Improved Solvation Models using Boundary Integral Equations

Matthew Knepley and Jaydeep Bardhan

Computational and Applied Mathematics Rice University

Applied Mathematics Colloquium

Department of Mathematics

UNC Chapel Hill September 16, 2016

Solvation computation can benefit from

operator simplification, and non-Poisson models.

Solvation computation can benefit from operator simplification,

and non-Poisson models.

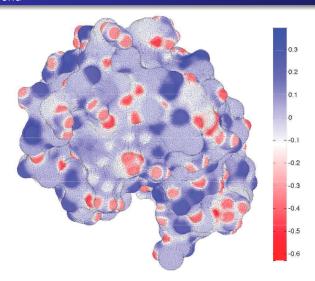


Solvation computation can benefit from operator simplification, and non-Poisson models.

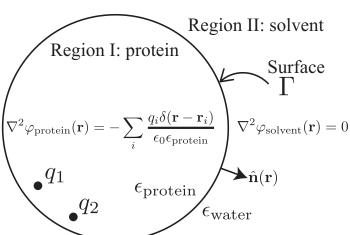
M. Knepley (Rice)

Bioelectrostatics

The Natural World



Induced Surface Charge on Lysozyme



Bioelectrostatics

Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_k}{4\pi ||\vec{r} - \vec{r}_k||}$$
$$(\mathcal{I} + \hat{\epsilon} \mathcal{D}^*) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2 \frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

M. Knepley (Rice) Solvation UNC6 6/60

Outline

- Approximating the Poisson Operator
 - Approximate Operators
 - Approximate Boundary Conditions
- Improving the Poisson Operator

Problem

Boundary element discretizations of solvation:

- can be expensive to solve
- are more accurate than required by intermediate design iterations

8/60

Outline

- Approximating the Poisson Operator
 - Approximate Operators
 - Approximate Boundary Conditions

M. Knepley (Rice) Solvation UNC6 9/60

Generalized Born Approximation

The pairwise energy between charges is defined by the *Still equation*:

$$G_{es}^{ij} = rac{1}{8\pi} \left(rac{1}{\epsilon_{II}} - rac{1}{\epsilon_{I}}
ight) \sum_{i,j}^{N} rac{q_i q_j}{r_{ij}^2 + R_i R_j e^{-r_{ij}^2/4R_i R_j}}$$

where the effective Born radius is

$$R_i = \frac{1}{8\pi} \left(\frac{1}{\epsilon_{II}} - \frac{1}{\epsilon_{I}} \right) \frac{1}{E_i}$$

where E_i is the *self-energy* of the charge q_i , the electrostatic energy when atom i has unit charge and all others are neutral.

10/60

M. Knepley (Rice) Solvation UNC6

GB Problems

- No global potential solution, only energy
- No analysis of the error
 - For example, Salsbury 2006 consists of parameter tuning
- No path for systematic improvement
 - For example, Sigalov 2006 changes the model
- The same atoms have different radii in different
 - molecules.
 - solvents
 - temperatures
- LOTS of parameters
 - Nina, Beglov, Roux 1997

M. Knepley (Rice) Solvation UNC6 11/60

GB Problems

TABLE 2: Atomic Born Radii Derived from Solvent Electrostatic Charge Distribution Tested with Free Energy Perturbation Methods in an Explicit Solvent^a

	atom	radius (Å)		
 No global potential 		Backb	one	
• No global poteritial	C	2.04	carbonyl C, peptide backbone	
All I ' Cil	0	1.52	carbonyl oxygen	
No analysis of the e		2.23	peptide nitrogen	
 No analysis of the 	CA	2.86	all CA except Gly	
Fau accessed a Calabrum	CA	2.38	Gly only	
 For example, Salsbury 		Hydrog		
Maria alla Carraria da car	H*	0.00	all hydrogens	
 No path for system 		Side Ch	nains	
•	CD	2.67	all residues	
 For example, Sigalov 2 	CG*	2.46	Val, Ile, Arg, Lys, Met, Phe, Thr, Trp, Gln, Glu	
· · · ·	CD*	2.44	Ile, Leu, Arg, Lys	
The same atoms have	CD, CG	1.98	Asp, Glu, Asn, Gln	rent
• The same atoms in		1.98	Pro only	CIT
	CE*, CD*, CZ,	2.00	Tyr, Phe rings	
molecules,	CE*, CD*, CZ*, CH2	1.78	Trp ring only	
	CE CZ CE	2.10	Met only	
solvents	CZ, CE	2.80	Arg, Lys	
	OE*, OD* OG*	1.42 1.64	Glu, Asp, Asn, Gln Ser, Thr	
temperatures	OH	1.85	Tyr only	
	NUTS NIE NIZ	2.13	Arg, Lys	
 LOTS of parameter 	NE2, ND2	2.15	Gln, Asn	
LOTO of parameter	NE2, ND1	2.31	His only	
Mine Dealer Devicto	ATE 4	2.40	Trp	
 Nina, Beglov, Roux 19 	S*	2.00	Met, Cys	

