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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

e From “Abstract Machine Models and Proxy
j Architectures for Exascale Computing Rev 1.1," ]
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Applications Still MPI-
Everywhere
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e Benefit of programmer-managed
locality
¢ Memory performance nearly stagnant
¢ Parallelism for performance implies locality
must be managed effectively
e Benefit of a single programming system

¢ Often stated as desirable but with little
evidence

¢ Common to mix Fortran, C, Python, etc.

¢ But...Interface between systems must work

well, and often don’t

e E.g., for MPI+OpenMP, who manages the cores
and how is that negptiated? PARALLEL@|LLINOIS



Why Do Anything Else?

Performance

¢ May avoid memory (though probably not
cache) copies

Easier load balance
¢ Shift work among cores with shared memory

More efficient fine-grain algorithms

¢ Load/store rather than routine calls

¢ Option for algorithms that include races
(asynchronous iteration, ILU approximations)

Adapt to modern node architeture...
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Performance Bottlenecks
with MPI Everywhere

e Classic Performance Model
¢ =s+rn

¢ Model combines overhead and
network latency (s) and a single
communication rate 1/r

¢ Good fit to machines when it was
introduced (esp. if adapted to eager
and rendezvous regimes)

¢ But does it match modern SMP-based
][ machines?

5 PARALLEL@ILLINOIS



SMP Nodes: One Model
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Modeling the Communication

e Each link can support a rate r, of
data

e Data is pipelined (Logp model)
¢ Store and forward analysis is different

e Overhead is completely parallel

¢ k processes sending one short
message each takes the same time as
one process sending one short
message

; PARALLEL@ILLINOIS



A Slightly Better Model

e Assume that the sustained
communication rate is limited by

¢ The maximum rate along any shared
link
e The link between NICs
¢ The aggregate rate along parallel
links

e Each of the “links” from an MPI process
to/from the NIC

g PARALLEL@ILLINOIS



A Slightly Better Model

e For k processes sending messages,
the sustained rate is
¢ Min(Ryic-nicr KRcore-nic)

e Thus
¢T =s + kn/Min(Ryic-nicy KRcore-nic)

e Note if Ry;c.nic IS Very large (very
fast network), this reduces to
¢T =5 + kn/(KRcore-nic) = S + N/Reore-

][ NIC
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Observed Rates for Large
Messages
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Time for PingPong with k

Processes
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Hybrid Programming with
Shared Memory

MPI-3 allows different processes to allocate
shared memory through MPI
¢ MPI_Win_allocate_shared

Uses many of the concepts of one-sided
communication

Applications can do hybrid programming using
MPI or load/store accesses on the shared
memory window

Other MPI functions can be used to
synchronize access to shared memory regions

Can be simpler to program than threads
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Creating Shared Memory
Regions in MPI
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Regular RMA windows vs.
Shared memory windows

Local memory

Traditional RMA
windows

Load/store
Load/store

Local memory

][ Shared memory
windows
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Local memory

Load/store.
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Shared memory windows allow
application processes to
directly perform load/store
accesses on all of the window
memory

¢ E.g., x[100] = 10
All of the existing RMA
functions can also be used on
such memory for more
advanced semantics such as
atomic operations

Can be very useful when
processes want to use threads
only to get access to all of the
memory on the node

¢ You can create a shared memory
window and put your shared data

PARALLEL@ILLINOIS



Shared Arrays With Shared
Memory Windows

int main(int argc, char ** argv)

{
int buf[100];
MPI Init(&argc, &argv);
MPI Comm split type(..., MPI_COMM TYPE SHARED, .., &comm);
MPI Win allocate_ shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI Win sync(win) ;

/* use shared memory */
MPI Win unlock all(win) ;
MPI Win free (&win) ;

MPI Finalize();
return O;

5 PARALLEL@ILLINOIS



Example: Using Shared
Memory with Threads

e Regular grid exchange test case
¢ 3D regular grid is divided into subcubes along the
xy-plane, 1D partitioning
¢ Halo exchange of xy-planes: PO -> \P1 -> P2 -> P3...

¢ Three versions:

e MPI only

e Hybrid OpenMP/MPI model with loop parallelism, no
explicit communication: "hybrid naive”

e Coarse grain hybrid OpenMP/MPI model, explicit halo

exchange within shared memory: "hybrid task",
threads essentially treated as MPI processes, similar to

MPI SM
e A simple 7-point stencil operation is used as a
][ test SPMV

1867
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Intranode Halo Performance
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Internode Halo Performance
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Summary

Unbalanced interconnect resources
require new thinking about performance

Shared memory, used directly either by
threads or MPI processes, can improve
performance by reducing memory
motion and footprint

MPI-3 shared memory provides an
option for MPI-everywhere codes

Shared memory programming is hard

¢ There are good reasons to use data parallel
abstractions and let the compiler handle

shared memory synchronization
Y Sy PARALLEL@ILLINOIS




Thanks!

e Philipp Samfass
e Luke Olson

e Pavan Balaji, Rajeev Thakur,
Torsten Hoefler

e ExxonMobile

e Blue Waters Sustained Petascale
Project
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