Parallel FMM

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

Conference on High Performance Scientific Computing
In Honor of Ahmed Sameh’s 70th Birthday
Purdue University, October 11, 2010

47\ RUSH UNIVERSITY
\l/ MEDICAL CENTER

M. Knepley (UC) SC Sameh’10 1/87

Using estimates and proofs,

Sameh '10 2/87

Using estimates and proofs,

a simple software architecture,

Using estimates and proofs,

a simple software architecture,
gets good scaling, efficiency,
and adaptive load balance.

Sameh '10 2/37

Collaborators

The PetFMM team:

@ Prof. Lorena Barba
o Dept. of Mechanical Engineering, Boston University

@ Dr. Felipe Cruz, developer of GPU extension
o Nagasaki Advanced Computing Center, Nagasaki University

@ Dr. Rio Yokota, developer of 3D extension
o Dept. of Mechanical Engineering, Boston University

M. Knepley (UC) SC Sameh '10 3/37

http://bitbucket.org/petfmm/petfmm-dev
http://barbagroup.bu.edu/Barba_group/Home.html
http://www.bu.edu/pasi/courses/gpu-computing-and-programming/
http://www.maths.bris.ac.uk/~maxry/

Collaborators

Chicago Automated Scientific Computing Group:

@ Prof. Ridgway Scott

o Dept. of Computer Science, University of Chicago
o Dept. of Mathematics, University of Chicago

@ Peter Brune, (biological DFT)
o Dept. of Computer Science, University of Chicago

@ Dr. Andy Terrel, (Rheagen)
o Dept. of Computer Science and TACC, University of Texas at Austin

M. Knepley (UC) SC Sameh '10 4/37

http://www.cs.uchicago.edu/~ridg
http://www.cs.uchicago.edu/~brune
http://andy.terrel.us/Professional/index.html

Complementary Work

Outline

° Complementary Work

M. Knepley (UC) SC Sameh 10 5/37

Complementary Work
FMM Work

@ Queue-based hybrid execution
o OpenMP for multicore processors

o CUDA for GPUs

@ Adaptive hybrid Treecode-FMM
e Treecode competitive only for very low accuracy

e Very high flop rates for treecode M2P operation

@ Computation/Communication Overlap FMM
e Provably scalable formulation

o Overlap P2P with M2L

M. Knepley (UC) SC Sameh '10 6/37

Short Introduction to FMM
Outline

9 Short Introduction to FMM

M. Knepley (UC) SC Sameh 10 7137

Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity

M. Knepley (UC) SC Sameh '10 8/37

Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement

M. Knepley (UC) SC Sameh '10 8/37

Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x) =D K(xi,x)q(x) (1)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) SC Sameh '10 9/37

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) SC Sameh '10 9/37

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM
Spatial Decomposition

Pairs of boxes are divided into near and far:

M. Knepley (UC) SC Sameh '10 10/37

Short Introduction to FMM

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.

M. Knepley (UC) SC Sameh’10 10/37

Short Introduction to FMM

Functional Decomposition

Upward Sweep

(.. (}&O) Create Multipole Expansions Evaluate Local Expansions.
SNV

—> P2M —> M2M ----> M2L ----> L2L ----> L2P

M. Knepley (UC) SC Sameh '10 11/37

Parallelism

Outline

e Parallelism

M. Knepley (UC) SC Sameh '10 12/37

Parallelism
FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations

M. Knepley (UC) SC Sameh '10 13/37

Parallelism
FMM in Sieve

o | o | o | o | | o @ The Quadtree is a Sieve

| o o | e | | -| e with optimized operations

o | | e | o @ Multipoles are stored in sections
| o | | | |

o | | | |

|| e e {

o | | o e | o

o o | o |

M. Knepley (UC) SC Sameh '10 13/37

FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations

@ Multipoles are stored in sections
@ Two Overlaps are defined

SC Sameh '10 13/37

FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o

M. Knepley (UC) SC Sameh '10 13/37

FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

SC Sameh '10 13/37

FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for
o Neighbors

SC Sameh '10 13/37

FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List

SC Sameh '10 13/37

Parallelism

FMM Control Flow

Upward Sweep 5 Downward Sweep i
' '

<.. {}x{\> Create Multipole Expansions Evaluate Local Expansions. i
—> P2M —> M2M ----> M2L ----> L2L ----> L2P

Kernel operations will map to GPU tasks.

M. Knepley (UC) SC Sameh '10 14/37

Parallelism

FMM Control Flow

Parallel Operation

<«——» M2M and L2L translations <«---p MLtransformation e Local domain

Root tree

Level k

Sub-tree 1 Sub-tree 2 Sub-tree 3 Sub-tree 4 Sub-tree 5 Sub-tree 6 Sub-tree 7 Sub-tree 8

Kernel operations will map to GPU tasks.