^a Patches N-term and C-term CAT, CAY: 2.06 Å. CY: 2.04 Å. OY: 1.52 Å. NT: 2.23 Å. * refers to a wild card character.

Bioelectrostatics

Mathematical Model

The reaction potential is given by

$$\phi^R(\vec{r}) = \int_{\Gamma} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi\epsilon_1 ||\vec{r} - \vec{r}'||} = C\sigma$$

which defines G_{es} , the electrostatic part of the solvation free energy

$$egin{aligned} \Delta G_{ ext{es}} &= rac{1}{2} \left\langle q, \phi^R
ight
angle \ &= rac{1}{2} \left\langle q, Lq
ight
angle \ &= rac{1}{2} \left\langle q, CA^{-1}Bq
ight
angle \end{aligned}$$

where

$$Bq = -\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial n(\vec{r})} \frac{q(\vec{r}')d^{3}\vec{r}'}{4\pi||\vec{r} - \vec{r}'||}$$

$$A\sigma = \mathcal{T} + \hat{\epsilon}\mathcal{D}^{*}$$

M. Knepley (Rice) Solvation UNC6 12/60

BIBEE

Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

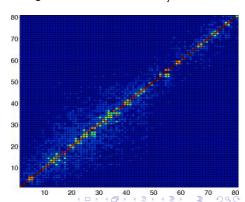
$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{CFA}=Bq$$

Lower Bound:

no good physical motivation

$$\left(1+rac{\hat{\epsilon}}{2}
ight)\sigma_{LB}=Bq$$

Eigenvectors: BEM $e_i \cdot e_i$ BIBEE/P



BIBEE

Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

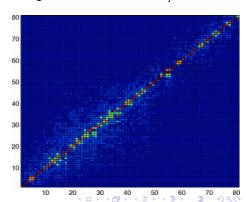
$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{ extit{CFA}}= extit{B} q$$

Preconditioning:

consider only local effects

$$\sigma_P = Bq$$

Eigenvectors: BEM $e_i \cdot e_i$ BIBEE/P



M. Knepley (Rice) Solvation UNC6 13/60

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ΔG_{es} has upper and lower bounds given by

$$\frac{1}{2}\left(1+\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle \textit{q},\textit{CBq}\right\rangle \leq \frac{1}{2}\left\langle \textit{q},\textit{CA}^{-1}\textit{Bq}\right\rangle \leq \frac{1}{2}\left(1-\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle \textit{q},\textit{CBq}\right\rangle,$$

and for spheres and prolate spheroids, we have the improved lower bound,

$$\frac{1}{2}\left\langle \textit{q},\textit{CBq}\right\rangle \leq \frac{1}{2}\left\langle \textit{q},\textit{CA}^{-1}\textit{Bq}\right\rangle,$$

and we note that

$$|\hat{\epsilon}|<\frac{1}{2}.$$

14/60

M. Knepley (Rice) Solvation UNC6

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

- Replace C with B
- Symmetrization
- Eigendecomposition

shown in the following slides.

