
How to Choose an Algorithm

Matthew Knepley

Computer Science and Engineering
University at Buffalo

Finger Lakes HPC Meeting
University of Rochester

Rochester, NY October 14, 2022



RELACS People



How do we choose an algorithm?

We choose the fastest one. . .



How do we choose an algorithm?

We choose the fastest one. . .



Timing is tricky. It’s sensitive to

machine characteristics

problem details



Timing is tricky. It’s sensitive to

machine characteristics

problem details



Timing is tricky. It’s sensitive to

machine characteristics

problem details



Proxy measures can simplify design:

Computation (HPL)

Bandwidth (Roofline)

Latency (LogP)

Concurrency



Proxy measures can simplify design:

Computation (HPL)

Bandwidth (Roofline)

Latency (LogP)

Concurrency



Proxy measures can simplify design:

Computation (HPL)

Bandwidth (Roofline)

Latency (LogP)

Concurrency



Proxy measures can simplify design:

Computation (HPL)

Bandwidth (Roofline)

Latency (LogP)

Concurrency



Proxy measures can simplify design:

Computation (HPL)

Bandwidth (Roofline)

Latency (LogP)

Concurrency



These models can answer. . .



These models can answer. . .

Does this implementation
scale weakly?



These models can answer. . .

Does this implementation
scale weakly? strongly?



These models can answer. . .

Is one implementation more
efficient than another on
this machine?



What about questions like...



What about questions like...

Should I discretize this
problem with CG or DG?



What about questions like...

Should I solve using the
Picard or Newton Method?



The key notion we are missing is

accuracy
It distinguishes algorithms with
different convergence behavior
(ChangFabienKnepleyMills2018)



The key notion we are missing is

accuracy

It distinguishes algorithms with
different convergence behavior
(ChangFabienKnepleyMills2018)



The key notion we are missing is

accuracy
It distinguishes algorithms with
different convergence behavior
(ChangFabienKnepleyMills2018)





Problem



Problem

Machine



Problem

Machine

Algorithm



Mesh Convergence Diagram

0 1 2 3 4 5 6 7
DoS

0

1

2

3

4

5

6

7

Do
A

CG1
CG2
DG1
DG2



Mesh Convergence Diagram

0 1 2 3 4 5 6 7
DoS

0

1

2

3

4

5

6

7

Do
A

CG1
CG2
DG1
DG2

1/error vs. size



Mesh Convergence Diagram

0 1 2 3 4 5 6 7
DoS

0

1

2

3

4

5

6

7

Do
A

CG1
CG2
DG1
DG2

Does my Algorithm solve
this Problem?



Static Scaling Diagram

10 1 100 101 102

Time (s)
104

105

106

Do
F/

s
CG1
CG2
DG1
DG2



Static Scaling Diagram

10 1 100 101 102

Time (s)
104

105

106

Do
F/

s
CG1
CG2
DG1
DG2

size/time vs. time



Static Scaling Diagram

size/time vs. time



Static Scaling Diagram

10 1 100 101 102

Time (s)
104

105

106

Do
F/

s
CG1
CG2
DG1
DG2

size/time vs. time



Static Scaling Diagram

10 1 100 101 102

Time (s)
104

105

106

Do
F/

s
CG1
CG2
DG1
DG2

Is my Algorithm efficient on
this Machine?



How should we measure accuracy?

accuracy rate e
T

Marginal accuracy rate falls off
steeply with problem size



How should we measure accuracy?

accuracy rate e
T

Marginal accuracy rate falls off
steeply with problem size



How should we measure accuracy?

accuracy rate e
T

Marginal accuracy rate falls off
steeply with problem size



Consider an optimal PDE solver:

T = Wh−d and e = Chα

The error-time has a simple form

− log(e · T)
=− log

(
ChαWh−d)

=(d − α) log(h)− log(CW)



Consider an optimal PDE solver:

T = Wh−d and e = Chα

The error-time has a simple form

− log(e · T)
=− log

(
ChαWh−d)

=(d − α) log(h)− log(CW)



Consider an optimal PDE solver:

T = Wh−d and e = Chα

The error-time has a simple form

− log(e · T)
=− log

(
ChαWh−d)

=(d − α) log(h)− log(CW)



Efficacy Diagram

10 1 100 101 102

Time (s)
0

1

2

3

4

5

6

Do
E

CG1
CG2
DG1
DG2



Efficacy Diagram

10 1 100 101 102

Time (s)
0

1

2

3

4

5

6

Do
E

CG1
CG2
DG1
DG2

1/error-time vs. time



Efficacy Diagram

10 1 100 101 102

Time (s)
0

1

2

3

4

5

6

Do
E

CG1
CG2
DG1
DG2

1/error
size × size/time

time = 1/(error·time)
time



Efficacy Diagram

10 1 100 101 102

Time (s)
0

1

2

3

4

5

6

Do
E

CG1
CG2
DG1
DG2

Does my Algorithm solve this
Problem efficiently on this Machine?



Efficacy vs. Static Scaling

540 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

104 105 106 107

0

1

2

3

4

DoF

D
oE

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(a) DoE vs DoF

104 105 106 107

104

105

106

DoF

D
oF

/s

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(b) DoF/s vs DoF

Figure 16: Time-accuracy performance analysis for the nearly incompressible problem (λ=103).

104 105 106 107

0

1

2

3

DoF

D
oE

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(a) DoE vs DoF

104 105 106 107

104

105

106

DoF

D
oF

/s

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(b) DoF/s vs DoF

Figure 17: Time-accuracy performance analysis for the nearly incompressible problem (λ=106).

In the next experiment we increase the Lamé parameter to λ = 106. Fig. 17 houses
the results. Due to round off-errors and deterioration of the multigrid preconditioner,
HDG discretizations for k > 3 are no longer more efficient. Fig. 17(a) shows that k = 2
and k = 3 have the best computational efficiency, and are more reliable than the other
discretizations. The processing of DoFs is competitive, as can be seen in Fig. 17(a). High
order is still beneficial, but now we deduce that k=3 is the most effective discretization,
since it has larger DoE and DoF/s measures.

We note that the classical performance analysis conducted in Section 3 does not pro-
vide the same insights as the TAS spectrum. The TAS measures take into account the

(Fabien2019)



What else could we analyze?



What else could we analyze?

Communication-Avoiding (CA)
algorithms have exciting
lower bounds

(BallardDemmelHoltzSchwartz2011)



What else could we analyze?

CA TSQR is a great success

(DemmelGrigoriHoemmenLangou2012)



What else could we analyze?

CA Krylov not a success



What else could we analyze?

CA Krylov not a success

Accuracy depends on coarse grid
communication in preconditioner



Future Questions:



Future Questions:

Is there a variational
characterization of
optimal algorithms?



Future Questions:

Can we think of error-time
as an Algorithmic Action?



References I


