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Main Point

Solvation computation
can benefit from

operator simplification,

and non-Poisson models.
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Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Bioelectrostatics
Physical Model

Electrostatic Potential ϕ

Region II: solvent
Region I: protein

Surface
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Bioelectrostatics
Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced
surface charge σ,

σ(⃗r) + ϵ̂

∫
Γ

∂

∂n(⃗r)
σ(⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
= −ϵ̂

Q∑
k=1

∂

∂n(⃗r)
qk

4π||⃗r − r⃗k ||

(I + ϵ̂D∗)σ(⃗r) =

where we define
ϵ̂ = 2

ϵI − ϵII
ϵI + ϵII

< 0
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Approximating the Poisson Operator

Outline

1 Approximating the Poisson Operator
Approximate Operators
Approximate Boundary Conditions

2 Improving the Poisson Operator
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Approximating the Poisson Operator

Problem

Boundary element discretizations of solvation:

can be expensive to solve

are more accurate than required by intermediate
design iterations
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Approximating the Poisson Operator Approximate Operators

Outline

1 Approximating the Poisson Operator
Approximate Operators
Approximate Boundary Conditions
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Approximating the Poisson Operator Approximate Operators

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:

Gij
es =

1
8π

(
1
ϵII

− 1
ϵI

) N∑
i,j

qiqj

r2
ij + RiRje

−r2
ij /4Ri Rj

where the effective Born radius is

Ri =
1

8π

(
1
ϵII

− 1
ϵI

)
1
Ei

where Ei is the self-energy of the charge qi , the electrostatic energy
when atom i has unit charge and all others are neutral.

M. Knepley (Rice) Solvation UNC6 10 / 60



Approximating the Poisson Operator Approximate Operators

GB Problems

No global potential solution, only energy
No analysis of the error

For example, Salsbury 2006 consists of parameter tuning

No path for systematic improvement
For example, Sigalov 2006 changes the model

The same atoms have different radii in different
molecules,
solvents
temperatures

LOTS of parameters
Nina, Beglov, Roux 1997
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Approximating the Poisson Operator Approximate Operators

Bioelectrostatics
Mathematical Model

The reaction potential is given by

ϕR (⃗r) =
∫
Γ

σ(⃗r ′)d2r⃗ ′

4πϵ1||⃗r − r⃗ ′||
= Cσ

which defines Ges, the electrostatic part of the solvation free energy

∆Ges =
1
2

〈
q, ϕR

〉
=

1
2
⟨q,Lq⟩

=
1
2

〈
q,CA−1Bq

〉
where

Bq = −ϵ̂
∫
Ω

∂

∂n(⃗r)
q(⃗r ′)d3r⃗ ′

4π||⃗r − r⃗ ′||
Aσ = I + ϵ̂D∗
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Approximating the Poisson Operator Approximate Operators

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1 − ϵ̂

2

)
σCFA = Bq

Lower Bound:
no good physical motivation(

1 +
ϵ̂

2

)
σLB = Bq

Eigenvectors: BEM ei · ej BIBEE/P
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Approximating the Poisson Operator Approximate Operators

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1 − ϵ̂

2

)
σCFA = Bq

Preconditioning:
consider only local effects

σP = Bq

Eigenvectors: BEM ei · ej BIBEE/P
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Approximating the Poisson Operator Approximate Operators

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ∆Ges has upper and
lower bounds given by

1
2

(
1 +

ϵ̂

2

)−1

⟨q,CBq⟩ ≤ 1
2

〈
q,CA−1Bq

〉
≤ 1

2

(
1 − ϵ̂

2

)−1

⟨q,CBq⟩ ,

and for spheres and prolate spheroids, we have the improved lower
bound,

1
2
⟨q,CBq⟩ ≤ 1

2

〈
q,CA−1Bq

〉
,

and we note that
|ϵ̂| < 1

2
.
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Approximating the Poisson Operator Approximate Operators

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

Replace C with B

Symmetrization

Eigendecomposition
shown in the following slides.