We will need the single layer operator S for step 1,

$$\mathcal{S} au(\vec{r}) = \int rac{ au(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||}$$

M. Knepley (Rice) Solvation UNC6 15/60

Energy Bounds: First Step

Replace C with B

The potential at the boundary Γ given by

$$\phi^{Coulomb}(\vec{r}) = C^T q$$

can also be obtained by solving an exterior Neumann problem for τ ,

$$\begin{split} \phi^{\textit{Coulomb}}(\vec{r}) &= \mathcal{S}\tau \\ &= \mathcal{S}(\mathcal{I} - 2\mathcal{D}^*)^{-1}(\frac{2}{\hat{\epsilon}}Bq) \\ &= \frac{2}{\hat{\epsilon}}\mathcal{S}(\mathcal{I} - 2\mathcal{D}^*)^{-1}Bq \end{split}$$

so that the solvation energy is given by

$$\frac{1}{2}\left\langle q, \textit{CA}^{-1}\textit{Bq}\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle \mathcal{S}(\mathcal{I}-2\mathcal{D}^*)^{-1}\textit{Bq}, (\mathcal{I}+\hat{\epsilon}\mathcal{D}^*)^{-1}\textit{Bq}\right\rangle$$

M. Knepley (Rice) Solvation UNC6 16/60

Energy Bounds: Second Step

Quasi-Hermiticity

Plemelj's symmetrization principle holds that

$$\mathcal{SD}^* = \mathcal{DS}$$

and we have

$$\mathcal{S}=\mathcal{S}^{1/2}\mathcal{S}^{1/2}$$

which means that we can define a Hermitian operator H similar to \mathcal{D}^*

$$H = \mathcal{S}^{1/2} \mathcal{D}^* \mathcal{S}^{-1/2}$$

leading to an energy

$$\frac{1}{2}\left\langle q, CA^{-1}Bq\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle Bq, \mathcal{S}^{1/2}(\mathcal{I}-2H)^{-1}(\mathcal{I}+\hat{\epsilon}H)^{-1}\mathcal{S}^{1/2}Bq\right\rangle$$

M. Knepley (Rice) Solvation UNC6 17/60

Energy Bounds: Third Step

Eigendecomposition

The spectrum of \mathcal{D}^* is in $\left[-\frac{1}{2},\frac{1}{2}\right]$, and the energy is

$$rac{1}{2}\left\langle q,\mathit{CA}^{-1}\mathit{B}q
ight
angle =\sum_{i}rac{1}{\hat{\epsilon}}\left(1-2\lambda_{i}
ight)^{-1}\left(1+\hat{\epsilon}\lambda_{i}
ight)^{-1}x_{i}^{2}$$

where

$$H = V \Lambda V^T$$

and

$$\vec{x} = V^T \mathcal{S}^{1/2} Bq$$

18/60

M. Knepley (Rice) Solvation UNC6

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

$$\frac{1}{2} \left\langle q, CA_{CFA}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} (1 - 2\lambda_{i})^{-1} \left(1 - \frac{\hat{\epsilon}}{2} \right)^{-1} x_{i}^{2}$$

$$\frac{1}{2} \left\langle q, CA_{P}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} (1 - 2\lambda_{i})^{-1} x_{i}^{2}$$

$$\frac{1}{2} \left\langle q, CA_{LB}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} (1 - 2\lambda_{i})^{-1} \left(1 + \frac{\hat{\epsilon}}{2} \right)^{-1} x_{i}^{2}$$

where we note that

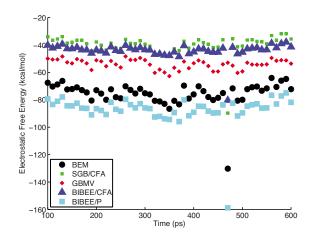
$$|\hat{\epsilon}| < \frac{1}{2}$$

19/60

M. Knepley (Rice) Solvation UNC6

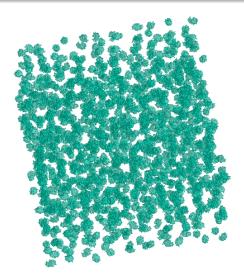
BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures



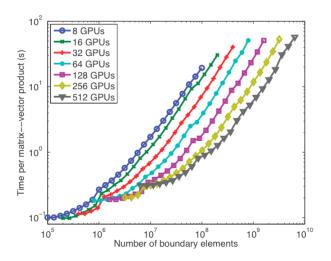
Snapshots taken from a 500-ps MD simulation at 10-ps intervals. Bardhan, Knepley, Anitescu, JCP, 2009.

Crowded Protein Solution



Important for drug design of antibody therapies

BIBEE Scalability



Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.

