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Abstract 

MPI+OpenMP is frequently proposed as the right evolutionary programming 
model for exascale. Unfortunately, the evolutionary introduction of OpenMP 
into existing MPI-only codes is fraught with difficulty. We will describe "The 
Right Way" to do MPI+OpenMP and ultimately conclude that MPI+MPI is a more 
effective alternative for legacy codes. 
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Extreme Scalability Group Disclaimer 

•  I work in Intel Labs and therefore don't know anything about 
Intel products. 

•  I am not an official spokesman for Intel.   

•  I do not speak for my collaborators, whether they be inside or 
outside Intel. 

•  You may or may not be able to reproduce any performance 
numbers I report. 

•  Hanlon’s Razor (blame stupidity, not malice). 
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•  To MPI or not to MPI… 

•  One-sided vs. two-sided? 

•  Does your MPI/PGAS need a +X? 

•  Static vs. dynamic execution model? 

•  What synchronization motifs 
maximize performance across scales? 

Application programmers can afford to 
rewrite/redesign applications zero to one 
times every 20 years…  

HPC software design challenges 
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SHARED-MEMORY
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Application motivations for shared-memory 

Storage bottlenecks: 

•  Large, lookup (WORM) tables, e.g. Quantum Monte Carlo. 

•  Replicated data structures that scale with job size. 

•  Eliminate O(ppn) halo buffers. 

Communication bottlenecks: 

•  Load-store is (usually) faster than Send-Recv within a node. 

•  Complex data structures when dereferencing through indirection. 

•  Aggregation of small messages or I/O writes. 



Copyright ©  2015, Intel Corporation. All rights reserved.  
*Other names and brands may be claimed as the property of others. 

Optimization Notice 
8 

Threads: 

•  Automatic variables (i.e. stack) all 
shared by default. 

•  Per-thread privatization upon 
request (OpenMP, C11, C++11,…). 

•  Dealing with NUMA requires OS 
interactions (e.g. page-faulting). 

•  All library calls must use mutual 
exclusion for shared state. 

Processes: 

•  Automatic variables (i.e. stack) all 
private by default. 

•  Interprocess sharing upon request 
(Sys5, POSIX, MPI-3, XPMEM, …). 

•  NUMA placement done by MPI, 
private data naturally local. 

•  Mutual exclusion required only for 
explicitly shared state. 

Threads versus processes…  

PE = Processing Element = Thread or Process 
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MPI+THREADS

9 



Copyright ©  2015, Intel Corporation. All rights reserved.  
*Other names and brands may be claimed as the property of others. 

Optimization Notice 
10 

Choose Threads:  
•  Data sharing: free everywhere. 
•  Race conditions: fork-join or mutex them all. 
•  Compute sharing: must parallelize extensively 

or Amdahl will get you. 
Choose Processes: 
•  Data sharing: wherever necessary. 
•  Race conditions: only on shared data. 
•  Compute sharing: already done, up to MPI 

scalability. 

Design choices 

Fork 

Join 

MPI 

MPI 

Co
m

p 

Co
m

p 

Co
m

p 

Co
m

p 

Lack of libraries that exploit interprocess 
shared-memory is unfortunate, but compare 
ScaLAPACK to threaded LAPACK… 
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MPI_Init_thread(.., FUNNELED); 
#omp parallel 
{ 
  for (..) { Compute(..); } 
  #omp master 
  { MPI_Bar(..); } 
} 
MPI_Foo(..); 

MPI_Init_thread(.., SERIALIZE); 
#omp parallel 
{ 
  for (..) { 
    Compute(..); 
    #omp critical 
    { MPI_Bar(..); } 
  } 
} 
MPI_Foo(..); 
 

MPI-2 and Threads 
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MPI_Init_thread(.., MULTIPLE); 
#omp parallel 
{ 
  Compute(..); 
  MPI_Bar(..); 
} 
MPI_Foo(..); 

MPI-2 and Threads 

https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications 

int MPI_Bar(..)

{

  if (MULTIPLE) Lock(Mutex);

  rc = MPID_Bar(..);

  if (MULTIPLE) Unlock(Mutex);

  return rc;

}


int MPI_Bar(..)

{

  return MPID_Bar(..);

  /* ^ fine-grain locking

          inside of this call… */

}


This is the ONLY method that 
works reliably with more than 

one threading model! 

Common 

Optimized 

Open-MPI does not support MPI_THREAD_MULTIPLE correctly yet.  
Please complain to them and use M(VA)PICH (Intel/Cray MPI) instead. 
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Optimization work on threaded MPI 

•  P. Balaji, D. Buntinas, D. Goodell, W. D. Gropp, and R. Thakur. 2010. Fine-Grained Multi- threading Support 
for Hybrid Threaded MPI Programming. Int. J. High Perform. Comput. Appl. 24 (Feb. 2010), 49–57.  

•  D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar, B. R. de Supinski, and R. Thakur. 2010. 
Minimizing MPI Resource Contention in Multithreaded Multi- core Environments. In Proceedings of the 
2010 IEEE International Conference on Cluster Computing (CLUSTER ’10). IEEE Computer Society, 
Washington, DC, USA, 1–8.  