We will need the single layer operator S for step 1,

Sτ (⃗r) =
∫

τ (⃗r ′)d2r⃗ ′

4π||⃗r − r⃗ ′||
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: First Step
Replace C with B

The potential at the boundary Γ given by

ϕCoulomb (⃗r) = CT q

can also be obtained by solving an exterior Neumann problem for τ ,

ϕCoulomb (⃗r) = Sτ

= S(I − 2D∗)−1(
2
ϵ̂

Bq)

=
2
ϵ̂
S(I − 2D∗)−1Bq

so that the solvation energy is given by

1
2

〈
q,CA−1Bq

〉
=

1
ϵ̂

〈
S(I − 2D∗)−1Bq, (I + ϵ̂D∗)−1Bq

〉
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: Second Step
Quasi-Hermiticity

Plemelj’s symmetrization principle holds that

SD∗ = DS

and we have
S = S1/2S1/2

which means that we can define a Hermitian operator H similar to D∗

H = S1/2D∗S−1/2

leading to an energy

1
2

〈
q,CA−1Bq

〉
=

1
ϵ̂

〈
Bq,S1/2(I − 2H)−1(I + ϵ̂H)−1S1/2Bq

〉
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: Third Step
Eigendecomposition

The spectrum of D∗ is in [−1
2 ,

1
2), and the energy is

1
2

〈
q,CA−1Bq

〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1 (1 + ϵ̂λi)
−1 x2

i

where
H = VΛV T

and
x⃗ = V TS1/2Bq
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1
2

〈
q,CA−1

CFABq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 − ϵ̂

2

)−1

x2
i

1
2

〈
q,CA−1

P Bq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1 x2
i

1
2

〈
q,CA−1

LB Bq
〉
=

∑
i

1
ϵ̂
(1 − 2λi)

−1
(

1 +
ϵ̂

2

)−1

x2
i

where we note that
|ϵ̂| < 1

2
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Approximating the Poisson Operator Approximate Operators

BIBEE Accuracy
Electrostatic solvation free energies of met-enkephalin structures

BEM, GBMV, SGB/CFA, BIBEE/CFA, and BIBEE/P. Figure
3!a" is a plot of the eigenvalues of the calculated matrices.
The SGB/CFA eigenvalues are slightly more accurate than
the BIBEE/CFA eigenvalues for the dominant eigenmodes
but less accurate for the smaller eigenmodes. Of the four
electrostatic approximations, the GBMV method appears to
provide the most accurate eigenvalue estimates. As noted
previously, BIBEE/CFA is most accurate for the largest-
magnitude eigenvalues and the BIBEE/P method offers the
best fidelity to BEM for the smallest eigenvalues.38

It is important that methods for estimating electrostatic
interactions calculate not only an accurate total free energy
but also preserve the energetics of interaction between
chemical groups. To analyze how different methods preserve
pairwise interactions with respect to the BEM calculations,
we project the eigenvectors of the approximate reaction-
potential matrices onto the eigenvectors of the reaction-
potential matrix from BEM. For example, the !i , j" entry of
the matrix

VBEM
T VSGB/CFA !33"

represents the projection of the jth eigenvector of the SGB/
CFA reaction-potential matrix onto the jth eigenvector of the
BEM reaction-potential matrix. In this projection framework,
perfect preservation of the pairwise interactions would give
rise to a diagonal matrix with diagonal entries of unit mag-
nitude. Conversely, if a method imperfectly reproduces pair-
wise interactions, the off-diagonal entries are nonzero. The
degree to which the approximate-method eigenvectors align
with the actual eigenvectors can then be assessed visually
using a heat map; Figs. 4–6 are plots of the projections of the
SGB/CFA, GBMV, and BIBEE/P eigenvectors onto the
eigenvectors of the BEM reaction-potential matrix.38 We be-
lieve that discrepancies between the BIBEE and BEM eigen-
vectors may be a result of discretizing the integral equation
for simulation using BEM.72 However, the various BIBEE
methods give rise to essentially identical eigenvectors !data
not shown", which is expected given that the diagonal ap-
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FIG. 1. !Color online" Comparison of electrostatic solvation free energies using met-enkephalin structures taken from a 500-ps MD simulation plotted as time
series; snapshots have been taken at 10-ps intervals. Energies are in kcal/mol. !a" All estimates are plotted. !b" BIBEE/LB has been omitted for clarity.

