly
 - Need to move data to/from GPU
- Must be aware of limited precision when reordering
- Can be readily modeled
- Need tools for automatic data movement (marshalling)

Reorder for Locality

Example

Data-Aware Work Queue

- A work queue manages many small tasks
 - Dependencies are tracked with a DAG
 - Queue should manage a single computational phase (supertask)
- Nodes also manage an input and output data segment
 - Specific classes can have known sizes
 - Can hold main memory locations for segments
- Framework manages marshalling:
 - Allocates contiguous data segments
 - Calculates segment offsets for tasks
 - Marshalls (moves) data
 - Passes offsets to supertask execution

Outline

- Multicore Interfaces
 - GPU Programming
 - FLASH
 - PetFMM

M. Knepley (UC) SSC 44/76

FLASH enables multicore computing through FLAME

- LA interface is identical to FLAME
- FLAME executes operates immediately
- FLASH queues operations, and
- Executes queues on user call (does nothing in FLAME)

FLASH enables multicore computing through FLAME

- LA interface is identical to FLAME
- FLAME executes operates immediately
- FLASH queues operations, and
- Executes queues on user call (does nothing in FLAME)

FLASH enables multicore computing through FLAME

- LA interface is identical to FLAME
- FLAME executes operates immediately
- FLASH queues operations, and
- Executes queues on user call (does nothing in FLAME)

FLASH enables multicore computing through FLAME

- LA interface is identical to FLAME
- FLAME executes operates immediately
- FLASH queues operations, and
- Executes queues on user call (does nothing in FLAME)

Cholesky Factorization

```
FLA Part 2x2(A, &ATL, &ATR,
                 &ABL, &ABR, 0, 0, FLA TL);
while(FLA_Object_length(ATL) < FLA_Object_length(A)) {</pre>
 FLA Repart 2x2 to 3x3(
   ATL, ATR, &A00, &A01, &A02,
              &A10, &A11, &A12,
   ABL, ABR, &A20, &A21, &A22, 1, 1, FLA_BR);
  FLASH Chol (FLA UPPER TRIANGULAR, A11);
  FLASH Trsm(FLA LEFT, FLA UPPER TRIANGULAR, FLA TRANSPOSE,
             FLA NONUNIT DIAG, FLA ONE, A11, A12);
  FLASH_Syrk (FLA_UPPER_TRIANGULAR, FLA_TRANSPOSE,
             FLA MINUS ONE, A12, FLA ONE, A22);
  FLA Cont with 3x3 to 2x2(
    &ATL, &ATR, A00, A01, A02,
                A10, A11, A12,
    &ABL, &ABR, A20, A21, A22, FLA TL);
FLA Queue exec();
                                        ◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q C ・
```

Outline

- Multicore Interfaces
 - GPU Programming
 - FLASH
 - PetFMM

PetFMM-GPU

We break down sweep operations into Tasks

- Cell loops are now tiled
- Tasks are queued
- We can form a DAG since we know the dependence structure
- Scheduling is possible

This asynchronous interface can enable

- Overlapping direct and multipole calculations
- Reorganizing the downward sweep
- Adaptive expansions

GPU Classes

Section

- size() returns the number of values
- getFiberDimension(cell) returns the number of cell values
- restrict/update() retrieves and changes cell values
- clone/extract () converts between CPU and GPU objects

Evaluator

- initializeExpansions()
- upwardSweep()
- o downwardSweepTransform()
- downwardSweepTranslate()
- evaluateBlobs()
- evaluate()

GPU Classes

Section

- size() returns the number of values
- getFiberDimension(cell) returns the number of cell values
- restrict/update() retrieves and changes cell values
- clone/extract() converts between CPU and GPU objects

Task

- Input data size
- Output data size
- Dependencies (future)

TaskQueue

- Manages storage and offsets
- evaluate()

Tasks

Upward Sweep Task

- cell block
- in cell and child centers, child multipole coeff
- out cell multipole coeff

Downward Sweep Transform Task

- cell block
- in cell and interaction list centers, interaction list multipole coeff out cell temp local coeff

Downward Sweep Expansion Task

- cell block
- in cell and parent centers, cell temp local coeff, parent local coeff out cell local coeff

Tasks

Upward Sweep Task

- cell block
- in cell and child centers, child multipole coeff
- out cell multipole coeff

Downward Sweep Transform Task

- cell block
- in cell and interaction list centers, cell multipole coeff
- out interaction list temp local coefficients

Downward Sweep Expansion Task

- cell block
- in cell and parent centers, cell temp local coeff, parent local coeff
- out cell local coeff

Tasks

Upward Sweep Task

- cell block
- in cell and child centers, child multipole coeff
- out cell multipole coeff

