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Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
Infrastructure.
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Why Scientific Libraries?

Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

Success
e MPI (Library Approach)
e PETSc (Parallel Linear Algebra)
e User provides only the mathematical description
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o Why Scientific Libraries?
@ What is PETSc?
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Why Scientific Libraries? What is PETSc?

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free

e Download from http://www.petsc.org
o Free for everyone, including industrial users

Supported

e Hyperlinked manual, examples, and manual pages for all routines
@ Hundreds of tutorial-style examples
@ Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python
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Why Scientific Libraries? What is PETSc?

What is PETSc?

@ Portable to any parallel system supporting MPI, including:
o Tightly coupled systems
@ Cray XT6, BG/Q, NVIDIA Fermi, K Computer
o Loosely coupled systems, such as networks of workstations
@ IBM, Mac, iPad/iPhone, PCs running Linux or Windows
@ PETSc History
e Begun September 1991
@ Over 60,000 downloads since 1995 (version 2)
o Currently 400 per month
@ PETSc Funding and Support
o Department of Energy
o ECP, PSAAPIIl, AMR, BES, SciDAC, MICS
o National Science Foundation
e CSSI, SI2, CIG, CISE
o Intel Parallel Computing Center
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Why Scientific Libraries? What is PETSc?
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Why Scientific Libraries? What is PETSc?

Who Uses PETSc?

Computational Scientists

e Earth Science

PyLith (CIG)

e Underworld (Monash)

e Salvus (ETHZ)

o TerraFERMA (LDEO, Columbia, Oxford)

e Multiphysics
o MOOSE
o GRINS

e Subsurface Flow and Porous Media

o PFLOTRAN (DOE)
o STOMP (DOE)
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http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
https://salvus.io/
http://terraferma.github.io/
http://mooseframework.org/
https://grinsfem.github.io/
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Why Scientific Libraries? What is PETSc?

Who Uses PETSc?

Computational Scientists

e CFD
e IBAMR
o Fluidity
e OpenFVM

e Fusion

e XGC

e BOUT++

e NIMROD

e M3D—C'
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https://github.com/IBAMR/IBAMR
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity
http://openfvm.sourceforge.net/
http://w3.physics.lehigh.edu/~xgc/
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https://w3.pppl.gov/~nferraro/m3dc1.html

Why Scientific Libraries? What is PETSc?

Who Uses PETSc?

Algorithm Developers

e lterative methods
o Deflated GMRES
o LGMRES
e QCG
o SpecEst

e Preconditioning researchers
e FETI-DP (Klawonn and Rheinbach)
o STRUMPACK (Ghysels and Li)
e HPDDM (Jolivet and Nataf)
e ParPre (Eijkhout)
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http://www.uni-due.de/numerik/klawonn.shtml
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach/kontakt
https://github.com/pghysels/STRUMPACK
https://github.com/hpddm/hpddm
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/
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Who Uses PETSc?

Algorithm Developers

e Discretization
Firedrake
FENiCS
libMesh

Deal Il
PETSc-FEM
OOFEM
PetRBF

e Outer Loop Solvers

e Eigensolvers (SLEPc)
@ Optimization (PERMON)
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http://firedrakeproject.org/
http://fenicsproject.org/
http://libmesh.sourceforge.net/
http://www.dealii.org/
http://www.cimec.org.ar/petscfem
http://www.oofem.org/
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Why Scientific Libraries? What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media
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Why Scientific Libraries? What is PETSc?

What Can We Handle?

@ PETSc has run implicit problems with over 500 billion unknowns

e UNIC on BG/P and XT5
o PFLOTRAN for flow in porous media

@ PETSc has run on over 1,500,000 cores efficiently
e Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

@ PETSc applications have run at 23% of peak (600 Teraflops)

@ Jed Brown on NERSC Edison
o HPGMG code
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Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?
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Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral APl (Smith and Gropp, 1996)

How should the library interact with
manycore systems?
@ Existing library APIs
@ Code generation (CUDA, OpenCL, PyCUDA)
@ Custom multi-language extensions
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@ Linear Systems are Easy
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Linear Systems are Easy

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
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Linear Systems are Easy
Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra Finite Elements
@ One universal interface @ Many Interfaces
e BLAS, PETSc, Trilinos, e FEniCS, FreeFEM++, DUNE,
FLAME, Elemental dealll, Fluent
@ Entire problem can be @ Problem definition requires
phrased in the interface general code
o Ax=0>b e Physics, boundary conditions
@ Standalone component @ Crucial interaction with other

simulation components
e Discretization, mesh/geometry

M. Knepley (UC) GPU GPU-SMP 18/38



PETSc-GPU

PETSc now has support for Krylov solves on the GPU

@ —-with-cuda=1 -with-cusp=1 -with-thrust=1
o Also possibly ~-with-precision=single
@ New classes VECCUDA and MATATIJCUDA
e Just change type on command line, -vec_type veccuda

