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Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs,

and mathematics of the computation,

is

Distilled into
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What is PETSc?
PETSc is one of the most popular software

libraries in scientific computing.

As a principal architect since 2001, I developed
unstructured meshes (model, algorithms, implementation),

nonlinear preconditioning (model, algorithms),

FEM discretizations (data structures, solvers optimization),

optimizations for multicore and GPU architectures.
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What is PETSc?
Knepley, Karpeev, Sci. Prog., 2009. Brune, Knepley, Scott, SISC, 2013.
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What is PETSc?
Brune, Knepley, Smith, and Tu, SIAM Review, 2015.

Type Sym Statement Abbreviation
Additive + x⃗ + α(M(F , x⃗ , b⃗)− x⃗) M+N

+ β(N (F , x⃗ , b⃗)− x⃗)
Multiplicative ∗ M(F ,N (F , x⃗ , b⃗), b⃗) M∗N
Left Prec. −L M(x⃗ −N (F , x⃗ , b⃗), x⃗ , b⃗) M−L N
Right Prec. −R M(F(N (F , x⃗ , b⃗)), x⃗ , b⃗) M−R N
Inner Lin. Inv. \ y⃗ = J⃗(x⃗)−1r⃗(x⃗) = K(J⃗(x⃗), y⃗0, b⃗) N\K

As a principal architect since 2001, I developed
unstructured meshes (model, algorithms, implementation),

nonlinear preconditioning (model, algorithms),

FEM discretizations (data structures, solvers optimization),

optimizations for multicore and GPU architectures.
M. Knepley (CAAM) MGK UH 4 / 44



What is PETSc?
Aagaard, Knepley, and Williams, J. of Geophysical Research, 2013.

As a principal architect since 2001, I developed
unstructured meshes (model, algorithms, implementation),

nonlinear preconditioning (model, algorithms),

FEM discretizations (data structures, solvers optimization),

optimizations for multicore and GPU architectures.
M. Knepley (CAAM) MGK UH 4 / 44



What is PETSc?
Knepley and Terrel, Transactions on Mathematical Software, 2012.
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PETSc
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Bioelectrostatics

Outline

1 Bioelectrostatics

2 Approximate Operators
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4 Future Directions
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Bioelectrostatics

Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Bioelectrostatics

Bioelectrostatics
Physical Model

Electrostatic Potential ϕ

Region II: solvent
Region I: protein

Surface
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Bioelectrostatics

Bioelectrostatics
Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced
surface charge σ,

σ(⃗r) + ϵ̂

∫
Γ

∂

∂n(⃗r)
σ(⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
= −ϵ̂

Q∑
k=1

∂

∂n(⃗r)
qk

4π||⃗r − r⃗k ||

(I + ϵ̂D∗)σ(⃗r) =

where we define
ϵ̂ = 2

ϵI − ϵII
ϵI + ϵII

< 0
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Bioelectrostatics

Problem

Boundary element discretizations of the solvation
problem:

can be expensive to solve

are more accurate than required by intermediate
design iterations

M. Knepley (CAAM) MGK UH 10 / 44



Approximate Operators
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Approximate Operators

Bioelectrostatics
Mathematical Model

The reaction potential is given by

ϕR (⃗r) =
∫
Γ

σ(⃗r ′)d2r⃗ ′

4πϵ1||⃗r − r⃗ ′||
= Cσ

which defines Ges, the electrostatic part of the solvation free energy

∆Ges =
1
2

〈
q, ϕR

〉
=

1
2
⟨q,Lq⟩

=
1
2

〈
q,CA−1Bq

〉
where

Bq = −ϵ̂
∫
Ω

∂

∂n(⃗r)
q(⃗r ′)d3r⃗ ′

4π||⃗r − r⃗ ′||
Aσ = I + ϵ̂D∗
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Approximate Operators

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1 − ϵ̂

2

)
σCFA = Bq

Lower Bound:
no good physical motivation(

1 +
ϵ̂

2

)
σLB = Bq

Eigenvectors: BEM ei · ej BIBEE/P
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Approximate Operators

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1 − ϵ̂

2

)
σCFA = Bq

Preconditioning:
consider only local effects

σP = Bq

Eigenvectors: BEM ei · ej BIBEE/P

M. Knepley (CAAM) MGK UH 13 / 44



Approximate Operators

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ∆Ges has upper and
lower bounds given by

