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Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs,
and mathematics of the computation,
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Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs,
and mathematics of the computation, is

Distilled into
high quality numerical libraries, and

Culminates in scientific discovery.
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What is PETSc?
PETSc is one of the most popular software

libraries in scientific computing.

As a principal architect since 2001, | developed
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What is PETSc?
Knepley, Karpeev, Sci. Prog., 2009. Brune, Knepley, Scott, SISC, 2013.

As a principal architect since 2001, | developed
@ unstructured meshes (model, algorithms, implementation),
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What is PETSc?
Brune, Knepley, Smith, and Tu, SIAM Review, 2015.

Type Sym Statement Abbreviation
Additive + X+ a(M(F, X, b) - X) M+ N

+ BN(F. %, b) - %)
Multiplicative * M(F,N(F,X,b),b) M« N
Left Prec. -1 M(X—N(]-",)?, 5),)_(’,5) M— N
Right Prec. —R M(F(N(F, %, b)), %, b) —gN
Inner Lin. Inv. |\ | y = J(X)""F(X) = K(J(X), Jo, b) | N'\K

As a principal architect since 2001, | developed
@ unstructured meshes (model, algorithms, implementation),

@ nonlinear preconditioning (model, algorithms),
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What is PETSc?
Aagaard, Knepley, and Williams, J. of Geophysical Research, 2013.
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As a principal architect since 2001, | developed
@ unstructured meshes (model, algorithms, implementation),

@ nonlinear preconditioning (model, algorithms),

e FEM discretizations (data structures, solvers optimization),
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What is PETSc?

Knepley and Terrel, Transactions on Mathematical Software, 2012.

nnnnnnnnnnnnnnnnnnn

K

]

4
o
s,

pr i o

[ dhead®s [ ] [HH
l_l\_H_I\_l

As a principal architect since 2001, | developed
@ unstructured meshes (model, algorithms, implementation),

@ nonlinear preconditioning (model, algorithms),
e FEM discretizations (data structures, solvers optimization),
e optimizations for multicore and GPU architectures.
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PETSc Citations, 5657 Total
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Bioelectrostatics

Outline

@ Bioclectrostatics
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Bioelectrostatics

Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Bioelectrostatics

Bioelectrostatics

Physical Model

Electrostatic Potential ¢

Region II: solvent

Region I: protein
Surface

I

v29[7solvent (I‘) =0

qi(S(I‘ — I‘i)

€0€protein

v2(;0p1fotein(r) = - Z

€protein

M. Knepley (CAAM) MGK UH 8/44



Bioelectrostatics

Bioelectrostatics

Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced
surface charge o,

—*/)d2
o(r
(1) +€ /an Aanf—7| Zan 34w|\r—rk||
(Z +éeD*)a(F) =
where we define
~ ol €ll
E=2——
€+ €y
MGK UH 9/44
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Bioelectrostatics
Problem

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

e are more accurate than required by intermediate
design iterations
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Approximate Operators

Outline

e Approximate Operators
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Approximate Operators

Bioelectrostatics

Mathematical Model
The reaction potential is given by

() = /47re1Hr—r/H = Co

which defines Ggs, the electrostatic part of the solvation free energy

AGes = ! <q7 ¢R>

5 (q,Lq)
:
= 5(a.cA"'Bq)
where
—’/ d3—*/
Bg = - 8n ﬁ)47r|\r—r’||
Ao =T + eD*
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Approximate Operators

BIBEE

Approximate D* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Eigenvectors: BEM ¢, - e; BIBEE/P
Coulomb Field Approximation:

uniform normal field

€
(1 - 2) ocra = Bq

Lower Bound:
no good physical motivation

(1 -i-;) olB = Bq
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Approximate Operators

BIBEE

Approximate D* by a diagonal operator
Boundary Integral-Based Electrostatics Estimation

Eigenvectors: BEM ¢, - e; BIBEE/P
Coulomb Field Approximation:

uniform normal field

€
(1 - 2) ocra = Bq

Preconditioning:
consider only local effects

op = Bqg
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Approximate Operators
BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy AGes has upper and
lower bounds given by

1 e\ ! 1 —1 1 AN
> <1 + 2> (q,CBq) < > <q, CA Bq> < > <1 - 2> (q,CBaq) ,

and for spheres and prolate spheroids, we have the improved lower
bound,

2 (q.c8q) <, (q,CA"'8q).

and we note that

N =
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Approximate Operators
Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

| will break the proof into three steps,
@ Replace C with B
@ Symmetrization

@ Eigendecomposition
shown in the following slides.

