
THREADS: THE WRONG ABSTRACTION
AND THE WRONG SEMANTIC

Jeff Hammond
Parallel Computing Lab
Intel Corporation

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Abstract

MPI+OpenMP is frequently proposed as the right evolutionary programming
model for exascale. Unfortunately, the evolutionary introduction of OpenMP
into existing MPI-only codes is fraught with difficulty. We will describe "The
Right Way" to do MPI+OpenMP and ultimately conclude that MPI+MPI is a more
effective alternative for legacy codes.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

3

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Extreme Scalability Group Disclaimer

•  I work in Intel Labs and therefore don't know anything about
Intel products.

•  I am not an official spokesman for Intel.

•  I do not speak for my collaborators, whether they be inside or
outside Intel.

•  You may or may not be able to reproduce any performance
numbers I report.

•  Hanlon’s Razor (blame stupidity, not malice).

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

•  To MPI or not to MPI…

•  One-sided vs. two-sided?

•  Does your MPI/PGAS need a +X?

•  Static vs. dynamic execution model?

•  What synchronization motifs
maximize performance across scales?

Application programmers can afford to
rewrite/redesign applications zero to one
times every 20 years…

HPC software design challenges

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SHARED-MEMORY

6

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Application motivations for shared-memory

Storage bottlenecks:

•  Large, lookup (WORM) tables, e.g. Quantum Monte Carlo.

•  Replicated data structures that scale with job size.

•  Eliminate O(ppn) halo buffers.

Communication bottlenecks:

•  Load-store is (usually) faster than Send-Recv within a node.

•  Complex data structures when dereferencing through indirection.

•  Aggregation of small messages or I/O writes.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Threads:

•  Automatic variables (i.e. stack) all
shared by default.

•  Per-thread privatization upon
request (OpenMP, C11, C++11,…).

•  Dealing with NUMA requires OS
interactions (e.g. page-faulting).

•  All library calls must use mutual
exclusion for shared state.

Processes:

•  Automatic variables (i.e. stack) all
private by default.

•  Interprocess sharing upon request
(Sys5, POSIX, MPI-3, XPMEM, …).

•  NUMA placement done by MPI,
private data naturally local.

•  Mutual exclusion required only for
explicitly shared state.

Threads versus processes…

PE = Processing Element = Thread or Process

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MPI+THREADS

9

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Choose Threads:
•  Data sharing: free everywhere.
•  Race conditions: fork-join or mutex them all.
•  Compute sharing: must parallelize extensively

or Amdahl will get you.
Choose Processes:
•  Data sharing: wherever necessary.
•  Race conditions: only on shared data.
•  Compute sharing: already done, up to MPI

scalability.

Design choices

Fork

Join

MPI

MPI

Co
m

p

Co
m

p

Co
m

p

Co
m

p

Lack of libraries that exploit interprocess
shared-memory is unfortunate, but compare
ScaLAPACK to threaded LAPACK…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

MPI_Init_thread(.., FUNNELED);
#omp parallel
{
 for (..) { Compute(..); }
 #omp master
 { MPI_Bar(..); }
}
MPI_Foo(..);

MPI_Init_thread(.., SERIALIZE);
#omp parallel
{
 for (..) {
 Compute(..);
 #omp critical
 { MPI_Bar(..); }
 }
}
MPI_Foo(..);

MPI-2 and Threads

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

MPI_Init_thread(.., MULTIPLE);
#omp parallel
{
 Compute(..);
 MPI_Bar(..);
}
MPI_Foo(..);

MPI-2 and Threads

https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications

int MPI_Bar(..)

{

 if (MULTIPLE) Lock(Mutex);

 rc = MPID_Bar(..);

 if (MULTIPLE) Unlock(Mutex);

 return rc;

}

int MPI_Bar(..)

{

 return MPID_Bar(..);

 /* ^ fine-grain locking

 inside of this call… */

}

This is the ONLY method that
works reliably with more than

one threading model!

Common

Optimized

Open-MPI does not support MPI_THREAD_MULTIPLE correctly yet.
Please complain to them and use M(VA)PICH (Intel/Cray MPI) instead.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Optimization work on threaded MPI

•  P. Balaji, D. Buntinas, D. Goodell, W. D. Gropp, and R. Thakur. 2010. Fine-Grained Multi- threading Support
for Hybrid Threaded MPI Programming. Int. J. High Perform. Comput. Appl. 24 (Feb. 2010), 49–57.

•  D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar, B. R. de Supinski, and R. Thakur. 2010.
Minimizing MPI Resource Contention in Multithreaded Multi- core Environments. In Proceedings of the
2010 IEEE International Conference on Cluster Computing (CLUSTER ’10). IEEE Computer Society,
Washington, DC, USA, 1–8.

