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Abstract

MPI+OpenMP is frequently proposed as the right evolutionary programming
model for exascale. Unfortunately, the evolutionary introduction of OpenMP
into existing MPl-only codes is fraught with difficulty. We will describe "The
Right Way" to do MPI+OpenMP and ultimately conclude that MPI+MPI is a more
effective alternative for legacy codes.
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Extreme Scalability Group Disclaimer

| work in Intel Labs and therefore don't know anything about
Intel products.

* | am not an official spokesman for Intel.

* | do not speak for my collaborators, whether they be inside or
outside Intel.

* You may or may not be able to reproduce any performance
numbers | report.

* Hanlon’s Razor (blame stupidity, not malice).
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HPC software design challenges

ONE DOES/NOT SIMPLY
* To MPl or not to MPI... MILLIONS OF

e One-sided vs. two-sided?

* Does your MPI/PGAS need a +X?
« Static vs. dynamic execution model?

* What synchronization motifs
maximize performance across scales?

Application programmers can afford to

rewrite/redesign applications zero to one LINES OF APPLICATION CODE FOR
times every 20 years... - EXASCALE i3
. "ngjmegenerator.ne
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SHARED-MEMORY
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Application motivations for shared-memory

Storage bottlenecks:

« Large, lookup (WORM) tables, e.g. Quantum Monte Carlo.

* Replicated data structures that scale with job size.

« Eliminate O(ppn) halo buffers.

Communication bottlenecks:

* Load-store is (usually) faster than Send-Recv within a node.

* Complex data structures when dereferencing through indirection.

« Aggregation of small messages or |/O writes.
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Threads versus processes...

Threads: Processes:

« Automatic variables (i.e. stack) all Automatic variables (i.e. stack) all

shared by default. private by default.

» Per-thread privatization upon * Interprocess sharing upon request
request (OpenMP, C11, C++11,...). (Sys5, POSIX, MPI-3, XPMEM, ...).

* Dealing with NUMA requires OS « NUMA placement done by MPI,

interactions (e.g. page-faulting). private data naturally local.

* All library calls must use mutual Mutual exclusion required only for
exclusion for shared state. explicitly shared state.

PE = Processing Element = Thread or Process
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MPI+THREADS
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Design choices

Choose Threads:
» Data sharing: free everywhere.
* Race conditions: fork-join or mutex them all.

* Compute sharing: must parallelize extensively
or Amdahl will get you.

Choose Processes:

« Data sharing: wherever necessary.

* Race conditions: only on shared data.

. Compute sharing: a[ready done up to MPI Lack of libraries that exploit interprocess
’ shared-memory is unfortunate, but compare

scalability. ScaLAPACK to threaded LAPACK...
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MPI-2 and Threads

MPI_Init_thread(.., FUNNELED);
#omp parallel

{

#omp master
{ MPI_Bar(..); }

}
MPI_Foo(..);
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MPI_Init_thread(.., SERIALIZE);
#omp parallel

{
for (.) {

#omp critical
{ MPI_Bar(..); }
}

}
MPI_Foo(..);



MPI-2 and Threads waern sert) ([COMMONTY

{
if (MULTIPLE) Lock(Mutex);

rc = MPID_Bar(..);

L’IOPrln_Fl)n;)t;rt:lﬁ?d(-w MULTIPLE); if (MULTIPLE) Unlock(Mutex);
return rc;

{ )

Compute(..);

}MPI_Bar(..); int MPI_Bar(..) [ Optimized }
{

MPI_Foo(..); return MPID_Bar(..);

r D /* " fine-grain locking

This is the ONLY method that inside of this call... */

works reliably with more than J

one threading model!
\ J Please complain to them and use M(VA)PICH (Intel/Cray MPI) instead.

Open-MPI does not support MPI_THREAD_MULTIPLE correctly yet.
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Optimization work on threaded MPI

P. Balaji, D. Buntinas, D. Goodell, W. D. Gropp, and R. Thakur. 2010. Fine-Grained Multi- threading Support
for Hybrid Threaded MPI Programming. Int. J. High Perform. Comput. Appl. 24 (Feb. 2010), 49-57.

* D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar, B. R. de Supinski, and R. Thakur. 2010.
Minimizing MPI Resource Contention in Multithreaded Multi- core Environments. In Proceedings of the
2010 IEEE International Conference on Cluster Computing (CLUSTER '10). IEEE Computer Society,
Washington, DC, USA, 1-8.

* G.Dozsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Ratterman, and R. Thakur. 2010. Enabling
Concurrent Multithreaded MPI Communication on Multicore Petascale Systems. In Proceedings of the 17th
European MPI Users’ Group Meeting Conference on Re- cent Advances in the Message Passing Interface

(EuroMPI'10). Springer-Verlag, Berlin, Heidelberg, 11-20.

