THREADS: THE WRONG ABSTRACTION
AND THE WRONG SEMANTIC

fffffffffff
Parallel Computing Lab
Intel Corporation

Abstract

MPI+OpenMP is frequently proposed as the right evolutionary programming
model for exascale. Unfortunately, the evolutionary introduction of OpenMP
into existing MPl-only codes is fraught with difficulty. We will describe "The
Right Way" to do MPI+OpenMP and ultimately conclude that MPI+MPI is a more
effective alternative for legacy codes.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Extreme Scalability Group Disclaimer

| work in Intel Labs and therefore don't know anything about
Intel products.

* | am not an official spokesman for Intel.

* | do not speak for my collaborators, whether they be inside or
outside Intel.

* You may or may not be able to reproduce any performance
numbers | report.

* Hanlon’s Razor (blame stupidity, not malice).

Optimization Notice
Copyright © 2015, Intel Corporation. All righ d

ts reserved.
*Other names and brands may be claimed as the property of others.

HPC software design challenges

ONE DOES/NOT SIMPLY
* To MPl or not to MPI... MILLIONS OF

e One-sided vs. two-sided?

* Does your MPI/PGAS need a +X?
« Static vs. dynamic execution model?

* What synchronization motifs
maximize performance across scales?

Application programmers can afford to

rewrite/redesign applications zero to one LINES OF APPLICATION CODE FOR
times every 20 years... - EXASCALE i3
. "ngjmegenerator.ne

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

SHARED-MEMORY

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Application motivations for shared-memory

Storage bottlenecks:

« Large, lookup (WORM) tables, e.g. Quantum Monte Carlo.

* Replicated data structures that scale with job size.

« Eliminate O(ppn) halo buffers.

Communication bottlenecks:

* Load-store is (usually) faster than Send-Recv within a node.

* Complex data structures when dereferencing through indirection.

« Aggregation of small messages or |/O writes.

Optimization Notice

pr h©05 le All rights reserved.
*Othe dbd yblmedlppyfh

Threads versus processes...

Threads: Processes:

« Automatic variables (i.e. stack) all Automatic variables (i.e. stack) all

shared by default. private by default.

» Per-thread privatization upon * Interprocess sharing upon request
request (OpenMP, C11, C++11,...). (Sys5, POSIX, MPI-3, XPMEM, ...).

* Dealing with NUMA requires OS « NUMA placement done by MPI,

interactions (e.g. page-faulting). private data naturally local.

* All library calls must use mutual Mutual exclusion required only for
exclusion for shared state. explicitly shared state.

PE = Processing Element = Thread or Process

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPI+THREADS

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Design choices

Choose Threads:
» Data sharing: free everywhere.
* Race conditions: fork-join or mutex them all.

* Compute sharing: must parallelize extensively
or Amdahl will get you.

Choose Processes:

« Data sharing: wherever necessary.

* Race conditions: only on shared data.

. Compute sharing: a[ready done up to MPI Lack of libraries that exploit interprocess
’ shared-memory is unfortunate, but compare

scalability. ScaLAPACK to threaded LAPACK...

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPI-2 and Threads

MPI_Init_thread(.., FUNNELED);
#omp parallel

{

#omp master
{ MPI_Bar(..); }

}
MPI_Foo(..);

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPI_Init_thread(.., SERIALIZE);
#omp parallel

{
for (.) {

#omp critical
{ MPI_Bar(..); }
}

}
MPI_Foo(..);

MPI-2 and Threads waern sert) ([COMMONTY

{
if (MULTIPLE) Lock(Mutex);

rc = MPID_Bar(..);

L’IOPrln_Fl)n;)t;rt:lﬁ?d(-w MULTIPLE); if (MULTIPLE) Unlock(Mutex);
return rc;

{)

Compute(..);

}MPI_Bar(..); int MPI_Bar(..) [Optimized }
{

MPI_Foo(..); return MPID_Bar(..);

r D /* " fine-grain locking

This is the ONLY method that inside of this call... */

works reliably with more than J

one threading model!
\ J Please complain to them and use M(VA)PICH (Intel/Cray MPI) instead.

Open-MPI does not support MPI_THREAD_MULTIPLE correctly yet.