1
2

(
1 +

ϵ̂

2

)−1

⟨q,CBq⟩ ≤ 1
2

〈
q,CA−1Bq

〉
≤ 1

2

(
1 − ϵ̂

2

)−1

⟨q,CBq⟩ ,

and for spheres and prolate spheroids, we have the improved lower
bound,

1
2
⟨q,CBq⟩ ≤ 1

2

〈
q,CA−1Bq

〉
,

and we note that
|ϵ̂| < 1

2
.
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Approximate Operators

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

Replace C with B

Symmetrization

Eigendecomposition
shown in the following slides.

We will need the single layer operator S for step 1,

Sτ (⃗r) =
∫

τ (⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||

M. Knepley (CAAM) MGK UH 15 / 44



Approximate Operators

Energy Bounds: First Step
Replace C with B

The potential at the boundary Γ given by

ϕCoulomb (⃗r) = CT q

can also be obtained by solving an exterior Neumann problem for τ ,

ϕCoulomb (⃗r) = Sτ

= S(I − 2D∗)−1(
2
ϵ̂

Bq)

=
2
ϵ̂
S(I − 2D∗)−1Bq

so that the solvation energy is given by

1
2

〈
q,CA−1Bq

〉
=

1
ϵ̂

〈
S(I − 2D∗)−1Bq, (I + ϵ̂D∗)−1Bq

〉
M. Knepley (CAAM) MGK UH 16 / 44



Approximate Operators

Energy Bounds: Second Step
Quasi-Hermiticity

Plemelj’s symmetrization principle holds that

SD∗ = DS

and we have
S = S1/2S1/2

which means that we can define a Hermitian operator H similar to D∗

H = S1/2D∗S−1/2

leading to an energy

1
2

〈
q,CA−1Bq

〉
=

1
ϵ̂

〈
Bq,S1/2(I − 2H)−1(I + ϵ̂H)−1S1/2Bq

〉

M. Knepley (CAAM) MGK UH 17 / 44
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Approximate Operators

Energy Bounds: Third Step
Eigendecomposition

The spectrum of D∗ is in [−1
2 ,

1
2), and the energy is

1
2

〈
q,CA−1Bq

〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1 (1 + ϵ̂λi)
−1 x2

i

where
H = VΛV T

and
x⃗ = V TS1/2Bq

M. Knepley (CAAM) MGK UH 18 / 44



Approximate Operators

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1
2

〈
q,CA−1

CFABq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 − ϵ̂

2

)−1

x2
i

1
2

〈
q,CA−1

P Bq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1 x2
i

1
2

〈
q,CA−1

LB Bq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 +
ϵ̂

2

)−1

x2
i

where we note that
|ϵ̂| < 1

2
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Approximate Operators

BIBEE Accuracy
Electrostatic solvation free energies of met-enkephalin structures

BEM, GBMV, SGB/CFA, BIBEE/CFA, and BIBEE/P. Figure
3!a" is a plot of the eigenvalues of the calculated matrices.
The SGB/CFA eigenvalues are slightly more accurate than
the BIBEE/CFA eigenvalues for the dominant eigenmodes
but less accurate for the smaller eigenmodes. Of the four
electrostatic approximations, the GBMV method appears to
provide the most accurate eigenvalue estimates. As noted
previously, BIBEE/CFA is most accurate for the largest-
magnitude eigenvalues and the BIBEE/P method offers the
best fidelity to BEM for the smallest eigenvalues.38

It is important that methods for estimating electrostatic
interactions calculate not only an accurate total free energy
but also preserve the energetics of interaction between
chemical groups. To analyze how different methods preserve
pairwise interactions with respect to the BEM calculations,
we project the eigenvectors of the approximate reaction-
potential matrices onto the eigenvectors of the reaction-
potential matrix from BEM. For example, the !i , j" entry of
the matrix