* A Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka. 2015. MPI+Threads: runtime contention and remedies. In
PrCoceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 239-248.

* K. Vaidyanathan, D. Kalamkar, K. Pamnany, J. Hammond, P. Balaji, D. Das, J. Park, and B. Joo. SC15.
" “Improving concurrency and asynchrony in multithreaded MPI applications using software offloading.”

http://dx.doi.org/10.1145/2807591.2807602
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Software offloading for MPI THREAD MULTIPLE

« Application code is consistent with MPI_Isend(ARGS)

MPI_THREAD_ MULTIPLE; {
implementation only requires /* insert uses atomics to be
MPI_THREAD FUNNELED. thread-safe without locking */
insert(&queue,ARGS);
* Assumes agent thread can: }1 (&q ’ );
« keep up with application /* agent runs in a polling thread */

agent_function()

{

* Good for common use of NB p2p ARGS = remove(&queue);
with bolt-on OpenMP. PMPI_Send(ARGS);

}

e drive network

« Side-effect: asynchronous progress
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Programming model evaluation

Standard methods What is measured?

 NAS Parallel Benchmarks * Productivity (?), elegance (?)

* Mini Applications * Implementation quality
(e.g. Mantevo, LULESH) (runtime or application)

 HPC Challenge « Asynchrony/overlap

There are numerous examples of * Semantics:

these on record, covering a wide range
of programming models, but is source
available and curated*? * Atomics (GUPS)

* Automatic load-balancing (AMR)

 Two-sided vs. one-sided, collectives
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Goals of the Parallel Research Kernels

1. Universality: Cover broad range of performance critical application patterns.

2. Simplicity: Concise pencil-and-paper definition and transparent C reference
implementation. No domain knowledge required.

3. Portability: Should be implementable in any sufficiently general
programming model.

4. Extensibility: Parameterized to run at any scale. Other knobs to adjust
problem or algorithm included.

5. Verifiability: Automated correctness checking and built-in performance
metric evaluation.

6. Hardwarebenchmark: No! Use HPCChallenge, Xyz500, etc. for this.
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Outline of PRK Suite

 Dense matrix transpose e 0@

« Synchronization: global R
. . . . \

» Synchronization: point to point N4

* Scaled vector addition

« Atomic reference counting

* Vector reduction

« Sparse matrix-vector multiplication

 Random access update

« Stencil computation

* Dense matrix-matrix multiplication

* Branch

* Particle-in-cell

o—@
Star-
shaped
stencil

A=At A - A

lj_
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OpenMP, Serial and MPI support most

PRK Im plementatlons of the PRKs. Synch_p2p, Stencil and
e Serial Transpose are primary targets for
.« OpenMP distributed-memory evaluation.

MPI1 — MPI two-sided

* FG-MPI - MPI1 using Fine Grain MP| from UBC

* AMPI - MPI1 using Adaptive MPI from

« MPIOMP - MPI two-sided with local OpenMP
 MPISHM - MPI two-sided with MPI-3 shared-memory
« MPIRMA - MPI| one-sided communication (multiple flavors)
« SHMEM @
« UPC

« Fortran 2008 (serial, OpenMP, coarrays, intrinsics)
* Python (simple and Numpy)

* Grappa (C++)

In progress: D)
Legion (Stanford)
HPX (LSU & IU)
OCR (Rice/Intel)

« Charm++ (C++) \_ Chapel (Cray) )
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Experimental apparatus
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Transpose, strong scaled (49152x49152%)
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Stencil, strong scaled (49152x49152%)
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Synch_p2p, strong scaled (49152x49152%)

35000 — ’ - MPI1 ¥ MPIRMA [ SHMEM @ @& BUPCsem & & CHARM++1 & & CHARM++16 ’ .
> MPIOPENMP s % MPISHM @~k BUPC # @ CRAYUPC <l -l CHARM++4 “GRAPPA

30000

1

25000}

20000

MFLOPs

15000

T

10000

5000

24 48 96 192 384 768 1536 3072 6144 12288
Cores

Aggregate performance MFlops

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



| don't always compute in parallel

Conclusions

‘
E
-

* Private data is the right default,
both for applications and for
system software.

* Good OpenMP looks like MPL:

 Fork threads once.

* Very little data sharing.

 MPI+OpenMP usually entails bad
OpenMP, especially when threaded
libraries are involved.

* Good MPI+OpenMP is MPI+MPI. but when | do, | prefer MPI.
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MPI-3 RMA
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MPI-3 window constructor options

mm

Alloc_mem, Win_create input static, coll.
Win_allocate output static, coll. A
Win_allocate_shared output  ld/st domain A+
Alloc_mem, Win_{create_dynamic,attach} input - ?