Optimization Noti . D
T https://www.ieeetcsc.org/activities/blog/challenges_for_interoperability_of_runtime_systems_in_scientific_applications |nte| l 12

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization work on threaded MPI

P. Balaji, D. Buntinas, D. Goodell, W. D. Gropp, and R. Thakur. 2010. Fine-Grained Multi- threading Support
for Hybrid Threaded MPI Programming. Int. J. High Perform. Comput. Appl. 24 (Feb. 2010), 49-57.

* D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar, B. R. de Supinski, and R. Thakur. 2010.
Minimizing MPI Resource Contention in Multithreaded Multi- core Environments. In Proceedings of the
2010 IEEE International Conference on Cluster Computing (CLUSTER '10). IEEE Computer Society,
Washington, DC, USA, 1-8.

* G.Dozsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Ratterman, and R. Thakur. 2010. Enabling
Concurrent Multithreaded MPI Communication on Multicore Petascale Systems. In Proceedings of the 17th
European MPI Users’ Group Meeting Conference on Re- cent Advances in the Message Passing Interface

(EuroMPI'10). Springer-Verlag, Berlin, Heidelberg, 11-20.

* A Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka. 2015. MPI+Threads: runtime contention and remedies. In
PrCoceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 239-248.

* K. Vaidyanathan, D. Kalamkar, K. Pamnany, J. Hammond, P. Balaji, D. Das, J. Park, and B. Joo. SC15.
" “Improving concurrency and asynchrony in multithreaded MPI applications using software offloading.”

http://dx.doi.org/10.1145/2807591.2807602

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Software offloading for MPI THREAD MULTIPLE

« Application code is consistent with MPI_Isend(ARGS)

MPI_THREAD_ MULTIPLE; {
implementation only requires /* insert uses atomics to be
MPI_THREAD FUNNELED. thread-safe without locking */
insert(&queue,ARGS);
* Assumes agent thread can: }1 (&q ’);
« keep up with application /* agent runs in a polling thread */

agent_function()

{

* Good for common use of NB p2p ARGS = remove(&queue);
with bolt-on OpenMP. PMPI_Send(ARGS);

}

e drive network

« Side-effect: asynchronous progress

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Programming model evaluation

Standard methods What is measured?

 NAS Parallel Benchmarks * Productivity (?), elegance (?)

* Mini Applications * Implementation quality
(e.g. Mantevo, LULESH) (runtime or application)

 HPC Challenge « Asynchrony/overlap

There are numerous examples of * Semantics:

these on record, covering a wide range
of programming models, but is source
available and curated*? * Atomics (GUPS)

* Automatic load-balancing (AMR)

 Two-sided vs. one-sided, collectives

Optimization Notice

Copyright ® 2015, Intel Corporation. All rights reserved * PRK curation is TBD. Il'lt6| . 16

*Other names and brands may be claimed as the property of others.

Goals of the Parallel Research Kernels

1. Universality: Cover broad range of performance critical application patterns.

2. Simplicity: Concise pencil-and-paper definition and transparent C reference
implementation. No domain knowledge required.

3. Portability: Should be implementable in any sufficiently general
programming model.

4. Extensibility: Parameterized to run at any scale. Other knobs to adjust
problem or algorithm included.

5. Verifiability: Automated correctness checking and built-in performance
metric evaluation.

6. Hardwarebenchmark: No! Use HPCChallenge, Xyz500, etc. for this.

Optimization Notice

pr h©05 le All rights reserved.
*Othe dbd yblmedlppyfh

Outline of PRK Suite

 Dense matrix transpose e 0@

« Synchronization: global R
. . . . \

» Synchronization: point to point N4

* Scaled vector addition

« Atomic reference counting

* Vector reduction

« Sparse matrix-vector multiplication

 Random access update

« Stencil computation

* Dense matrix-matrix multiplication

* Branch

* Particle-in-cell

o—@
Star-
shaped
stencil

A=At A - A

lj_

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OpenMP, Serial and MPI support most

PRK Im plementatlons of the PRKs. Synch_p2p, Stencil and
e Serial Transpose are primary targets for
.« OpenMP distributed-memory evaluation.