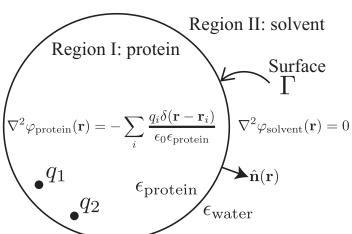
M. Knepley (Rice) Solvation UNC6 22/60

Outline

- Approximating the Poisson Operator
 - Approximate Operators
 - Approximate Boundary Conditions

Bioelectrostatics

Physical Model



M. Knepley (Rice) Solvation UNC6

24/60

Kirkwood's Solution (1934)

The potential inside Region I is given by

$$\Phi_I = \sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} + \psi,$$

and the potential in Region II is given by

$$\Phi_{II} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{nm}}{r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

M. Knepley (Rice) Solvation UNC6 25/60

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$\psi = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{nm} r^{n} P_{n}^{m} (\cos \theta) e^{im\phi}.$$

and the source distribution is also expanded

$$\sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{nm}}{\epsilon_1 r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

< □ > < □ > < □ > < Ē > < Ē > Ē 9 Q €

26/60

M. Knepley (Rice) Solvation UNC6

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

$$\Phi_{I|r=b} = \Phi_{II|r=b}$$

$$\epsilon_{I} \frac{\partial \Phi_{I}}{\partial r}|_{r=b} = \epsilon_{II} \frac{\partial \Phi_{II}}{\partial r}|_{r=b}$$

we can eliminate C_{nm} , and determine the reaction potential coefficients in terms of the source distribution,

$$B_{nm} = \frac{1}{\epsilon_I b^{2n+1}} \frac{(\epsilon_I - \epsilon_{II})(n+1)}{\epsilon_I n + \epsilon_{II}(n+1)} E_{nm}.$$

M. Knepley (Rice) Solvation UNC6 27/60

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$egin{aligned} A_{CFA} &= \mathcal{I}\left(1+rac{\hat{\epsilon}}{2}
ight) \ A_{P} &= \mathcal{I} \end{aligned}$$

have an equivalent PDE formulation,

$$\epsilon_{I} \Delta \Phi_{CFA,P} = \sum_{k=1}^{Q} q_{k} \delta(\vec{r} - \vec{r}_{k}) \qquad \qquad \frac{\epsilon_{I}}{\epsilon_{II}} \frac{\partial \Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial \Phi_{II}}{\partial r} - \frac{\partial \psi_{CFA}}{\partial r}|_{r=b}$$

$$\epsilon_{II}\Delta\Phi_{CFA,P}=0$$
 or
$$\Phi_{I}|_{r=b}=\Phi_{II}|_{r=b} \qquad \qquad \frac{3\epsilon_{I}-\epsilon_{II}}{\epsilon_{I}+\epsilon_{II}}\frac{\partial\Phi_{I}^{C}}{\partial r}|_{r=b}=\frac{\partial\Phi_{II}}{\partial r}-\frac{\partial\psi_{P}}{\partial r}|_{r=b},$$

where Φ_1^C is the Coulomb field due to interior charges.

M. Knepley (Rice) Solvation UNC6 28/60

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.



BEM eigenvector $e_i \cdot e_j$ BIBEE/P eigenvector

M. Knepley (Rice) Solvation UNC6 28/60

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

29/60

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that $\int_{\Gamma} G(r,r')\sigma(r')d\Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

30/60

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

Series Solutions

M. Knepley (Rice)

Note that the approximate solutions are *separable*:

$$B_{nm} = rac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
 $B_{nm}^{CFA} = rac{1}{\epsilon_2} rac{1}{2n+1} \gamma_{nm}$
 $B_{nm}^P = rac{1}{\epsilon_1 + \epsilon_2} rac{1}{n+rac{1}{2}} \gamma_{nm}.$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm} = B_{nm}^{CFA} = B_{nm}^P = \frac{1}{\epsilon(2n+1)} \gamma_{nm}$$

Solvation

4 □ ▶ 4 ₫ ▶ 4 ₺ ▶ 4 ₺ **₽** ₩)\(\(\)