Downward Sweep Reduce Task

- cell block
- in interaction list temp local coefficients
- out cell temp local coefficients

Downward Sweep Expansion Task

- cell block
- in cell and parent centers, cell temp local coeff, parent local coeff
- out cell local coeff

Transform Task

Shifts interaction cell multipole expansion to cell local expansion

- Add a task for each interaction cell
- All tasks with same origin are merged
- Local memory:
 - 2 (p+1) blockSize (Pascal) + 2 p blockSize (LE) + 2 p (ME)
- 8 terms 4416 bytes
- 17 terms 9096 bytes
 - Execution
 - 1 block per ME
 - Each thread reads a section of ME and the MEcenter
 - Each thread computes an LE separately
 - Each thread writes LE to separate global location

Reduce Task

Add up local expansion contributions from each interaction cell

- Add a task for each cell
- Local memory:
 - 2*terms (LE)

8 terms 64 bytes 17 terms 136 bytes

- Execution
 - 1 block per output LE
 - Each thread reads a section of input LE
 - Each thread adds to shared output LE

M. Knepley (UC) GPU SSC 52/76

- In our C++ code on a CPU, M2L transforms take 85% of the time
 - This does vary depending on N
- New M2L design was implemented using PyCUDA
 - Port to C++ is underway
- We can now achieve 500 GF on the NVIDIA Tesla
 - Previous best performance we found was 100 GF
- We will release PetFMM-GPU in the new year

- In our C++ code on a CPU, M2L transforms take 85% of the time
 - This does vary depending on N
- New M2L design was implemented using PyCUDA
 - Port to C++ is underway
- We can now achieve 500 GF on the NVIDIA Tesla
 - Previous best performance we found was 100 GF
- We will release PetFMM-GPU in the new year

- In our C++ code on a CPU, M2L transforms take 85% of the time
 - This does vary depending on N
- New M2L design was implemented using PyCUDA
 - Port to C++ is underway
- We can now achieve 500 GF on the NVIDIA Tesla.
 - Previous best performance we found was 100 GF
- We will release PetFMM-GPU in the new year

- In our C++ code on a CPU, M2L transforms take 85% of the time
 - This does vary depending on N
- New M2L design was implemented using PyCUDA
 - Port to C++ is underway
- We can now achieve 500 GF on the NVIDIA Tesla.
 - Previous best performance we found was 100 GF
- We will release PetFMM-GPU in the new year

CPU vs GPU

Sample run for 250,000 vortex particles in an 8 level tree

Section	Time(s)	
	PyCUDA	Laptop C++
Setup	0.55	0.00
InitExpansions	10.74	0.93
UpSweep	0.36	5.02
DownSweepEnqueue	0.09	
GPUOverhead	2.97	
DownSweepM2LTrns	2.08	363.21
DownSweepM2LRed	0.45	_
DownSweepL2L	0.36	4.11

Notice that once direct evaluation is moved to the GPU, Python can easily outperform C++.

4 □ > 4 □ > 4 필 > 4 필 > 별

Outline

- Introduction
- Short Introduction to FMM
- Serial Implementation
- Multicore Interfaces
- Multicore Implementation
 - Complexity Analysis
 - Redesign
 - MultiGPU

Outline

- Multicore Implementation
 - Complexity Analysis
 - Redesign
 - MultiGPU

Greengard & Gropp Analysis

For a shared memory machine,

$$T = a\frac{N}{P} + b\log_4 P + c\frac{N}{BP} + d\frac{NB}{P} + e(N, P)$$
 (5)

- Initialize multipole expansions, finest local expansions, final sum
- Reduction bottleneck
- Translation and Multipole-to-Local
- Direct interaction
- Low order terms

A Parallel Version of the Fast Multipole Method,

L. Greengard and W.D. Gropp, Comp. Math. Appl., 20(7), 1990.

4 □ ▶ 4 □ ▶ 4 필 ▶ 4 필 ▶ 3 필 ★ 9 ○ ○

Outline

- Multicore Implementation
 - Complexity Analysis
 - Redesign
 - MultiGPU

What is the optimal number of particles per cell?

- Greengard & Gropp
 - Minimize time and maximize parallel efficiency

•
$$B_{opt} = \sqrt{\frac{c}{d}} \approx 30$$

- Gumerov & Duraiswami
 - Follow GG, but also try to consider memory access
 - $B_{opt} \approx 91$, but instead, they choose 320
 - Heavily weights the N² part of the computation
- We propose to cover up the bottleneck with direct evaluations

M. Knepley (UC) GPU SSC 59 / 76

PetFMM Stages

PetFMM Stages

We can balance time in direct evaluation with idle time for small grids.