MPI1 — MPI two-sided

* FG-MPI - MPI1 using Fine Grain MP| from UBC

* AMPI - MPI1 using Adaptive MPI from

« MPIOMP - MPI two-sided with local OpenMP
 MPISHM - MPI two-sided with MPI-3 shared-memory
« MPIRMA - MPI| one-sided communication (multiple flavors)
« SHMEM @
« UPC

« Fortran 2008 (serial, OpenMP, coarrays, intrinsics)
* Python (simple and Numpy)

* Grappa (C++)

In progress: D)
Legion (Stanford)
HPX (LSU & IU)
OCR (Rice/Intel)

« Charm++ (C++) _ Chapel (Cray))

Optimization Notice . 3
Copyr gh@ 2015, Intel Corporation. Al rights reserved. |ntel l 19

*Other db dmayblmedlppyfh

Experimental apparatus

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. See paper for details.
*Other names and brands may be claimed as the property of others.

Transpose, strong scaled (49152x49152%)

1000000 :
S MPI+X based -

—
% = =X MPIOPENMP models win g
T MPIRMAfence| i (X:OpenMP/MPIB) AAAAAAAAAA R e R R o.‘

4 & MPIRMAflush / ¢
&40 MPISHM12
4 - = MPISHM24 v
B ® SHMEM
#—& BUPC

® - ® CRAYUPC

% CHARM++1
4 - 4 GRAPPA

800000}

600000

400000}

Normalized Performance

200000

24 48 192 384 768 1536 3072 6144 12288
Cores

Aggregate performance MB/s

Optimization Notice

Copyrig ht@ 2015 Intel Corporation. All rights reserved. b Charm++: (47104X47104)

*Other and brands may be cl l imed as the p operty of other:

Stencil, strong scaled (49152x49152%)

1.6— — - MPI1 FF MPIRMA {8 sHMEM @ @ CRAYUPC a4 CHARM++4 4pdp GRAPPA
X MPIOPENMP {-{) MPISHM12 #-# BUPC b Je CHARM++1 &4 CHARM++16

1.4}

e
N

-~
[=)

Normalized Performance
o
(o0

0.6 B

04 A

0.2 "

0.0 ! | ! ! ! 1 1 1 ! i -

24 48 96 192 384 768 1536 3072 6144 12288
Cores

Normalized performance (Mflops/#nodes)/Mflops_single node_ MPI1

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Synch_p2p, strong scaled (49152x49152%)

35000 — ’ - MPI1 ¥ MPIRMA [SHMEM @ @& BUPCsem & & CHARM++1 & & CHARM++16 ’ .
> MPIOPENMP s % MPISHM @~k BUPC # @ CRAYUPC <l -l CHARM++4 “GRAPPA

30000

1

25000}

20000

MFLOPs

15000

T

10000

5000

24 48 96 192 384 768 1536 3072 6144 12288
Cores

Aggregate performance MFlops

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

| don't always compute in parallel

Conclusions

‘
E
-

* Private data is the right default,
both for applications and for
system software.

* Good OpenMP looks like MPL:

 Fork threads once.

* Very little data sharing.

 MPI+OpenMP usually entails bad
OpenMP, especially when threaded
libraries are involved.

* Good MPI+OpenMP is MPI+MPI. but when | do, | prefer MPI.

Optimization Notice /3
Copyright © 2015, Intel Corporation. All rights reserved Jonathan Goldsmith, Dos Equis and Heineken International had nothing to do with this slide. (intel 24

*Other names and brands may be claimed as the property of others.

MPI-3 RMA

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPI-3 window constructor options

mm

Alloc_mem, Win_create input static, coll.
Win_allocate output static, coll. A
Win_allocate_shared output ld/st domain A+
Alloc_mem, Win_{create_dynamic,attach} input - ?

* Win_create cannot use symmetric memory, likely will not allocate shm or
registered buffers without info keys.

* Dynamic windows require not-yet-standard info keys to cache RDMA
metadata, in addition to the restrictions of Win_create.

« Win_allocate shared hopefully deprecated (into Win_allocate) in MPI-4.

Optimization Notice

Copyrig ht@ 2015 Intel Corporation. All rights reserved. * Time/space, i.e. performance and metadata scalability. Details available elsewhere. |ntel . 27
*Other and brands may be cl l imed as the p operty of other:

MP| RMA memory allocation

« All RMA operations act on windows, which are handles to opaque objects
that describe memory on which RMA can act.

* MPI-2 had one way to construct a window. MPI-3 added 2.5 new ways. All of
them are formally collective (more on this later).

* Most PGAS models require a suballocator, compiler and/or OS hooks for
memory management in general...

