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Likely Exascale Architectures 

•  From “Abstract Machine Models and Proxy 
Architectures for Exascale Computing Rev 1.1,” J 
Ang et al 
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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache
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Applications Still MPI-
Everywhere 

•  Benefit of programmer-managed 
locality 
♦ Memory performance nearly stagnant 
♦ Parallelism for performance implies locality 

must be managed effectively 
•  Benefit of a single programming system 

♦ Often stated as desirable but with little 
evidence 

♦ Common to mix Fortran, C, Python, etc. 
♦ But…Interface between systems must work 

well, and often don’t 
•  E.g., for MPI+OpenMP, who manages the cores 

and how is that negotiated? 
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Why Do Anything Else? 

•  Performance 
♦ May avoid memory (though probably not 

cache) copies 
•  Easier load balance 

♦ Shift work among cores with shared memory 
•  More efficient fine-grain algorithms 

♦  Load/store rather than routine calls 
♦ Option for algorithms that include races 

(asynchronous iteration, ILU approximations) 
•  Adapt to modern node architeture… 
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Performance Bottlenecks 
with MPI Everywhere 

• Classic Performance Model 
♦ T = s + rn 
♦ Model combines overhead and 

network latency (s) and a single 
communication rate 1/r 

♦ Good fit to machines when it was 
introduced (esp. if adapted to eager 
and rendezvous regimes) 

♦ But does it match modern SMP-based 
machines? 
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SMP Nodes: One Model 
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Modeling the Communication 

• Each link can support a rate rL of 
data 

• Data is pipelined (Logp model) 
♦ Store and forward analysis is different 

• Overhead is completely parallel 
♦ k processes sending one short 

message each takes the same time as 
one process sending one short 
message 
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A Slightly Better Model 

• Assume that the sustained 
communication rate is limited by 
♦ The maximum rate along any shared 

link 
• The link between NICs 

♦ The aggregate rate along parallel 
links 
• Each of the “links” from an MPI process 

to/from the NIC 
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A Slightly Better Model 

• For k processes sending messages, 
the sustained rate is 
♦ min(RNIC-NIC, kRCORE-NIC) 

• Thus 
♦ T = s + kn/Min(RNIC-NIC, kRCORE-NIC) 

• Note if RNIC-NIC is very large (very 
fast network), this reduces to 
♦ T = s + kn/(kRCORE-NIC) = s + n/RCORE-

NIC 
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Observed Rates for Large 
Messages 
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Time for PingPong with k 
Processes 
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Hybrid Programming with 
Shared Memory 

•  MPI-3 allows different processes to allocate 
shared memory through MPI 
♦  MPI_Win_allocate_shared 

•  Uses many of the concepts of one-sided 
communication 

•  Applications can do hybrid programming using 
MPI or load/store accesses on the shared 
memory window 

•  Other MPI functions can be used to 
synchronize access to shared memory regions 

•  Can be simpler to program than threads 
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Creating Shared Memory 
Regions in MPI 

MPI_COMM_WORLD 

MPI_Comm_split_type    (COMM_TYPE_SHARED) 

Shared memory 
communicator 

MPI_Win_allocate_shared 

Shared memory 
window 

Shared memory 
window 

Shared memory 
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Load/store 

Regular RMA windows vs. 
Shared memory windows 

•  Shared memory windows allow 
application processes to 
directly perform load/store 
accesses on all of the window 
memory 
♦  E.g., x[100] = 10 

•  All of the existing RMA 
functions can also be used on 
such memory for more 
advanced semantics such as 
atomic operations 

•  Can be very useful when 
processes want to use threads 
only to get access to all of the 
memory on the node 
♦  You can create a shared memory 

window and put your shared data 
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Shared Arrays With Shared 
Memory Windows 

int main(int argc, char ** argv) 
{ 
    int buf[100]; 
 
    MPI_Init(&argc, &argv); 
    MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm); 
    MPI_Win_allocate_shared(comm, ..., &win); 
 
    MPI_Win_lockall(win); 
 
    /* copy data to local part of shared memory */ 
    MPI_Win_sync(win); 
 
    /* use shared memory */ 
 
    MPI_Win_unlock_all(win); 
 
    MPI_Win_free(&win); 
    MPI_Finalize(); 
    return 0; 
} 
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Example: Using Shared 
Memory with Threads 

•  Regular grid exchange test case 
♦  3D regular grid is divided into subcubes along the 

xy-plane, 1D partitioning 
♦  Halo exchange of xy-planes: P0 -> \P1 -> P2 -> P3… 
♦  Three versions: 

•  MPI only 
•  Hybrid OpenMP/MPI model with loop parallelism, no 

explicit communication: "hybrid naïve” 
•  Coarse grain hybrid OpenMP/MPI model, explicit halo 

exchange within shared memory: "hybrid task", 
threads essentially treated as MPI processes, similar to 
MPI SM 

•  A simple 7-point stencil operation is used as a 
test SPMV 
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Intranode Halo Performance 
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Internode Halo Performance 
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Summary 

•  Unbalanced interconnect resources 
require new thinking about performance 

•  Shared memory, used directly either by 
threads or MPI processes, can improve 
performance by reducing memory 
motion and footprint 

•  MPI-3 shared memory provides an 
option for MPI-everywhere codes 

•  Shared memory programming is hard 
♦ There are good reasons to use data parallel 

abstractions and let the compiler handle 
shared memory synchronization 
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