- The direct evaluation takes time d^{NB}_{p}
- Assume a single thread group works on the first L tree levels

Thus, we need

$$B \ge \frac{b}{d} \frac{4^{L+1}p}{N} \tag{6}$$

in order to cover the bottleneck. In an upcoming publication, we show that this bound holds for all modern processors.

M. Knepley (UC) SSC 61/76

We can restructure the M2L to conserve bandwidth

- Matrix-free application of M2L
- Reorganize traversal to minimize bandwidth

Old Pull in 27 interaction MEs, transform to LE, reduce

New Pull in cell ME, transform to 27 interaction LEs, partially reduce

Matrix-Free M2L

The M2L transformation applies the operator

$$M_{ij} = -1^{i} t^{-(i+j+1)} {i+j \choose j}$$
 (7)

Notice that the t exponent is constant along perdiagonals. Thus we

- divide by t at each perdiagonal
- \bullet calculate the C_{ii} by the recurrence along each perdiagonal
- carefully formulate complex division (STL fails here)

Outline

- Multicore Implementation
 - Complexity Analysis
 - Redesign
 - MultiGPU

- Divide tree into a root and local trees
- Distribute local trees among processes
- Provide communication pattern for local sections (overlap)
 - Both neighbor and interaction list overlaps
 - Sieve generates MPI from high level description

M. Knepley (UC) GPU SSC 65/76

How should we distribute trees?

- Multiple local trees per process allows good load balance
- Partition weighted graph
 - Minimize load imbalance and communication
 - Computation estimate:

Leaf
$$N_i p$$
 (P2M) + $n_l p^2$ (M2L) + $N_i p$ (L2P) + $3^d N_i^2$ (P2P)
Interior $n_c p^2$ (M2M) + $n_l p^2$ (M2L) + $n_c p^2$ (L2L)

Communication estimate:

```
Diagonal n_c(L-k-1)
Lateral 2^d \frac{2^{m(L-k-1)}-1}{2^m-1} for incidence dimesion m
```

- Leverage existing work on graph partitioning
 - ParMetis

M. Knepley (UC) SSC 66/76

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms for parallel adaptive N-body simulation, SIAM J. Sci. Comput., **19**(2), 1998.

- Good partitions exist for non-uniform distributions
 - 2D $\mathcal{O}(\sqrt{n}(\log n)^{3/2})$ edgecut
 - 3D $\mathcal{O}(n^{2/3}(\log n)^{4/3})$ edgecut
- As scalable as regular grids
- As efficient as uniform distributions
- ParMetis will find a nearly optimal partition

ロト 4回 ト 4 恵 ト 4 恵 ト ・ 恵 ・ 夕久で

Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning, Supercomputing, 1995.

- Good partitions exist for non-uniform distributions
 - 2D $C_i = 1.24^i C_0$ for random matching
 - 3D $C_i = 1.21^i C_0$?? for random matching
- 3D proof needs assurance that averge degree does not increase
- Efficient in practice

Parallel Tree Implementation Advantages

- Simplicity
- Complete serial code reuse
- Provably good performance and scalability

M. Knepley (UC) SSC 69/76

Parallel Tree Implementation Advantages

- Simplicity
- Complete serial code reuse
- Provably good performance and scalability

M. Knepley (UC) SSC 69/76

Parallel Tree Implementation Advantages

- Simplicity
- Complete serial code reuse
- Provably good performance and scalability

Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.

Here local trees are assigned to processes:

M. Knepley (UC) SSC 71/76

PetFMM Load Balance

Here local trees are assigned to processes for a spiral distribution:

Here local trees are assigned to processes for a spiral distribution:

◄□▶◀圖▶◀불▶◀불▶ 불

Here local trees are assigned to processes for a spiral distribution:

M. Knepley (UC) **GPU** SSC 73 / 76

Parallel Data Movement

- Complete neighbor section
- Upward sweep
 - Upward sweep on local trees
 - Gather to root tree
 - Upward sweep on root tree
- 3 Complete interaction list section
- Downward sweep
 - Downward sweep on root tree
 - Scatter to local trees
 - Ownward sweep on local trees

M. Knepley (UC) SSC 74/76

GPU Interaction

Since our parallelism is hierarchical

- Local (serial) tree interface is preserved
- GPU code can be reused locally without change
- Multiple GPUs per node can also be used

What's Important?

Interface improvements bring concrete benefits

- Facilitated code reuse
 - Serial code was largely reused
 - Test infrastructure completely reused
- Opportunites for performance improvement
 - Overlapping computations
 - Better task scheduling
- Expansion of capabilities
 - Could now combine distributed and multicore implementations
 - Could replace local expansions with cheaper alternatives