VBEM
T VSGB/CFA !33"

represents the projection of the jth eigenvector of the SGB/
CFA reaction-potential matrix onto the jth eigenvector of the
BEM reaction-potential matrix. In this projection framework,
perfect preservation of the pairwise interactions would give
rise to a diagonal matrix with diagonal entries of unit mag-
nitude. Conversely, if a method imperfectly reproduces pair-
wise interactions, the off-diagonal entries are nonzero. The
degree to which the approximate-method eigenvectors align
with the actual eigenvectors can then be assessed visually
using a heat map; Figs. 4–6 are plots of the projections of the
SGB/CFA, GBMV, and BIBEE/P eigenvectors onto the
eigenvectors of the BEM reaction-potential matrix.38 We be-
lieve that discrepancies between the BIBEE and BEM eigen-
vectors may be a result of discretizing the integral equation
for simulation using BEM.72 However, the various BIBEE
methods give rise to essentially identical eigenvectors !data
not shown", which is expected given that the diagonal ap-
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FIG. 1. !Color online" Comparison of electrostatic solvation free energies using met-enkephalin structures taken from a 500-ps MD simulation plotted as time
series; snapshots have been taken at 10-ps intervals. Energies are in kcal/mol. !a" All estimates are plotted. !b" BIBEE/LB has been omitted for clarity.
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FIG. 2. !Color online" Comparison of estimated electrostatic solvation free
energies using met-enkephalin structures taken from a 500-ps MD simula-
tion plotted as a scatter plot against energies calculated using BEM. Ener-
gies are in kcal/mol.
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FIG. 3. !Color" Eigenvalues of the reaction-potential matrices computed
from the final met-enkephalin structure using BEM, BIBEE/CFA, BIBEE/P,
GBMV, and SGB/CFA methods.

104108-5 Bounding electrostatic free energies J. Chem. Phys. 130, 104108 !2009"

Downloaded 11 Mar 2009 to 18.51.1.222. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.
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Approximate Operators

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:

Gij
es =

1
8π

(
1
ϵII

− 1
ϵI

) N∑
i,j

qiqj

r2
ij + RiRje

−r2
ij /4Ri Rj

where the effective Born radius is

Ri =
1

8π

(
1
ϵII

− 1
ϵI

)
1
Ei

where Ei is the self-energy of the charge qi , the electrostatic energy
when atom i has unit charge and all others are neutral.

M. Knepley (CAAM) MGK UH 21 / 44



Approximate Operators

Crowded Protein Solution

Important for drug design of antibody therapies
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Approximate Operators

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.
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Approximate Boundary Conditions
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Approximate Boundary Conditions

Bioelectrostatics
Physical Model

Electrostatic Potential ϕ

Region II: solvent
Region I: protein

Surface
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Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The potential inside Region I is given by

ΦI =
Q∑

k=1

qk

ϵ1
∣∣⃗r − r⃗k

∣∣ + ψ,

and the potential in Region II is given by

ΦII =
∞∑

n=0

n∑
m=−n

Cnm

rn+1 Pm
n (cos θ)eimϕ.

M. Knepley (CAAM) MGK UH 26 / 44



Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The reaction potential ψ is expanded in a series

ψ =
∞∑

n=0

n∑
m=−n

BnmrnPm
n (cos θ)eimϕ.

and the source distribution is also expanded

Q∑
k=1

qk

ϵ1
∣∣⃗r − r⃗k

∣∣ = ∞∑
n=0

n∑
m=−n

Enm

ϵ1rn+1 Pm
n (cos θ)eimϕ.

M. Knepley (CAAM) MGK UH 27 / 44



Approximate Boundary Conditions

Kirkwood’s Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

ΦI |r=b = ΦII |r=b

ϵI
∂ΦI

∂r
|r=b = ϵII

∂ΦII

∂r
|r=b

we can eliminate Cnm, and determine the reaction potential coefficients
in terms of the source distribution,

Bnm =
1

ϵIb2n+1
(ϵI − ϵII)(n + 1)
ϵIn + ϵII(n + 1)

Enm.

M. Knepley (CAAM) MGK UH 28 / 44



Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

ACFA = I
(

1 +
ϵ̂

2

)
AP = I

have an equivalent PDE formulation,

ϵI∆ΦCFA,P =
Q∑

k=1

qkδ(⃗r − r⃗k )
ϵI
ϵII

∂ΦC
I

∂r
|r=b =

∂ΦII

∂r
− ∂ψCFA

∂r
|r=b

ϵII∆ΦCFA,P = 0 or

ΦI |r=b = ΦII |r=b
3ϵI − ϵII
ϵI + ϵII

∂ΦC
I

∂r
|r=b =

∂ΦII

∂r
− ∂ψP

∂r
|r=b,

where ΦC
1 is the Coulomb field due to interior charges.