UNC₆

31/60

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = rac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
 $B_{nm}^{CFA} = rac{1}{\epsilon_2} rac{1}{2n+1} \gamma_{nm}$ $B_{nm}^P = rac{1}{\epsilon_1 + \epsilon_2} rac{1}{n+rac{1}{2}} \gamma_{nm}.$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$B_{00}=B_{00}^{CFA}=\frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n o \infty$

$$\lim_{n o\infty}B_{nm}=\lim_{n o\infty}B_{nm}^P=rac{1}{(\epsilon_1+\epsilon_2)n}\gamma_{nm}$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$B_{00}=B_{00}^{CFA}=rac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \to \infty$:

$$\lim_{n\to\infty}B_{nm}=\lim_{n\to\infty}B_{nm}^P=\frac{1}{(\epsilon_1+\epsilon_2)n}\gamma_{nm}.$$

Asymptotics

In the limit $\epsilon_1/\epsilon_2 \rightarrow 0$,

$$\begin{split} &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm} = \frac{\gamma_{nm}}{\epsilon_2(n+1)} \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^{CFA} = \frac{\gamma_{nm}}{\epsilon_2(2n+1)}, \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^P = \frac{\gamma_{nm}}{\epsilon_2\left(n+\frac{1}{2}\right)}, \end{split}$$

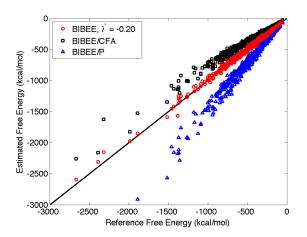
so that the approximation ratios are given by

$$\frac{B_{nm}^{CFA}}{B_{nm}} = \frac{n+1}{2n+1}, \qquad \frac{B_{nm}^P}{B_{nm}} = \frac{n+1}{n+\frac{1}{2}}.$$

33/60

Improved Accuracy

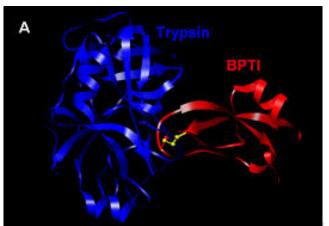
BIBEE/I interpolates between BIBEE/CFA and BIBEE/P



Bardhan, Knepley, JCP, 2011.

Basis Augmentation

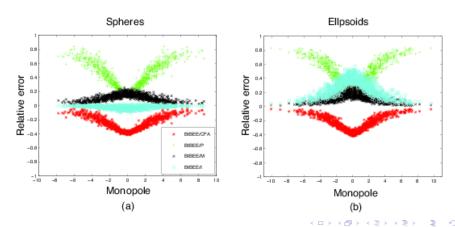
We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using *electrostatic component analysis* to identify residue contributions to binding and molecular recognition.



35/60

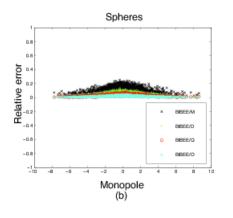
Basis Augmentation

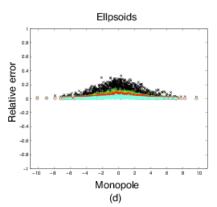
Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE/I is accurate for spheres, but must be extended for ellipses.



Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5% accuracy for all synthetic proteins tested.





Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

38/60

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

38/60

Resolution

Boundary element discretizations of the solvation problem:

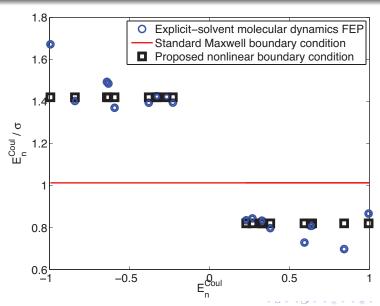
- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

38/60

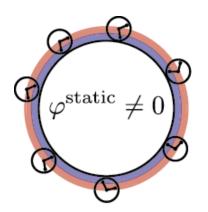
Outline

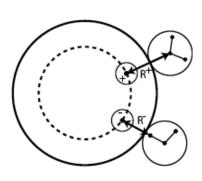
- Approximating the Poisson Operator
- Improving the Poisson Operator

Origins of Electrostatic Asymmetry

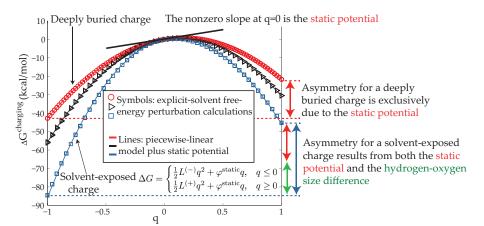


Origins of Electrostatic Asymmetry





Origins of Electrostatic Asymmetry



Solvation-Layer Interface Condition (SLIC)

