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Does this implementation
scale weakly?
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Does this implementation
scale weakly? strongly?



These models can answer. . .

Is one implementation more
efficient than another on
this machine?



What about questions like...



What about questions like...

Should I discretize this
problem with CG or DG?



What about questions like...

Should I solve using the
Picard or Newton Method?



The key notion we are missing is

accuracy
It distinguishes algorithms with
different convergence behavior
(ChangFabienKnepleyMills2018)
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Mesh Convergence Diagram
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Mesh Convergence Diagram
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Static Scaling Diagram
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Static Scaling Diagram
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T
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Consider an optimal PDE solver:

T = Wh−d and e = Chα

The error-time has a simple form

− log(e · T)
=− log

(
ChαWh−d)

=(d − α) log(h)− log(CW)
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Efficacy Diagram
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Efficacy Diagram
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Efficacy vs. Static Scaling

540 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545
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Figure 16: Time-accuracy performance analysis for the nearly incompressible problem (λ=103).
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Figure 17: Time-accuracy performance analysis for the nearly incompressible problem (λ=106).

In the next experiment we increase the Lamé parameter to λ = 106. Fig. 17 houses
the results. Due to round off-errors and deterioration of the multigrid preconditioner,
HDG discretizations for k > 3 are no longer more efficient. Fig. 17(a) shows that k = 2
and k = 3 have the best computational efficiency, and are more reliable than the other
discretizations. The processing of DoFs is competitive, as can be seen in Fig. 17(a). High
order is still beneficial, but now we deduce that k=3 is the most effective discretization,
since it has larger DoE and DoF/s measures.

We note that the classical performance analysis conducted in Section 3 does not pro-
vide the same insights as the TAS spectrum. The TAS measures take into account the

(Fabien2019)
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What else could we analyze?

Communication-Avoiding (CA)
algorithms have exciting
lower bounds

(BallardDemmelHoltzSchwartz2011)



What else could we analyze?

CA TSQR is a great success

(DemmelGrigoriHoemmenLangou2012)



What else could we analyze?

CA Krylov not a success



What else could we analyze?

CA Krylov not a success

Accuracy depends on coarse grid
communication in preconditioner



Future Questions:



Future Questions:

Is there a variational
characterization of
optimal algorithms?



Future Questions:

Can we think of error-time
as an Algorithmic Action?
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