•  G. Dozsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Ratterman, and R. Thakur. 2010. Enabling
Concurrent Multithreaded MPI Communication on Multicore Petascale Systems. In Proceedings of the 17th
European MPI Users’ Group Meeting Conference on Re- cent Advances in the Message Passing Interface
(EuroMPI’10). Springer-Verlag, Berlin, Heidelberg, 11–20.

•  A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka. 2015. MPI+Threads: runtime contention and remedies. In
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 239–248.

•  K. Vaidyanathan, D. Kalamkar, K. Pamnany, J. Hammond, P. Balaji, D. Das, J. Park, and B. Joo. SC15.
``Improving concurrency and asynchrony in multithreaded MPI applications using software offloading.’’
http://dx.doi.org/10.1145/2807591.2807602

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

•  Application code is consistent with
MPI_THREAD_MULTIPLE;
implementation only requires
MPI_THREAD_FUNNELED.

•  Assumes agent thread can:

•  keep up with application

•  drive network

•  Good for common use of NB p2p
with bolt-on OpenMP.

•  Side-effect: asynchronous progress

MPI_Isend(ARGS)

{

 /* insert uses atomics to be �
 thread-safe without locking */

 insert(&queue,ARGS);

}

/* agent runs in a polling thread */

agent_function()

{

 ARGS = remove(&queue);

 PMPI_Send(ARGS);

}

Software offloading for MPI_THREAD_MULTIPLE

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

PRK

15

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Standard methods

•  NAS Parallel Benchmarks

•  Mini Applications
(e.g. Mantevo, LULESH)

•  HPC Challenge

There are numerous examples of
these on record, covering a wide range
of programming models, but is source
available and curated*?

What is measured?

•  Productivity (?), elegance (?)

•  Implementation quality
(runtime or application)

•  Asynchrony/overlap

•  Semantics:

•  Automatic load-balancing (AMR)

•  Atomics (GUPS)

•  Two-sided vs. one-sided, collectives

Programming model evaluation

* PRK curation is TBD.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Goals of the Parallel Research Kernels
1.  Universality: Cover broad range of performance critical application patterns.

2.  Simplicity: Concise pencil-and-paper definition and transparent C reference
implementation. No domain knowledge required.

3.  Portability: Should be implementable in any sufficiently general
programming model.

4.  Extensibility: Parameterized to run at any scale. Other knobs to adjust
problem or algorithm included.

5.  Verifiability: Automated correctness checking and built-in performance
metric evaluation.

6.  Hardware benchmark: No! Use HPCChallenge, Xyz500, etc. for this.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

•  Dense matrix transpose
•  Synchronization: global
•  Synchronization: point to point
•  Scaled vector addition
•  Atomic reference counting
•  Vector reduction
•  Sparse matrix-vector multiplication
•  Random access update
•  Stencil computation
•  Dense matrix-matrix multiplication
•  Branch
•  Particle-in-cell

Outline of PRK Suite

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Star-
shaped
stencil

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

PRK implementations
•  Serial
•  OpenMP
•  MPI1 – MPI two-sided
•  FG-MPI – MPI1 using Fine Grain MPI from UBC
•  AMPI – MPI1 using Adaptive MPI from

•  MPIOMP – MPI two-sided with local OpenMP
•  MPISHM – MPI two-sided with MPI-3 shared-memory
•  MPIRMA – MPI one-sided communication (multiple flavors)
•  SHMEM
•  UPC
•  Fortran 2008 (serial, OpenMP, coarrays, intrinsics)
•  Python (simple and Numpy)
•  Grappa (C++)
•  Charm++ (C++)

OpenMP, Serial and MPI support most
of the PRKs. Synch_p2p, Stencil and
Transpose are primary targets for
distributed-memory evaluation.

In progress:
Legion (Stanford)

HPX (LSU & IU)
OCR (Rice/Intel)

Chapel (Cray)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Experimental apparatus

See paper for details.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MPI+X based
models win
(X=OpenMP/MPI3)

Transpose, strong scaled (49152x49152*)

Aggregate performance MB/s

* Charm++: (47104x47104)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Stencil, strong scaled (49152x49152*)

Normalized performance (Mflops/#nodes)/Mflops_single_node_MPI1

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Synch_p2p, strong scaled (49152x49152*)

Aggregate performance MFlops

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

•  Private data is the right default,
both for applications and for
system software.

•  Good OpenMP looks like MPI:

•  Fork threads once.

•  Very little data sharing.

•  MPI+OpenMP usually entails bad
OpenMP, especially when threaded
libraries are involved.

•  Good MPI+OpenMP is MPI+MPI.