Instead of assuming the model and energy and deriving the radii,

$$\epsilon_I \frac{\partial \Phi_I}{\partial n} = \epsilon_{II} \frac{\partial \Phi_{II}}{\partial n}$$

43/60

Solvation-Layer Interface Condition (SLIC)

assume the energy and radii and derive the model.

$$(\epsilon_I - \Delta \epsilon h(E_n)) \frac{\partial \Phi_I}{\partial n} = (\epsilon_{II} - \Delta \epsilon h(E_n)) \frac{\partial \Phi_{II}}{\partial n}$$

Solvation-Layer Interface Condition (SLIC)

Using our correspondence with the BIE form,

$$\left(\mathcal{I}+h(E_n)+\hat{\epsilon}\left(-\frac{1}{2}\mathcal{I}+\mathcal{D}^*\right)\right)\sigma=\hat{\epsilon}\sum_{k=1}^{Q}\frac{\partial G}{\partial n}$$

where h is a diagonal nonlinear integral operator.

SLIC

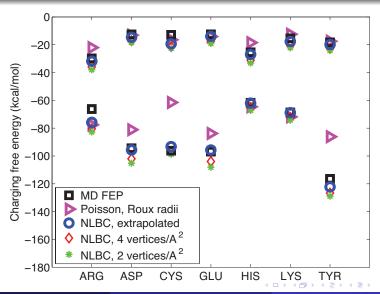
Boundary Perturbation

$$h(E_n) = \alpha \tanh (\beta E_n - \gamma) + \mu$$

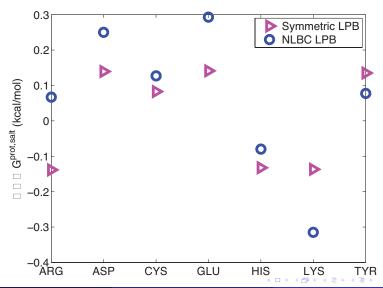
where

- α Size of the asymmetry
- β Width of the transition region
- γ The transition field strength
- μ Assures h(0) = 0, so $\mu = -\alpha \tanh(-\gamma)$