−90 −85 −80 −75 −70 −65 −60
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Electrostatic Free Energy from BEM (kcal/mol)

E
st

im
at

ed
E

le
ct

ro
st

at
ic

F
re

e
E

ne
rg

y
(k

ca
l/m

ol
)

y = x
SGB/CFA
GBMV
BIBEE/CFA
BIBEE/P

FIG. 2. !Color online" Comparison of estimated electrostatic solvation free
energies using met-enkephalin structures taken from a 500-ps MD simula-
tion plotted as a scatter plot against energies calculated using BEM. Ener-
gies are in kcal/mol.
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FIG. 3. !Color" Eigenvalues of the reaction-potential matrices computed
from the final met-enkephalin structure using BEM, BIBEE/CFA, BIBEE/P,
GBMV, and SGB/CFA methods.

104108-5 Bounding electrostatic free energies J. Chem. Phys. 130, 104108 !2009"

Downloaded 11 Mar 2009 to 18.51.1.222. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.
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Approximating the Poisson Operator Approximate Operators

Crowded Protein Solution

Important for drug design of antibody therapies
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Approximating the Poisson Operator Approximate Operators

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.
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Approximating the Poisson Operator Approximate Boundary Conditions

Outline

1 Approximating the Poisson Operator
Approximate Operators
Approximate Boundary Conditions
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Approximating the Poisson Operator Approximate Boundary Conditions

Bioelectrostatics
Physical Model

Electrostatic Potential ϕ

Region II: solvent
Region I: protein

Surface
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Approximating the Poisson Operator Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The potential inside Region I is given by

ΦI =
Q∑

k=1

qk

ϵ1
∣∣⃗r − r⃗k

∣∣ + ψ,

and the potential in Region II is given by

ΦII =
∞∑

n=0

n∑
m=−n

Cnm

rn+1 Pm
n (cos θ)eimϕ.
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Approximating the Poisson Operator Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The reaction potential ψ is expanded in a series

ψ =
∞∑

n=0

n∑
m=−n

BnmrnPm
n (cos θ)eimϕ.

and the source distribution is also expanded

Q∑
k=1

qk

ϵ1
∣∣⃗r − r⃗k

∣∣ = ∞∑
n=0

n∑
m=−n

Enm

ϵ1rn+1 Pm
n (cos θ)eimϕ.
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Approximating the Poisson Operator Approximate Boundary Conditions

Kirkwood’s Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

ΦI |r=b = ΦII |r=b

ϵI
∂ΦI

∂r
|r=b = ϵII

∂ΦII

∂r
|r=b

we can eliminate Cnm, and determine the reaction potential coefficients
in terms of the source distribution,

Bnm =
1

ϵIb2n+1
(ϵI − ϵII)(n + 1)
ϵIn + ϵII(n + 1)

Enm.
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Approximating the Poisson Operator Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

ACFA = I
(

1 +
ϵ̂

2

)
AP = I

have an equivalent PDE formulation,

ϵI∆ΦCFA,P =
Q∑

k=1

qkδ(⃗r − r⃗k )
ϵI
ϵII

∂ΦC
I

∂r
|r=b =

∂ΦII

∂r
− ∂ψCFA

∂r
|r=b

ϵII∆ΦCFA,P = 0 or

ΦI |r=b = ΦII |r=b
3ϵI − ϵII
ϵI + ϵII

∂ΦC
I

∂r
|r=b =

∂ΦII

∂r
− ∂ψP

∂r
|r=b,

where ΦC
1 is the Coulomb field due to interior charges.
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Approximating the Poisson Operator Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral opera-
tor approximations have eigenspaces are identical to that of the original
operator.