Conclusions

Jonathan Goldsmith, Dos Equis and Heineken International had nothing to do with this slide.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MPI-3 RMA

26

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

MPI-3 window constructor options

Window ctor Buffer Restrictions T/S*
Alloc_mem, Win_create input static, coll. B
Win_allocate output static, coll. A
Win_allocate_shared output ld/st domain A+
Alloc_mem, Win_{create_dynamic,attach} input - ?

* Time/space, i.e. performance and metadata scalability. Details available elsewhere.

•  Win_create cannot use symmetric memory, likely will not allocate shm or
registered buffers without info keys.

•  Dynamic windows require not-yet-standard info keys to cache RDMA
metadata, in addition to the restrictions of Win_create.

•  Win_allocate_shared hopefully deprecated (into Win_allocate) in MPI-4.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

MPI RMA memory allocation

•  All RMA operations act on windows, which are handles to opaque objects
that describe memory on which RMA can act.

•  MPI-2 had one way to construct a window. MPI-3 added 2.5 new ways. All of
them are formally collective (more on this later).

•  Most PGAS models require a suballocator, compiler and/or OS hooks for
memory management in general…

The purpose of multiple window constructors is to make
the tradeoffs between flexibility and performance

explicit. MPI is nothing if not explicit.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Synchronization epochs

MPI_Win w;

/* construct window */

MPI_Win_lock_all(MPI_MODE_NOCHECK,w); /* “PGAS mode” */

{

…

MPI_Put(..,pe,w); /* all RMA communications are nonblocking */

MPI_Win_flush_local(pe,w); /* local completion */

MPI_Win_flush (pe,w); /* remote completion = global visibility */

…

}

MPI_Win_unlock_all(w);

MPI_Win_free(w);

This is the only synchronization motif
PGAS programmers should ever use.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Direct local access

int * ptr; MPI_Win w;

MPI_Win_{allocate_shared,shared_query}(&ptr,&w);

…

if (pe==0) {

MPI_Put(..,pe=1,w); /* Write */

MPI_Win_flush (pe=1,w); /* Release */

 MPI_Send(..,pe=1); /* Send */

} else if (pe==1) {

MPI_Recv(..,pe=0); /* Recv */

MPI_Win_sync(w); /* Acquire*/

 int tmp = *ptr; /* Read */

}

This approach to memory consistency is
consistent with OpenMP “flush”…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Direct local access
#include <stdatomic.h>;

…

if (pe==0) {

 ptr = 0x86; / Write */

 atomic_thread_fence(…release); /* Release */

 MPI_Send(..,pe=1); /* Send */

} else if (pe==1) {

 MPI_Recv(..,pe=0); /* Recv */

 atomic_thread_fence(…acquire); /* Acquire */

 int tmp = *ptr; /* Read */

}

* This is Bill Gropp’s current position. Fortran needs a memory model.

•  Shared-memory is
equivalent to threads.

•  Threads cannot be
implemented as a
library.

•  MPI is a library.

à Use language (C11 or
C++11) features instead
of MPI_WIN_SYNC*.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Direct local access
#include <stdatomic.h>;

atomic_flag *flag; MPI_Win wf;

MPI_Win_{allocate_shared,shared_query}(&flag,&wf);

ATOMIC_FLAG_INIT(*flag);

…

if (pe==0) {

 atomic_store_explicit(ptr,0x86,release); /* Write + Release*/

 atomic_store_explicit(flag,1,release); /* Send */

} else if (pe==1) {

 while (!atomic_load_explicit(flag,acquire)); /* Recv */

 int tmp = atomic_load_explicit(ptr,acquire); /* Acquire + Read */

}

Here MPI is just a portable wrapper around shared memory.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Topology Cartesian communicators were just the
beginning – distributed graph topology

allows expression of any communication
pattern to the runtime.

Neighborhood collectives express O(pairs)
of communication in a single call. Runtime

can allocate persistent network resources
because it knows the pattern in advance.

Boundary element exchange as N isend-irecv + waitall
is perhaps the most common MPI pattern.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MPI-3 SHARED MEMORY

34

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

/* NUMA optimization */

MPI_Info_set(sheap_info, "alloc_shared_noncontig", "true");

double * my_base_ptr;

MPI_Win_allocate_shared(per_proc_shm_size, sizeof(double), sheap_info,

node_comm, &my_base_ptr, &shm_win); /* collective L */

double** all_base_ptrs= malloc(node_comm_size * sizeof(double*));

for (int rank=0; rank<node_comm_size ; rank++) {

 MPI_Aint size;

 int disp;

 MPI_Win_shared_query(shm_win, rank, &size, &disp, &all_base_ptrs[rank]);

}

35

MPI-3 Shared memory

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

http://www.orau.gov/hpcor2015/whitepapers/Exascale_Computing_without_Threads-Barry_Smith.pdf