Residues

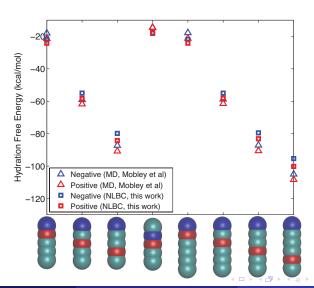


Protonation

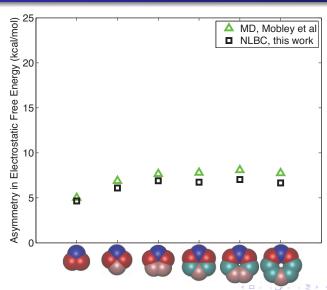


46/60

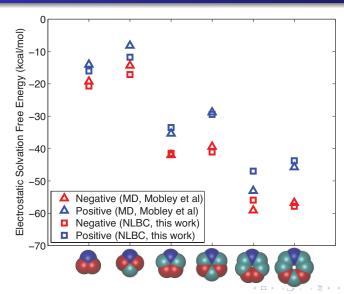
Synthetic Molecules



Synthetic Molecules

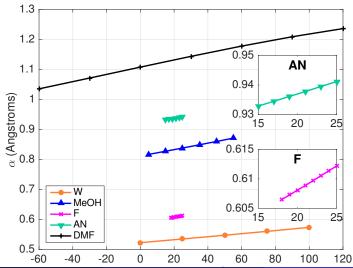


Synthetic Molecules



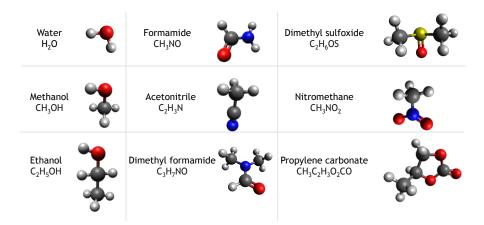
Thermodynamics

The parameters show linear temperature dependence



50/60

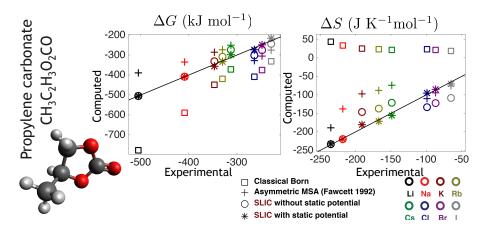
Courtesy A. Molvai Tabrizi



Courtesy A. Molvai Tabrizi

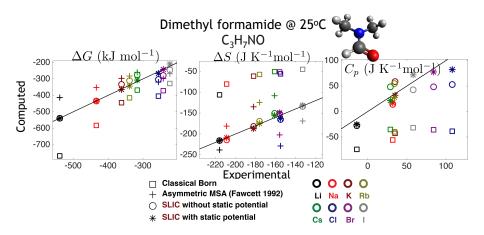
Solvent	r_s (Å)	$\epsilon_{out}(T)$	$\epsilon_{out}(25^{\circ}\text{C})$
W	1.370	$\epsilon_{out} = 87.740 - 4.0008e - 1 T + 9.398e - 4 T^2 - 1.410e - 6 T^3$	78.3
MeOH	1.855	$\log_{10} \epsilon_{out} = \log_{10}(32.63) - 2.64e - 3(T - 25)$	32.6
EtOH	2.180	$\log_{10} \epsilon_{out} = \log_{10}(24.30) - 02.70e - 3 (T - 25)$	24.3
F	1.725	$\epsilon_{out} = 109 - 7.2e - 1 \ (T - 20)$	105.4
AN	2.135	$\epsilon_{out} = 37.50 - 1.6e - 1 \ (T - 20)$	36.7
DMF	2.585	$\epsilon_{out} = 42.04569 - 2.204448e - 1 T + 7.718531e - 4 T^2 - 1.000389e - 6 T^3$	37.0
DMSO	2.455	$\epsilon_{out} = -60.5 + (5.7e4/(T + 273.15)) - (7.5e6/(T + 273.15)^2)$	46.3
NM	2.155	$\log_{10} \epsilon_{out} = \log_{10}(35.8) - 1.89e - 3 (T - 30)$	36.6
PC	2.680	$\epsilon_{out} = 56.670738 + 2.58431e - 1 T - 7.7143e - 4 T^2$	62.6

Courtesy A. Molvai Tabrizi



4 D > 4 A > 4 B > 4 B

Courtesy A. Molvai Tabrizi



Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan, Generalising the mean spherical approximation as a multiscale, nonlinear boundary condition at the solute-solvent interface, Molecular Physics (2016).

55/60

Thermodynamic Predictions

Courtesy A. Molvai Tabrizi

Solvent	Ion	ΔG (kJ mol ⁻¹)	ΔS (J K ^{- 1} mol ^{- 1})	$C_p (J K^{-1} mol^{-1})$
W	F-	-430 (-429)	-67 (-115)	-86 (-45)
МеОН	Rb+	-326(-319)	-178 (-175)	55
	F ⁻	-415	-116	-79 (-131)
EtOH	Rb⁺	-319 (-313)	-197 (-187)	128
	F-	-405	-145	-153 (-194)
F	Rb⁺	-340 (-334)	-135 (-130)	27
	F-	-418	-128	36 (28)
AN	F-	-390	-192	147
DMF	F-	-389	-230	105
DMSO	Rb⁺	-348 (-339)	-151 (-180)	32
	F-	-400	-160	186(60)
NM	Rb+	-324 (-318)	-186 (-183)	19
	F-	-391	-182	95(71)
PC	F-	-394	-149	67

Experimental Data in Parentheses

Thermodynamic Predictions

Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, S. Goossens, M.G. Knepley, and J.P. Bardhan,

Predicting solvation thermodynamics with dielectric continuum theory and a solvation-layer interface condition (SLIC).

Submitted to Journal of Physical Chemistry Letters (2016).

Where does SLIC fail?

- Large packing fraction
 - No charge oscillation or overcharging
 - Could use CDFT
- No dielectric saturation
 - Could be possible with different function
- No long range correlations
 - Use nonlocal dielectric

Future Work

- More complex solutes
- Mixtures
- Integration into community code
 - Psi4, QChem, APBS
- Integrate into conformational search
 - Kavrakis Lab at Rice

Thank You!

http://www.caam.rice.edu/~mk51