* Win_create cannot use symmetric memory, likely will not allocate shm or
registered buffers without info keys.

* Dynamic windows require not-yet-standard info keys to cache RDMA
metadata, in addition to the restrictions of Win_create.

« Win_allocate shared hopefully deprecated (into Win_allocate) in MPI-4.
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MP| RMA memory allocation

« All RMA operations act on windows, which are handles to opaque objects
that describe memory on which RMA can act.

* MPI-2 had one way to construct a window. MPI-3 added 2.5 new ways. All of
them are formally collective (more on this later).

* Most PGAS models require a suballocator, compiler and/or OS hooks for
memory management in general...

The purpose of multiple window constructors is to make
the tradeoffs between flexibility and performance
explicit. MPI is nothing if not explicit.
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Synchronization epochs

MPI_Win w;
/* construct window */

MPI_Win_lock_all(MPI_MODE_NOCHECK,w); /* “PGAS mode” */

{
MPI_Put(..,pe,w); /* all RMA communications are nonblocking */
MPI_Win_flush_local(pe,w); /* local completion */
MPI_Win_flush (pe,w); /* remote completion = global visibility */
}

MPI_Win_unlock_all(w);
MPI_Win_free(w);

This is the only synchronization motif
PGAS programmers should ever use.
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Direct local access

int * ptr; MPI_Win w;
MPI_Win_{allocate_shared,shared_query}(&ptr,&w);

if (pe==0) {

MPI_Put(..,pe=1,w); /* Write */
MPI_Win_flush (pe=1,w); /* Release */
MPI_Send(..,pe=1);/* Send */

} else if (pe==1) {
MPI_Recv(..,pe=0); /* Recv */
MPI_Win_sync(w); /* Acquire*/
int tmp = *ptr; /* Read */

This approach to memory consistency is
consistent with OpenMP “flush”...

}
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Direct local access

#include <stdatomic.h>;

* Shared-memory is
equivalent to threads.
Threads cannot be
implemented as a
library.

 MPlis alibrary.

if (pe==0) {
*ptr = 0x86; /* Write */
atomic_thread_fence(...release); /* Release */
MPI_Send(..,pe=1);/* Send */

} else if (pe==1) {
MPI_Recv(..,pe=0); /* Recv */
atomic_thread_fence(...acquire); /* Acquire */ = Use lRiausee €1 o7

: = % e *
} int tm ptr; /* Read */ C++11) features instead
of MPI_WIN_SYNC*.
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Direct local access

#include <stdatomic.h>;

atomic_flag *flag; MPI_Win wf;
MPI_Win_{allocate_shared,shared_query}(&flag,8wrf);
ATOMIC_FLAG_INIT(*flag);

if (pe==0) {
atomic_store_explicit(ptr,0x86,release); /* Write + Release™*/

atomic_store_explicit(flag,l,release); /* Send */

} else if (pe==1) {
while (latomic_load_explicit(flag,acquire)); /* Recv */
int tmp = atomic_load_explicit(ptr,acquire); /* Acquire + Read */

}

Optimization Notice
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To po[ogy Cartesian communicators were just the

beginning — distributed graph topology
allows expression of any communication
pattern to the runtime.

Neighborhood collectives express O(pairs)
of communication in a single call. Runtime
can allocate persistent network resources

because it knows the pattern in advance.

Boundary element exchange as N isend-irecv + waitall
is perhaps the most common MPI pattern.
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MPI-3 SHARED MEMORY
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MPI-3 Shared memory

/* NUMA optimization */
MPI_Info_set(sheap_info, "alloc_shared_noncontig", "true");

double * my_base_ptr;

MPI_Win_allocate_shared(per_proc_shm_size, sizeof(double), sheap_info,
node_comm, &my_base_ptr, &shm_win); /* collective ® */

double* * all_base_ptrs= malloc( node_comin_size * sizeof(double*) );
for (int rank=0; rank<node_comimn_size ; rank++) {

MPI_Aint size;

int disp;

MPI_Win_shared_query(shm_win, rank, &size, &disp, &all_base_ptrs[rank]);
}
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Exascale Computing without Threads”

A White Paper Submitted to the
DOE High Performance Computing Operational Review (HPCOR)
on Scientific Software Architecture for Portability and Performance
August 2015

Matthew G. Knepley', Jed Brown?, Barry Smith?®, Karl Rupp®, and Mark Adams*
'Rice University, ?Argonne National Laboratory, >*TU Wien, *Lawrence Berkeley National Laboratory

knepley@rice.edu, [jedbrown,bsmith]@mcs.anl.gov, ruppQiue.tuwien.ac.at, mfadams@lbl.gov

http://www.orau.gov/hpcor2015/whitepapers/Exascale Computing without Threads-Barry Smith.pdf
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