The purpose of multiple window constructors is to make
the tradeoffs between flexibility and performance
explicit. MPI is nothing if not explicit.

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Synchronization epochs

MPI_Win w;
/* construct window */

MPI_Win_lock_all(MPI_MODE_NOCHECK,w); /* “PGAS mode” */

{
MPI_Put(..,pe,w); /* all RMA communications are nonblocking */
MPI_Win_flush_local(pe,w); /* local completion */
MPI_Win_flush (pe,w); /* remote completion = global visibility */
}

MPI_Win_unlock_all(w);
MPI_Win_free(w);

This is the only synchronization motif
PGAS programmers should ever use.

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Direct local access

int * ptr; MPI_Win w;
MPI_Win_{allocate_shared,shared_query}(&ptr,&w);

if (pe==0) {

MPI_Put(..,pe=1,w); /* Write */
MPI_Win_flush (pe=1,w); /* Release */
MPI_Send(..,pe=1);/* Send */

} else if (pe==1) {
MPI_Recv(..,pe=0); /* Recv */
MPI_Win_sync(w); /* Acquire*/
int tmp = *ptr; /* Read */

This approach to memory consistency is
consistent with OpenMP “flush”...

}

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Direct local access

#include <stdatomic.h>;

* Shared-memory is
equivalent to threads.
Threads cannot be
implemented as a
library.

 MPlis alibrary.

if (pe==0) {
ptr = 0x86; / Write */
atomic_thread_fence(...release); /* Release */
MPI_Send(..,pe=1);/* Send */

} else if (pe==1) {
MPI_Recv(..,pe=0); /* Recv */
atomic_thread_fence(...acquire); /* Acquire */ = Use lRiausee €1 o7

: = % e *
} int tm ptr; /* Read */ C++11) features instead
of MPI_WIN_SYNC*.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. * This is Bill Gropp's current position. Fortran needs a memory model.
*Other names and brands may be claimed as the property of others.

Direct local access

#include <stdatomic.h>;

atomic_flag *flag; MPI_Win wf;
MPI_Win_{allocate_shared,shared_query}(&flag,8wrf);
ATOMIC_FLAG_INIT(*flag);

if (pe==0) {
atomic_store_explicit(ptr,0x86,release); /* Write + Release™*/

atomic_store_explicit(flag,l,release); /* Send */

} else if (pe==1) {
while (latomic_load_explicit(flag,acquire)); /* Recv */
int tmp = atomic_load_explicit(ptr,acquire); /* Acquire + Read */

}

Optimization Notice
Here MPI is just a portable wrapper around shared memory.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

To po[ogy Cartesian communicators were just the

beginning — distributed graph topology
allows expression of any communication
pattern to the runtime.

Neighborhood collectives express O(pairs)
of communication in a single call. Runtime
can allocate persistent network resources

because it knows the pattern in advance.

Boundary element exchange as N isend-irecv + waitall
is perhaps the most common MPI pattern.

Optimization Notice

prgh@ 2015, Intel Corpor: All rights reserved.
*Other db dmayblmedlppyfh

MPI-3 SHARED MEMORY

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPI-3 Shared memory

/* NUMA optimization */
MPI_Info_set(sheap_info, "alloc_shared_noncontig", "true");

double * my_base_ptr;

MPI_Win_allocate_shared(per_proc_shm_size, sizeof(double), sheap_info,
node_comm, &my_base_ptr, &shm_win); /* collective ® */

double* * all_base_ptrs= malloc(node_comin_size * sizeof(double*));
for (int rank=0; rank<node_comimn_size ; rank++) {

MPI_Aint size;

int disp;

MPI_Win_shared_query(shm_win, rank, &size, &disp, &all_base_ptrs[rank]);
}

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Exascale Computing without Threads”

A White Paper Submitted to the
DOE High Performance Computing Operational Review (HPCOR)
on Scientific Software Architecture for Portability and Performance
August 2015

Matthew G. Knepley', Jed Brown?, Barry Smith?®, Karl Rupp®, and Mark Adams*
'Rice University, ?Argonne National Laboratory, >*TU Wien, *Lawrence Berkeley National Laboratory

knepley@rice.edu, [jedbrown,bsmith]@mcs.anl.gov, ruppQiue.tuwien.ac.at, mfadams@lbl.gov

http://www.orau.gov/hpcor2015/whitepapers/Exascale Computing without Threads-Barry Smith.pdf

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