•  G. Dozsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Ratterman, and R. Thakur. 2010. Enabling 
Concurrent Multithreaded MPI Communication on Multicore Petascale Systems. In Proceedings of the 17th 
European MPI Users’ Group Meeting Conference on Re- cent Advances in the Message Passing Interface 
(EuroMPI’10). Springer-Verlag, Berlin, Heidelberg, 11–20.  

•  A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka. 2015. MPI+Threads: runtime contention and remedies. In 
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 
ACM, 239–248.  

•  K. Vaidyanathan, D. Kalamkar, K. Pamnany, J. Hammond, P. Balaji, D. Das, J. Park, and B. Joo.  SC15. 
``Improving concurrency and asynchrony in multithreaded MPI applications using software offloading.’’ 
http://dx.doi.org/10.1145/2807591.2807602 
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•  Application code is consistent with 
MPI_THREAD_MULTIPLE; 
implementation only requires 
MPI_THREAD_FUNNELED. 

•  Assumes agent thread can: 

•  keep up with application 

•  drive network   

•  Good for common use of NB p2p 
with bolt-on OpenMP. 

•  Side-effect: asynchronous progress 

MPI_Isend(ARGS)

{

  /* insert uses atomics to be �
       thread-safe without locking */

  insert(&queue,ARGS);

}

/* agent runs in a polling thread */

agent_function()

{

  ARGS = remove(&queue);

  PMPI_Send(ARGS);

} 



Software offloading for MPI_THREAD_MULTIPLE 
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PRK
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Standard methods 

•  NAS Parallel Benchmarks 

•  Mini Applications 
(e.g. Mantevo, LULESH) 

•  HPC Challenge 

There are numerous examples of 
these on record, covering a wide range 
of programming models, but is source 
available and curated*? 

What is measured? 

•  Productivity (?), elegance (?) 

•  Implementation quality 
(runtime or application) 

•  Asynchrony/overlap 

•  Semantics: 

•  Automatic load-balancing (AMR) 

•  Atomics (GUPS) 

•  Two-sided vs. one-sided, collectives 

Programming model evaluation 

* PRK curation is TBD. 
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Goals of the Parallel Research Kernels 
1.  Universality: Cover broad range of performance critical application patterns. 

2.  Simplicity: Concise pencil-and-paper definition and transparent C reference 
implementation. No domain knowledge required. 

3.  Portability: Should be implementable in any sufficiently general 
programming model. 

4.  Extensibility: Parameterized to run at any scale. Other knobs to adjust 
problem or algorithm included. 

5.  Verifiability: Automated correctness checking and built-in performance 
metric evaluation. 

6.  Hardware benchmark: No!  Use HPCChallenge, Xyz500, etc. for this. 
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•  Dense matrix transpose 
•  Synchronization: global 
•  Synchronization: point to point 
•  Scaled vector addition 
•  Atomic reference counting 
•  Vector reduction 
•  Sparse matrix-vector multiplication 
•  Random access update 
•  Stencil computation 
•  Dense matrix-matrix multiplication 
•  Branch 
•  Particle-in-cell 

Outline of PRK Suite 

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1 

Star-
shaped 
stencil 
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PRK implementations 
•  Serial 
•  OpenMP 
•  MPI1 – MPI two-sided 
•  FG-MPI – MPI1 using Fine Grain MPI from UBC 
•  AMPI – MPI1 using Adaptive MPI from 

•  MPIOMP – MPI two-sided with local OpenMP 
•  MPISHM – MPI two-sided with MPI-3 shared-memory 
•  MPIRMA – MPI one-sided communication (multiple flavors) 
•  SHMEM 
•  UPC 
•  Fortran 2008 (serial, OpenMP, coarrays, intrinsics) 
•  Python (simple and Numpy) 
•  Grappa (C++) 
•  Charm++ (C++) 

OpenMP, Serial and MPI support most 
of the PRKs.  Synch_p2p, Stencil and 
Transpose are primary targets for 
distributed-memory evaluation. 

In progress:  
Legion (Stanford) 

HPX (LSU & IU) 
OCR (Rice/Intel) 

Chapel (Cray) 
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Experimental apparatus 

See paper for details. 
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MPI+X based 
models win 
(X=OpenMP/MPI3) 

Transpose, strong scaled (49152x49152*) 

Aggregate performance MB/s 

* Charm++: (47104x47104) 
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Stencil, strong scaled (49152x49152*) 

Normalized performance (Mflops/#nodes)/Mflops_single_node_MPI1 
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Synch_p2p, strong scaled (49152x49152*) 

Aggregate performance MFlops 
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•  Private data is the right default, 
both for applications and for 
system software. 

•  Good OpenMP looks like MPI: 

•  Fork threads once. 

•  Very little data sharing. 

•  MPI+OpenMP usually entails bad 
OpenMP, especially when threaded 
libraries are involved. 

•  Good MPI+OpenMP is MPI+MPI. 