We will need the single layer operator S for step 1,

510 = [ 2T =
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Approximate Operators

Energy Bounds: First Step

Replace C with B
The potential at the boundary I given by

¢Coulomb(7) — CTq
can also be obtained by solving an exterior Neumann problem for ,

d)Coulomb(F) - Sr
= s -20")"(28g)

= 38(1 —2D") " 'Bq
€

so that the solvation energy is given by
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Approximate Operators

Energy Bounds: Second Step

Quasi-Hermiticity

Plemelj’s symmetrization principle holds that

SD* =DS

and we have
S = 81/281/2

which means that we can define a Hermitian operator H similar to D*
H = 81/2D*8—1/2
leading to an energy

% (g.cA"'Bq) = % (Bq,S"3(T — 2H) (T + eH) ' s"/2Bq)
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http://www.math.ucsb.edu/~mputinar/poincare.pdf

Approximate Operators

Energy Bounds: Third Step

Eigendecomposition

The spectrum of D* is in [, 1), and the energy is
1 1 _ o
5(a.CATBa) =Y ~(1-2x) " (1+en) " f
i

where

and
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Approximate Operators

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1 B 1 _ e\

5 (9. CAGLBa) = Z z(1 -2y <1 - ;) X2
1

2(a.cABg) =Y L(1—2x) " P

i
1 _ 1 _ e\ !
> <q, CAL‘.;Bq> = 25(1 —2x)"" <1 + 2) x?

where we note that
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Approximate Operators

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures

Electrostatic Free Energy (kcal/mol)

.
-100f
-120}
® BEM °
= SGB/CFA
-140 & GBMV
A BIBEE/CFA|
BIBEE/P
160 . . . ,
100 200 300 400 500 600

Time (ps)

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.
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Approximate Operators

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:
N

j 1 (1 1 qiq;
e /
Ges = 81 ( 6[) Z

_R2/4RR,
€ 7 RiRe

where the effective Born radius is

1 1 1\ 1
R—=——[——-—_]_—
" 8r (e// 6/) E;
where E; is the self-energy of the charge g;, the electrostatic energy
when atom i has unit charge and all others are neutral.
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Approximate Operators
Crowded Protein Solution

Important for drug design of antibody therapies
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Approximate Operators

BIBEE Scalability

-6—-8 GPUs
——16 GPUs
—+—32 GPUs
——64 GPUs
-8- 128 GPUs
256 GPUs
-¥-512 GPUs

Time per matrix—-vector product (s)

7 8

10 10°
Number of boundary elements

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.
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Approximate Boundary Conditions
Outline

e Approximate Boundary Conditions
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Approximate Boundary Conditions

Bioelectrostatics

Physical Model

Electrostatic Potential ¢

Region II: solvent

Region I: protein
Surface

I

v29[7solvent (I‘) =0

qi(S(I‘ — I‘i)

€0€protein

v2(;0p1fotein(r) = - Z

€protein
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Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The potential inside Region | is given by
Q
q>I = Z % + wv

1 €1 |f— fk|

and the potential in Region Il is given by

n

C
by = Z Z n’jrn} Pm osH)e’"w’

n=0 m=—n
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Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The reaction potential ¢ is expanded in a series
o0 n )
)= Z Z Bpmr" P (cos §)e™?,
n=0 m=—-n

and the source distribution is also expanded

n

E
oSS e

n=0 mf—n

Mo
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Approximate Boundary Conditions

Kirkwood’s Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

®ilr=p = Pulr=p

%| — ¢ acb,,‘

we can eliminate C,n,, and determine the reaction potential coefficients
in terms of the source distribution,

v (a—en)(n+1)
6/b2n+1 E/n+€//(n+1) nm-

B nm
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Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations
Aca=T (145
CFA = 5
Ap=1

have an equivalent PDE formulation,

Q c
B S € 0] _ 0%y OYcea
€1APcrap = /; QS (r — Tk) T == 3~ 5, lr=b
enAPcrap =0 or
® | — | 36/ — € 8¢IC| N 8(1),, B 61/),:
Ilr=b — ¥llir=b €1+ ey or r=b — or or r=b;

where o€ is the Coulomb field due to interior charges.
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Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral opera-
tor approximations have eigenspaces are identical to that of the original
operator.