BEM eigenvector ei · ej BIBEE/P eigenvector
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

Start with the fundamental solution to Laplace’s equation G(r , r ′)

Note that
∫
Γ G(r , r ′)σ(r ′)dΓ satisfies the bulk equation

and decay at infinity

Insertion into the approximate BC gives the
BIBEE boundary integral approximation
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

Note that, for a spherical boundary,
D∗ is compact and has a pure point spectrum

Examine the effect of the operator on a
unit spherical harmonic charge distribution

Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

M. Knepley (Rice) Solvation UNC6 30 / 60



Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

Note that, for a spherical boundary,
D∗ is compact and has a pure point spectrum

Examine the effect of the operator on a
unit spherical harmonic charge distribution

Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

M. Knepley (Rice) Solvation UNC6 30 / 60



Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

Note that, for a spherical boundary,
D∗ is compact and has a pure point spectrum

Examine the effect of the operator on a
unit spherical harmonic charge distribution

Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

M. Knepley (Rice) Solvation UNC6 30 / 60



Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

Note that, for a spherical boundary,
D∗ is compact and has a pure point spectrum

Examine the effect of the operator on a
unit spherical harmonic charge distribution

Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

M. Knepley (Rice) Solvation UNC6 30 / 60



Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

Note that, for a spherical boundary,
D∗ is compact and has a pure point spectrum

Examine the effect of the operator on a
unit spherical harmonic charge distribution

Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

M. Knepley (Rice) Solvation UNC6 30 / 60



Approximating the Poisson Operator Approximate Boundary Conditions

Series Solutions

Note that the approximate solutions are separable:

Bnm =
1

ϵ1n + ϵ2(n + 1)
γnm

BCFA
nm =

1
ϵ2

1
2n + 1

γnm

BP
nm =

1
ϵ1 + ϵ2

1
n + 1

2

γnm.

If ϵI = ϵII = ϵ, both approximations are exact:

Bnm = BCFA
nm = BP

nm =
1

ϵ(2n + 1)
γnm.
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Approximating the Poisson Operator Approximate Boundary Conditions

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

B00 = BCFA
00 =

γ00

ϵ2
,

whereas BIBEE/P approaches the exact response in the limit n → ∞:

lim
n→∞

Bnm = lim
n→∞

BP
nm =

1
(ϵ1 + ϵ2)n

γnm.
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Approximating the Poisson Operator Approximate Boundary Conditions

Asymptotics

In the limit ϵ1/ϵ2 → 0,

lim
ϵ1/ϵ2→0

Bnm =
γnm

ϵ2(n + 1)

lim
ϵ1/ϵ2→0

BCFA
nm =

γnm

ϵ2(2n + 1)
,

lim
ϵ1/ϵ2→0

BP
nm =

γnm

ϵ2
(
n + 1

2

) ,
so that the approximation ratios are given by

BCFA
nm

Bnm
=

n + 1
2n + 1

,
BP

nm
Bnm

=
n + 1
n + 1

2

.
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Approximating the Poisson Operator Approximate Boundary Conditions

Improved Accuracy
BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.
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Approximating the Poisson Operator Approximate Boundary Conditions

Basis Augmentation
We examined the more complex problem of protein-ligand binding
using trypsin and bovine pancreatic trypsin inhibitor (BPTI),
using electrostatic component analysis to identify residue contributions
to binding and molecular recognition.
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Approximating the Poisson Operator Approximate Boundary Conditions

Basis Augmentation
Looking at an ensemble of synthetic proteins, we can see that
BIBEE/CFA becomes more accurate as the monopole moment
increases, and BIBEE/P more accurate as it decreases. BIBEE/I is
accurate for spheres, but must be extended for ellipses.
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Approximating the Poisson Operator Approximate Boundary Conditions

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the
octopole, to recover 5% accuracy for all synthetic proteins tested.
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Approximating the Poisson Operator Approximate Boundary Conditions

Resolution

Boundary element discretizations of the solvation
problem:

can be expensive to solve
Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

are more accurate than required by intermediate
design iterations

Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Kreienkamp, et al., Molecular-Based
Mathematical Biology, 2013
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Outline