@ Uses Thrust and Cusp libraries from Nvidia guys
@ Does not communicate vectors during solve
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http://code.google.com/p/thrust
http://code.google.com/p/cusp-library

Linear Systems are Easy

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp

—-da_mat_type aijcusp -mat_no_inode

-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

M. Knepley (UC)

Setup types
Set grid size
Setup solver
Setup run

GPU-SMP
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Linear Systems are Easy

Example

PFLOTRAN

Flow Solver S s 005 025 043 05 038
32 x 32 x 32 grid

Routine | Time (s) | MFlops | MFlops/s

CPU

KSPSolve | 8.3167 4370 526

MatMult 1.5031 769 512 e
KSPSolve 1.6382 4500 2745 | P Lichtner, G. Hammond,
MatMult 0.3554 830 2337 | R. Mills, B. Phillip
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Finite Element Integration
Outline

e Finite Element Integration
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Finite Element Integration
Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 Véi(x) - Vj(x)dx (1)
= - 32;(()() dg;j(x )dx @)
= JnatBa ‘93; |J|dx 3)
= ol [ 20O gy @
= G&Y(T)K& (5)

Coefficients are also put into the geometric part.
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Finite Element Integration
Tensor Product Formulation

FENICS based code achieves

90 GF/s on 3D P; Laplacian
100 GF/s on 2D P4 Elasticity

@ Relies on analytic integration
@ Dot products are workhorse

@ Crossover point with quadrature with multiple fields

Finite Element Integration on GPUs, ACM TOMS, Andy R. Terrel and Matthew G. Knepley
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http://www.fenicsproject.org
http://arxiv.org/abs/1103.0066

Finite Element Integration

Why Quadrature?

Quadrature can handle

@ many fields (linearization)
@ non-affine elements (Argyris)
@ non-affine mappings (isoparametric)

@ functions not in the FEM space

Optimizations for Quadrature Representations of Finite Element Tensors through Automated
Code Generation, ACM TOMS, Kristian B. @lgaard and Garth N. Wells
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http://arxiv.org/abs/1104.0199
http://arxiv.org/abs/1104.0199

Finite Element Integration
Jed Brown’s Model

We consider weak forms dependent only on fields and gradients,
/ ¢ fh(u,Vu)+ Vo :fi(u,Vu)=0. (6)
Q
Discretizing we have

>o&d [Bqufo(uq,qu)+ZD[ W9, vud)| =0  (7)
e k

fn pointwise physics functions

ug  field at a quad point

W49  diagonal matrix of quad weights

B,D basis function matrices which
reduce over quad points

& assembly operator
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Finite Element Integration

Physics code

V- Vu
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Finite Element Integration

Physics code

V- Vu

__device__ vecType f1(realType u[], vecType gradU[], int comp) ({
return gradU[comp];

}
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Finite Element Integration
Physics code

Vi - (Vu+vuT)
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Finite Element Integration

Physics code

Vi - (Vu+vuT)

__device__ vecType f1(realType u[], vecType gradU[], int comp) ({

vecType f1;

switch (comp) {

case O0:
f1.x = 0.5«(gradU[0].x + gradU[0].x);
fi.y = 0.5«(gradU[0].y + gradU[1].x);
break;

case 1:
f1.x = 0.5+(gradU[1].x + gradU[0].y);
fi.y = 0.5«(gradU[1].y + gradU[1].y);

return f1;
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Finite Element Integration

Physics code

Vi Vu+ ¢ik?u
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Finite Element Integration

Physics code

}

}

Vi Vu+ ¢ik?u

device__ vecType f1(realType u[], vecType gradU[], int comp) {
return gradU[comp];

device__ realType fO(realType u[], vecType gradU[], int comp) {
return k«k+u[0];
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Finite Element Integration
Physics code

Vi Vu— (V- ¢)p
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Finite Element Integration

Physics code

Vi Vu— (V- ¢)p

void f1 (PetscScalar u[], const PetscScalar gradU[], PetscScalar f1[]) {
const Petscint dim SPATIAL_DIM _0;
const Petscint Ncomp = NUM_BASIS COMPONENTS 0;
Petscint comp, d;

QI

for(comp = 0; comp < Ncomp; ++comp) {
for(d = 0; d < dim; ++d) {
f1 [compxdim+d] = gradU[compxdim+d];

f1 [comp=dim+comp] —-= u[Ncomp];
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Finite Element Integration
Physics code

Vi voe TVu— (V- ¢)p
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Finite Element Integration

Physics code

Vi voe TVu— (V- ¢)p

void f1 (PetscScalar u[], const PetscScalar gradU[], PetscScalar f1[]) {
const Petscint dim SPATIAL_DIM 0;
const Petscint Ncomp = NUM_BASIS COMPONENTS 0;
Petscint comp, d;

[o N |

for(comp = 0; comp < Ncomp; ++comp) {
for(d = 0; d < dim; ++d) {
f1 [comp+dim+d] = nu_O=+exp(-beta+u[Ncomp+1])+gradU[comp=dim+d];

f1 [comp=dim+comp] —-= u[Ncomp];
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Finite Element Integration
Why Not Quadrature?