M. Knepley (UC) SC Sameh '10 14/37

Parallelism
Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description

M. Knepley (UC) SC Sameh '10 15/37

Parallelism

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + nip? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis

M. Knepley (UC) SC Sameh '10 16/37

http://www.cs.umn.edu/parmetis

Parallelism

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/?) edgecut
3D O (n?/3(log n)*) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition

M. Knepley (UC) SC Sameh '10 17/37

http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842

Parallelism

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice

M. Knepley (UC) SC Sameh '10 18/37

http://glaros.dtc.umn.edu/gkhome/node/79
http://glaros.dtc.umn.edu/gkhome/node/79

Parallelism

Parallel Tree Implementation

Advantages

e Simplicity

M. Knepley (UC) SC Sameh '10 19/37

Parallelism

Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse

M. Knepley (UC) SC Sameh '10 19/37

Parallelism

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability

M. Knepley (UC) SC Sameh '10 19/37

Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.
M. Knepley (UC) SC Sameh '10 20/37

£
8
°©
S
©
s

istribution
Here local trees are assigned to processes:

Local Tree D

hhhhhhhhhhhhhhhhhHh

hhhhhhhhhhhhhhhhHh

21/87

SC Sameh 10

M. Knepley (UC)

Parallelism
Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees

M. Knepley (UC) SC Sameh '10 22/37

Parallelism

PetFMM Load Balance

0.8

NG
'\“\“/.

0.2
uniform 4ML8R5 —8—
uniform 10ML9R5 —e—
spiral IML8R5 —x—
0 ‘ spiral w/space-filling IML8RS —=—
2 4 8 16 32 64 128 256

M. Knepley (UC) Sameh '10

24 /37

Sameh 10

(b) 4 cores

£
=
°
s
<4
a

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

(a) 2 cores

o
2
>
2
[o%
@
C
=
=

Here local trees are assigned to processes for a spiral distribution

£
=
°
s
<4
a

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

Here local trees are assigned to processes for a spiral distribution:

aaaaaal
aaaaaal

Kkkkkkkkaaa

NESESTESE |

|

kkkkkkkkkaaaaa

(d) 16 cores

(c) 8 cores

24/37

SC Sameh 10

M. Knepley (UC)

£
=
°
s
<4
a

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

Here local trees are assigned to processes for a spiral distribution:

(f) 64 cores

(e) 32 cores

24/37

SC Sameh 10

M. Knepley (UC)

What Changes on a GPU?

Outline

e What Changes on a GPU?

M. Knepley (UC) SC Sameh '10 25/37

What Changes on a GPU?

Multipole-to-Local Transformation

Re-expands a multipole series as a Taylor series

@ Up to 85% of time in FMM

e Tradeoff with direct
interaction

@ Dense matrix multiplication
e 2p® rows
@ Each interaction list box
o (69 —39)2d
ed=2L=28
e 1,769,472 matvecs

M. Knepley (UC) SC Sameh’10 26/37

What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

M. Knepley (UC) SC Sameh '10 27/37

What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

M. Knepley (UC) SC Sameh '10 27/37

What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12
@ Matrix size is 2304 bytes

M. Knepley (UC) SC Sameh '10

27/37

What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12
@ Matrix size is 2304 bytes
@ Plenty of work per thread (81 Kflops or 36 flops/byte)

M. Knepley (UC) SC Sameh '10

27/37

What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

@ Matrix size is 2304 bytes

@ Plenty of work per thread (81 Kflops or 36 flops/byte)
@ BUT, 16K shared memory only holds 7 matrices

M. Knepley (UC) SC Sameh '10

27/37

What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

@ Matrix size is 2304 bytes

@ Plenty of work per thread (81 Kflops or 36 flops/byte)
@ BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) SC Sameh '10

27/37

What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

M. Knepley (UC) SC Sameh '10 28/37

What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals
@ Same work

M. Knepley (UC) SC Sameh '10 28/37

What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2l; = —1"<’ Jj”) it)

@ Traverse matrix by perdiagonals
@ Same work
@ No memory limit on concurrency

M. Knepley (UC) SC Sameh '10 28/37

What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)

M. Knepley (UC) SC Sameh '10 28/37

What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

M. Knepley (UC) SC Sameh '10 28/37

What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

Algorithm limits concurrency!

M. Knepley (UC) SC Sameh '10 28/37

What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = —1' <’ er/) i1)

Additional problems: Not enough parallelism for data movement
@ Move 27 LE to global memory per TB
@ 27 x 2p = 648 floats
@ With 32 threads, takes 21 memory transactions

M. Knepley (UC) SC Sameh '10 28/37

What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 <))t (3)

@ Each thread does a dot product

M2L =

M. Knepley (UC) SC Sameh '10 29/37

What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
o qi T+ it
m2l; = —1 <))t (3)

@ Each thread does a dot product

@ Cannot use diagonal traversal, more work —r i

M. Knepley (UC) SC Sameh '10 29/37

What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 <))t (3)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching

e Each row precomputes ¢t~ '
e All threads loop to p + 1, only store ¢~/

M2L =

M. Knepley (UC) SC Sameh '10 29/37

What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 <))t (3)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching

e Each row precomputes ¢t~ '
e All threads loop to p + 1, only store ¢~/

@ Loop unrolling

M2L =

M. Knepley (UC) SC Sameh '10 29/37

What Changes on a GPU?