1 Approximating the Poisson Operator

2 Improving the Poisson Operator
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Improving the Poisson Operator

Origins of Electrostatic Asymmetry
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Origins of Electrostatic Asymmetry
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Origins of Electrostatic Asymmetry
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energy perturbation calculations
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Improving the Poisson Operator

Main Idea

Solvation-Layer Interface Condition (SLIC)

Instead of assuming the model and energy
and deriving the radii,

ϵI
∂ΦI

∂n
= ϵII

∂ΦII

∂n
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Improving the Poisson Operator

Main Idea

Solvation-Layer Interface Condition (SLIC)

assume the energy and radii and derive the model.

(ϵI −∆ϵh(En))
∂ΦI

∂n
= (ϵII −∆ϵh(En))

∂ΦII

∂n
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Improving the Poisson Operator

Main Idea

Solvation-Layer Interface Condition (SLIC)

Using our correspondence with the BIE form,(
I + h(En) + ϵ̂

(
−1

2
I +D∗

))
σ = ϵ̂

Q∑
k=1

∂G
∂n

where h is a diagonal nonlinear integral operator.
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Improving the Poisson Operator

SLIC
Boundary Perturbation

h(En) = α tanh (βEn − γ) + µ

where
α Size of the asymmetry
β Width of the transition region
γ The transition field strength
µ Assures h(0) = 0, so µ = −α tanh(−γ)
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Accuracy of SLIC
Residues
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Improving the Poisson Operator

Accuracy of SLIC
Protonation
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Improving the Poisson Operator

Accuracy of SLIC
Synthetic Molecules
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Improving the Poisson Operator

Accuracy of SLIC
Synthetic Molecules
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Improving the Poisson Operator

Accuracy of SLIC
Synthetic Molecules
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Improving the Poisson Operator

Thermodynamics
The parameters show linear temperature dependence
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Model Validation
Courtesy A. Molvai Tabrizi

Northeastern University | Mechanical and Industrial Engineering Bardhan Lab

Model validation and verification using experiment

Water 
H2O

Ethanol 
C2H5OH

Methanol 
CH3OH

Formamide 
CH3NO

Acetonitrile 
C2H3N

Dimethyl formamide 
C3H7NO

Dimethyl sulfoxide 
C2H6OS

Nitromethane 
 CH3NO2

Propylene carbonate 
CH3C2H3O2CO

14 19
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Model Validation
Courtesy A. Molvai Tabrizi
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Model Validation
Courtesy A. Molvai Tabrizi

Northeastern University | Mechanical and Industrial Engineering Bardhan Lab
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Improving the Poisson Operator

Model Validation
Courtesy A. Molvai Tabrizi

Northeastern University | Mechanical and Industrial Engineering Bardhan Lab
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Dimethyl formamide @ 25oC 
C3H7NO
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Model validation and verification using experiment
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Improving the Poisson Operator

Model Validation
Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan,
Generalising the mean spherical approximation as a
multiscale, nonlinear boundary condition at the
solute-solvent interface,
Molecular Physics (2016).
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Thermodynamic Predictions
Courtesy A. Molvai Tabrizi

Experimental Data in Parentheses
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Thermodynamic Predictions
Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, S. Goossens, M.G. Knepley, and
J.P. Bardhan,
Predicting solvation thermodynamics with dielectric
continuum theory and a solvation-layer interface
condition (SLIC).
Submitted to Journal of Physical Chemistry Letters
(2016).
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Improving the Poisson Operator

Where does SLIC fail?

Large packing fraction
No charge oscillation or overcharging
Could use CDFT

No dielectric saturation
Could be possible with different function

No long range correlations
Use nonlocal dielectric
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Future Work

Future Work

More complex solutes

Mixtures
Integration into community code

Psi4, QChem, APBS

Integrate into conformational search
Kavrakis Lab at Rice
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Thank You!

http://www.caam.rice.edu/~mk51
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