10 20 an 40 50 60 70 ]

BEM eigenvector e; - ; BIBEE/P eigenvector
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Approximate Boundary Conditions
Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,
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Approximate Boundary Conditions
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Approximate Boundary Conditions
Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

@ Start with the fundamental solution to Laplace’s equation G(r, r’)
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and decay at infinity
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Approximate Boundary Conditions
Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

@ Start with the fundamental solution to Laplace’s equation G(r, r’)

@ Note that [ G(r,r')o(r')dr satisfies the bulk equation
and decay at infinity

@ Insertion into the approximate BC gives the
BIBEE boundary integral approximation
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Approximate Boundary Conditions
Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,
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Approximate Boundary Conditions
Proof of Eigenspace Equivalence
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In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

M. Knepley (CAAM) MGK UH 31/44



Approximate Boundary Conditions
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@ Examine the effect of the operator on a
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Approximate Boundary Conditions
Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

@ Examine the effect of the operator on a
unit spherical harmonic charge distribution

@ Use completeness of the spherical harmonic basis
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Approximate Boundary Conditions
Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

@ Examine the effect of the operator on a
unit spherical harmonic charge distribution

@ Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.
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Approximate Boundary Conditions
Series Solutions

Note that the approximate solutions are separable:

5 1
MmNt e(nt 1) ™
1 1
BCFAzf
nm = ony 1M
1 1
B — SV
nm €1+62n+%%m
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Approximate Boundary Conditions
Series Solutions

Note that the approximate solutions are separable:

1

- e1nN+ ex(N+
1
N € 2N+

1)7nm

1 Ynm

1 1

61 +62n+1%m

If e, = €y = ¢, both approximations are exact:

By = BCFA

M. Knepley (CAAM)

1

A — .
nm (2n+1)7nm
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Approximate Boundary Conditions
Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

_ pCFA _ 00
Boo = By = Py

)
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Approximate Boundary Conditions
Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

“Joo
Boa — BCFA
00 = €

)

whereas BIBEE/P approaches the exact response in the limit n — oo:

1
lim By = lim BY =

n—oo n—oo (61 + Ez)nfynm‘
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Approximate Boundary Conditions
Asymptotics

In the limit €1 /eo — O,

lim Byy = — "M
€1/e2—0 62(n+ 1)

lim BSA—__T0m
61/62—>0 nm 62(2n+ 1)’

im Bh, = —m
/a0 € (n+ %)

so that the approximation ratios are given by

BGFA  n+1 Bh, n+1
Bom  2n+1’ Bnm_n-i-%.
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Approximate Boundary Conditions

Improved Accuracy
BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

0 : :
o BIBEE, ) =-0.20
o BIBEE/CFA

= 500 & BIBEEP ]
E @
« opg
£ 1000+ ce S 1
= %
=) A
[ a A
5 -15001 a 1
L!I-)I ] ° ° ©°
[0} aa
i a 2.a
B -2000¢ e 1
g oo
= o a
i

2500 . u .

a
-3000 : : : : !
3000 2500 2000  -1500  -1000  -500 0

Reference Free Energy (kcal/mol)
Bardhan, Knepley, JCP, 2011.
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Approximate Boundary Conditions

Basis Augmentation

We examined the more complex problem of protein-ligand binding
using trypsin and bovine pancreatic trypsin inhibitor (BPTI),

using electrostatic component analysis to identify residue contributions
to binding and molecular recognition.
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Approximate Boundary Conditions
Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that
BIBEE/CFA becomes more accurate as the monopole moment
increases, and BIBEE/P more accurate as it decreases. BIBEE/| is
accurate for spheres, but must be extended for ellipses.

Spheres Ellpsoids

oz .
'K\MI Imn'ﬁ.'.f

5 « sy Sl b
BT - " . .
-4 = EEEEFA

EBEEN

Relative error
Relative error
= &
. I \ i:
3

= BEEEM

EBEEN

Maonopale Manopole
(a) (b)
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Approximate Boundary Conditions

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the
octopole, to recover 5% accuracy for all synthetic proteins tested.

Spheres Ellpsoids
IQ_ a3 E [Tl .
a_J a2 o nz2 b
g, 2. s
E o2 EEEEM E i
e s

Manapole Monopole

(b (d)

M. Knepley (CAAM) MGK UH

38/44



Approximate Boundary Conditions
Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

e are more accurate than required by intermediate
design iterations
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Approximate Boundary Conditions
Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

@ Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
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Approximate Boundary Conditions
Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

@ Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

e are more accurate than required by intermediate
design iterations

@ Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Kreienkamp, et al., Molecular-Based
Mathematical Biology, 2013
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Future Directions

Outline

e Future Directions
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Future Directions

More Physics

New Phenomena:

New Model:
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More Physics
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More Physics

New Phenomena:
Charge—Hydration Asymmetry
Solute—Solvent Interface Potential
Solvent Thermodynamics

New Model:
Nonlinear Boundary Condition
Static Solvation Potential
Solvation Layer Interface Condition (SLIC)
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More Physics

Predicting Solvation
Free Energies and Thermodynamics in
Polar Solvents and Mixtures using a
Solvation-Layer Interface Condition,
Tabrizi et.al., JCP 146(9), 2017
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Future Directions
Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology
and been inspired by physical problems,
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Future Directions

Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology
and been inspired by physical problems,

Enabling Scientific Discovery

M. Knepley (CAAM) MGK UH
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Thank You!

http://www.caam.rice.edu/~mk51
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