Vectorization is a Problem

Strategy Problem
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Finite Element Integration
Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for Too many passes through global
each Quad Point memory

Vectorize over Basis Coef Some threads idle when sizes
and Quad Points are different
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Finite Element Integration

Thread Transposition

Evaluate basis and process
values at quadrature points

Map values at quadrature P R
- |
points to coefficients -7 il o fo)] !
———————————————— - |
L — — | !
t t
'n m (A | oo
| | — -/
| | PR
B t A ‘ ‘
1 \, \, \/ 3, Continue with kernel | 3
|
e e e U | I
| 1 ; |
I ! | -/
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|
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Finite Element Integration
PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh

element == FIAT ==> Tabulation

fn == Generic Evaluation ==> Residual
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Finite Element Integration
PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen  ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual
@ Loops are done in batches
@ Remainder cells are integrated on the CPU
@ PETSc ex52 is a single-field example
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PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields

@ Retain sparsity of the Jacobian
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PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields
@ Retain sparsity of the Jacobian

Solver integration is seamless:
@ Nested Block preconditioners from the command line

@ Segregated KKT MG smoothers from the command line

@ Fully composable with AMG, LU, Schur complement, etc.
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PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
@ Reuse single-field code

@ \ectorize over cells, rather than fields
@ Retain sparsity of the Jacobian

Solver integration is seamless:
@ Nested Block preconditioners from the command line

@ Segregated KKT MG smoothers from the command line

@ Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature
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Finite Element Integration

Performance Expectations

Element Integration

FEM Integration, at the element level,
is also limited by memory bandwidth,
rather than by peak flop rate.

@ We expect bandwidth ratio speedup (3x—6x for most systems)
@ Input for FEM is a vector of coefficients (auxiliary fields)

@ Output is a vector of coefficients for the residual
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Finite Element Integration

2D P; Laplacian Performance

300 Performance on SNES Example 52 - NVIDIA GTX 580

250

200

—

o

o
T

Computation Rate (GF/s)
=
w
o

= blockExp 3 |
== blockExp 4
50 L === blockExp 5 (]
== blockExp 6
m— blockExp 7

o 200000 400000 600000 800000 1000000 1200000
Number of Dof

Reaches 100 GF/s by 100K elements
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Finite Element Integration

2D P; Laplacian Performance

Performance on SNES Example 52

0.09 : T T T .
—— GPU-16 IntegBatchCPU
008F CPU-16 IntegBatchCPU
—— GPU-16 IntegBatchGPU
0.07 — GPU-16 IntegGPUONIy
0.06 |-
% 0.05F
u
E
= 0.04
0.03f
0.02}
0.01f
0.00 L=
0 50000 100000 150000 200000 250000 300000

Number of Dof

Linear scaling for both GPU and CPU integration
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Finite Element Integration

2D P, Rate-of-Strain Performance

CPUVs. GPU Flop Rate for 2D P, Lagrange ['Elasticity’]

Interleave Stores = 1

100000 Loop Unrolling = full

80000
i
£ 60000
B
- NVIDIA bs64 cel is unroll
40000 — NVIDIA bs64 ce2 is unroll
NVIDIA bs64 ced is unroll
NVIDIA bs128 cel is unroll
NVIDIA bs128 ce2 is unroll
20000

NVIDIA bs128 ce4 is unroll
NVIDIA bs256 cel is unroll
NVIDIA bs256 ce2 is unroll
NVIDIA bs256 ce4 is unroll

150000 200000

50000 100000
Number of Elements.

Reaches 100 GF/s by 100K elements
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Future Direction

Outline

e Future Direction
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Future Direction

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
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Future Direction

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
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Future Direction
Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
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Future Direction
Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization
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Future Direction
Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation TBB+C++ Templates
@ Explicit vectorization @ Implicit vectorization
@ Can inspect/optimize code @ Generated code is hidden
@ Errors easily localized @ Notoriously difficult debugging
@ Can use high-level reasoning @ Low-level compiler-type
for optimization (FErari) optimization
@ Kernel fusion is easy @ Kernel fusion is really hard
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