GPU M2L

Version 2

One thread per element of the LE

m2l; = —1"<' Jj”) it 3)

Each thread does a dot product

Cannot use diagonal traversal, more work

Avoid branching
o Each row precomputes t—/~ 15x Speedup of

e All threads loop to p + 1, only store t=-' Downward Sweep
Loop unrolling
No thread synchronization

300 GFlops

M. Knepley (UC) SC Sameh '10 29/37

What Changes on a GPU?

GPU M2L

Version 2

One thread per element of the LE

m2l; = —1"<' Jj”) it 3)

Each thread does a dot product

Cannot use diagonal traversal, more work

Avoid branching
o Each row precomputes t—/~ 15x Speedup of

e All threads loop to p + 1, only store t=-' Downward Sweep
Loop unrolling
No thread synchronization

Examine memory access

300 GFlops

M. Knepley (UC) SC Sameh '10 29/37

What Changes on a GPU?

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU | GPU
Bus Width (bits) 64 | 512

Bus Clock Speed (MHz) 400 | 1600
Memory Bandwidth (GB/s) 3] 102
Latency (cycles) 240 | 600

Tesla always accesses blocks of 64 or 128 bytes

M. Knepley (UC) SC Sameh '10 30/37

What Changes on a GPU?

GPU M2L

Version 3

Coalesce and Overlap memaory accesses
Coalescing is
@ a group of 16 threads
@ accessing consective addresses
@ 4,8, or 16 bytes
@ in the same block of memory
e 32, 64, or 128 bytes

M. Knepley (UC) SC Sameh '10 31/37

What Changes on a GPU?

GPU M2L

Version 3

Coalesce and overlap memory accesses
Memory accesses can be overlapped with
computation when

@ a TBis waiting for data from main memory
@ another TB can be scheduled on the SM

@ 512 TB can be active at once on Tesla

M. Knepley (UC) SC

Sameh 10

31/37

What Changes on a GPU?

GPU M2L

Version 3

Coalesce and overlap memory accesses
Note that the theoretical peak (1 TF)

@ MULT and FMA must execute simultaneously

480 GFlops
@ 346 GOps
25x Speedup of
@ Without this, peak can be closer to 600 GF Dovenwarg
Sweep

M. Knepley (UC) SC Sameh '10 31/37

What Changes on a GPU?
Design Principles

M2L required all of these optimization steps:
@ Many threads per kernel

@ Avoid branching
@ Unroll loops
@ Coalesce memory accesses

@ Overlap main memory access with computation

M. Knepley (UC) SC Sameh '10 32/37

PetFMM
Outline

© PetFMmM

M. Knepley (UC) SC Sameh '10 33/37

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
o Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation

M. Knepley (UC) SC Sameh '10 34/37

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract

PetFMM

PetFMM CPU Performance

Strong Scaling

256

128

Speedup

./ uniform 4ML8R5 —&—
s uniform 10ML9R5 —e—

2 ¥ spiral IMLBR5 —>»— |
spiral w/ space-filling IML8R5 —&—
1)) Perfect Speedup - - - - -
2 4 8 16 32 64 128 256

M. Knepley (UC) SC Sameh '10 35/37

PetFMM

PetFMM CPU Performance

Strong Scaling

Evaluation —+—

10° ; ; ;
ME Initialization —»—
\E Upward Sweep —%—
\:Q Downward Sweep —o—

Load balancing stage —e—

10 :’i(Total time —8—
\\
@ N \
E T~ -
= 10° —
\ \
101 3
/ \s
10 ‘2 4 8 16 32 64 128 256

M. Knepley (UC) SC Sameh '10 35/37

Largest Calculation With Development Code

@ 10,648 randomly oriented lysozyme molecules
@ 102,486 boundary elements/molecule

@ More than 1 billion unknowns

@ 1 minute on 512 GPUs

M. Knepley (UC) SC Sameh’10 36/37

Largest Calculation With Development Code

@ 10,648 randomly oriented lysozyme molecules
@ 102,486 boundary elements/molecule

@ More than 1 billion unknowns

@ 1 minute on 512 GPUs

M. Knepley (UC) SC Sameh’10 36/37

What do we need for Parallel FMM?

o Urgent need for reduction in complexity

o Complete serial code reuse
o Modeling integral to optimization

o Unstructured communication

o Uses optimization to automatically generate
o Provided by ParMetis and PETSc

o Massive concurrency is necessary

o Mix of vector and thread paradigms
o Demands new analysis

M. Knepley (UC) SC Sameh '10 37/37

	Complementary Work
	Short Introduction to FMM
	Parallelism
	What Changes on a GPU?
	PetFMM