Conclusions 

Jonathan Goldsmith, Dos Equis and Heineken International had nothing to do with this slide. 
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MPI-3 RMA
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MPI-3 window constructor options 

Window ctor Buffer Restrictions T/S* 
Alloc_mem, Win_create input static, coll. B 
Win_allocate output static, coll. A 
Win_allocate_shared output ld/st domain A+ 
Alloc_mem, Win_{create_dynamic,attach}  input - ? 

* Time/space, i.e. performance and metadata scalability.  Details available elsewhere.   

•  Win_create cannot use symmetric memory, likely will not allocate shm or 
registered buffers without info keys. 

•  Dynamic windows require not-yet-standard info keys to cache RDMA 
metadata, in addition to the restrictions of Win_create. 

•  Win_allocate_shared hopefully deprecated (into Win_allocate) in MPI-4. 
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MPI RMA memory allocation 

•  All RMA operations act on windows, which are handles to opaque objects 
that describe memory on which RMA can act. 

•  MPI-2 had one way to construct a window.  MPI-3 added 2.5 new ways.  All of 
them are formally collective (more on this later). 

•  Most PGAS models require a suballocator, compiler and/or OS hooks for 
memory management in general… 

The purpose of multiple window constructors is to make 
the tradeoffs between flexibility and performance 

explicit.  MPI is nothing if not explicit. 
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Synchronization epochs 

MPI_Win w;

/* construct window */

MPI_Win_lock_all(MPI_MODE_NOCHECK,w); /* “PGAS mode” */

{



…


MPI_Put(..,pe,w); /* all RMA communications are nonblocking */


MPI_Win_flush_local(pe,w); /* local completion */


MPI_Win_flush (pe,w); /* remote completion = global visibility */


…


}

MPI_Win_unlock_all(w);

MPI_Win_free(w);


This is the only synchronization motif 
PGAS programmers should ever use. 
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Direct local access 

int * ptr; MPI_Win w;

MPI_Win_{allocate_shared,shared_query}(&ptr,&w);

…

if (pe==0) {



MPI_Put(..,pe=1,w); /* Write */


MPI_Win_flush (pe=1,w); /* Release */


        MPI_Send(..,pe=1); /* Send */

} else if (pe==1) {



MPI_Recv(..,pe=0); /* Recv */


MPI_Win_sync(w); /* Acquire*/


        int tmp = *ptr; /* Read */

}


This approach to memory consistency is 
consistent with OpenMP “flush”… 
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Direct local access 
#include <stdatomic.h>;

…

if (pe==0) {

    *ptr = 0x86; /* Write */

    atomic_thread_fence(…release); /* Release */

    MPI_Send(..,pe=1); /* Send */

} else if (pe==1) {

    MPI_Recv(..,pe=0); /* Recv */

    atomic_thread_fence(…acquire); /* Acquire */

    int tmp = *ptr; /* Read */

}


* This is Bill Gropp’s current position.  Fortran needs a memory model. 

•  Shared-memory is 
equivalent to threads.   

•  Threads cannot be 
implemented as a 
library.   

•  MPI is a library. 
 
à Use language (C11 or  
C++11) features instead 
of MPI_WIN_SYNC*. 
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Direct local access 
#include <stdatomic.h>;

atomic_flag *flag; MPI_Win wf;

MPI_Win_{allocate_shared,shared_query}(&flag,&wf);

ATOMIC_FLAG_INIT(*flag);

…

if (pe==0) {

    atomic_store_explicit(ptr,0x86,release); /* Write + Release*/

    atomic_store_explicit(flag,1,release); /* Send */

} else if (pe==1) {

    while (!atomic_load_explicit(flag,acquire)); /* Recv */

    int tmp = atomic_load_explicit(ptr,acquire); /* Acquire + Read */

}


Here MPI is just a portable wrapper around shared memory. 
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Topology Cartesian communicators were just the 
beginning – distributed graph topology 

allows expression of any communication 
pattern to the runtime. 

Neighborhood collectives express O(pairs) 
of communication in a single call.  Runtime 

can allocate persistent network resources 
because it knows the pattern in advance. 

Boundary element exchange as N isend-irecv + waitall 
is perhaps the most common MPI pattern. 
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MPI-3 SHARED MEMORY
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/* NUMA optimization */

MPI_Info_set(sheap_info, "alloc_shared_noncontig", "true");



double * my_base_ptr;

MPI_Win_allocate_shared(per_proc_shm_size, sizeof(double), sheap_info, 

node_comm, &my_base_ptr, &shm_win); /* collective L */



double** all_base_ptrs= malloc( node_comm_size * sizeof(double*) ); 

for (int rank=0; rank<node_comm_size ; rank++) {

    MPI_Aint size;

    int disp;

    MPI_Win_shared_query(shm_win, rank, &size, &disp, &all_base_ptrs[rank]);

}


35 

MPI-3 Shared memory 
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http://www.orau.gov/hpcor2015/whitepapers/Exascale_Computing_without_Threads-Barry_Smith.pdf  