M. Knepley (CAAM) MGK UH 29 / 44



Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral opera-
tor approximations have eigenspaces are identical to that of the original
operator.

BEM eigenvector ei · ej BIBEE/P eigenvector

M. Knepley (CAAM) MGK UH 29 / 44



Approximate Boundary Conditions

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

Start with the fundamental solution to Laplace’s equation G(r , r ′)

Note that
∫
Γ G(r , r ′)σ(r ′)dΓ satisfies the bulk equation

and decay at infinity

Insertion into the approximate BC gives the
BIBEE boundary integral approximation
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Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

Note that, for a spherical boundary,
D∗ is compact and has a pure point spectrum

Examine the effect of the operator on a
unit spherical harmonic charge distribution

Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.
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Approximate Boundary Conditions

Series Solutions

Note that the approximate solutions are separable:

Bnm =
1

ϵ1n + ϵ2(n + 1)
γnm

BCFA
nm =

1
ϵ2

1
2n + 1

γnm

BP
nm =

1
ϵ1 + ϵ2

1
n + 1

2

γnm.

If ϵI = ϵII = ϵ, both approximations are exact:

Bnm = BCFA
nm = BP

nm =
1

ϵ(2n + 1)
γnm.
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Approximate Boundary Conditions

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

B00 = BCFA
00 =

γ00

ϵ2
,

whereas BIBEE/P approaches the exact response in the limit n → ∞:

lim
n→∞

Bnm = lim
n→∞

BP
nm =

1
(ϵ1 + ϵ2)n

γnm.
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Approximate Boundary Conditions

Asymptotics

In the limit ϵ1/ϵ2 → 0,

lim
ϵ1/ϵ2→0

Bnm =
γnm

ϵ2(n + 1)

lim
ϵ1/ϵ2→0

BCFA
nm =

γnm

ϵ2(2n + 1)
,

lim
ϵ1/ϵ2→0

BP
nm =

γnm

ϵ2
(
n + 1

2

) ,
so that the approximation ratios are given by

BCFA
nm

Bnm
=

n + 1
2n + 1

,
BP

nm
Bnm

=
n + 1
n + 1

2

.
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Approximate Boundary Conditions

Improved Accuracy
BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.
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Approximate Boundary Conditions

Basis Augmentation
We examined the more complex problem of protein-ligand binding
using trypsin and bovine pancreatic trypsin inhibitor (BPTI),
using electrostatic component analysis to identify residue contributions
to binding and molecular recognition.
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Approximate Boundary Conditions

Basis Augmentation
Looking at an ensemble of synthetic proteins, we can see that
BIBEE/CFA becomes more accurate as the monopole moment
increases, and BIBEE/P more accurate as it decreases. BIBEE/I is
accurate for spheres, but must be extended for ellipses.
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Approximate Boundary Conditions

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the
octopole, to recover 5% accuracy for all synthetic proteins tested.
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Approximate Boundary Conditions

Resolution

Boundary element discretizations of the solvation
problem:

can be expensive to solve
Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

are more accurate than required by intermediate
design iterations

Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Kreienkamp, et al., Molecular-Based
Mathematical Biology, 2013

M. Knepley (CAAM) MGK UH 39 / 44
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Future Directions

Outline

1 Bioelectrostatics

2 Approximate Operators

3 Approximate Boundary Conditions

4 Future Directions
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Future Directions

More Physics

New Phenomena:

Charge–Hydration Asymmetry
Solute–Solvent Interface Potential
Solvent Thermodynamics

New Model:

Nonlinear Boundary Condition
Static Solvation Potential
Solvation Layer Interface Condition (SLIC)
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Future Directions

More Physics

Predicting Solvation
Free Energies and Thermodynamics in

Polar Solvents and Mixtures using a
Solvation-Layer Interface Condition,

Tabrizi et.al., JCP 146(9), 2017
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Future Directions

Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology

and been inspired by physical problems,
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Future Directions

Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology

and been inspired by physical problems,

Enabling Scientific Discovery
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Thank You!

http://www.caam.rice.edu/~mk51
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