
MPI + MPI: Using MPI-3
Shared Memory As a

Multicore Programming
System

William Gropp
www.cs.illinois.edu/~wgropp

2

Likely Exascale Architectures

•  From “Abstract Machine Models and Proxy
Architectures for Exascale Computing Rev 1.1,” J
Ang et al

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Note: not fully
cache coherent

3

Applications Still MPI-
Everywhere

•  Benefit of programmer-managed
locality
♦ Memory performance nearly stagnant
♦ Parallelism for performance implies locality

must be managed effectively
•  Benefit of a single programming system

♦ Often stated as desirable but with little
evidence

♦ Common to mix Fortran, C, Python, etc.
♦ But…Interface between systems must work

well, and often don’t
•  E.g., for MPI+OpenMP, who manages the cores

and how is that negotiated?

4

Why Do Anything Else?

•  Performance
♦ May avoid memory (though probably not

cache) copies
•  Easier load balance

♦ Shift work among cores with shared memory
•  More efficient fine-grain algorithms

♦  Load/store rather than routine calls
♦ Option for algorithms that include races

(asynchronous iteration, ILU approximations)
•  Adapt to modern node architeture…

5

Performance Bottlenecks
with MPI Everywhere

• Classic Performance Model
♦ T = s + rn
♦ Model combines overhead and

network latency (s) and a single
communication rate 1/r

♦ Good fit to machines when it was
introduced (esp. if adapted to eager
and rendezvous regimes)

♦ But does it match modern SMP-based
machines?

6

SMP Nodes: One Model

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

7

Modeling the Communication

• Each link can support a rate rL of
data

• Data is pipelined (Logp model)
♦ Store and forward analysis is different

• Overhead is completely parallel
♦ k processes sending one short

message each takes the same time as
one process sending one short
message

8

A Slightly Better Model

• Assume that the sustained
communication rate is limited by
♦ The maximum rate along any shared

link
• The link between NICs

♦ The aggregate rate along parallel
links
• Each of the “links” from an MPI process

to/from the NIC

9

A Slightly Better Model

• For k processes sending messages,
the sustained rate is
♦ min(RNIC-NIC, kRCORE-NIC)

• Thus
♦ T = s + kn/Min(RNIC-NIC, kRCORE-NIC)

• Note if RNIC-NIC is very large (very
fast network), this reduces to
♦ T = s + kn/(kRCORE-NIC) = s + n/RCORE-

NIC

10

Observed Rates for Large
Messages

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n=256k

n=512k

n=1M

n=2M

Reached
maximum
data rate

Not double
single
process rate

11

Time for PingPong with k
Processes

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
1 10 100 1000 10000 100000 1000000 10000000

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

Series16

12

Hybrid Programming with
Shared Memory

•  MPI-3 allows different processes to allocate
shared memory through MPI
♦  MPI_Win_allocate_shared

•  Uses many of the concepts of one-sided
communication

•  Applications can do hybrid programming using
MPI or load/store accesses on the shared
memory window

•  Other MPI functions can be used to
synchronize access to shared memory regions

•  Can be simpler to program than threads

13

Creating Shared Memory
Regions in MPI

MPI_COMM_WORLD

MPI_Comm_split_type (COMM_TYPE_SHARED)

Shared memory
communicator

MPI_Win_allocate_shared

Shared memory
window

Shared memory
window

Shared memory
window

Shared memory
communicator

Shared memory
communicator

14

Load/store

Regular RMA windows vs.
Shared memory windows

•  Shared memory windows allow
application processes to
directly perform load/store
accesses on all of the window
memory
♦  E.g., x[100] = 10

•  All of the existing RMA
functions can also be used on
such memory for more
advanced semantics such as
atomic operations

•  Can be very useful when
processes want to use threads
only to get access to all of the
memory on the node
♦  You can create a shared memory

window and put your shared data

Local	memory	

P0	

Local	memory	

P1	

Load/store
PUT/GET

Traditional RMA
windows

Load/store

Local	memory	

P0	 P1	

Load/store

Shared memory
windows

Load/store

15

Shared Arrays With Shared
Memory Windows

int main(int argc, char ** argv)
{
 int buf[100];

 MPI_Init(&argc, &argv);
 MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
 MPI_Win_allocate_shared(comm, ..., &win);

 MPI_Win_lockall(win);

 /* copy data to local part of shared memory */
 MPI_Win_sync(win);

 /* use shared memory */

 MPI_Win_unlock_all(win);

 MPI_Win_free(&win);
 MPI_Finalize();
 return 0;
}

16

Example: Using Shared
Memory with Threads

•  Regular grid exchange test case
♦  3D regular grid is divided into subcubes along the

xy-plane, 1D partitioning
♦  Halo exchange of xy-planes: P0 -> \P1 -> P2 -> P3…
♦  Three versions:

•  MPI only
•  Hybrid OpenMP/MPI model with loop parallelism, no

explicit communication: "hybrid naïve”
•  Coarse grain hybrid OpenMP/MPI model, explicit halo

exchange within shared memory: "hybrid task",
threads essentially treated as MPI processes, similar to
MPI SM

•  A simple 7-point stencil operation is used as a
test SPMV

17

Intranode Halo Performance

18

Internode Halo Performance

19

Summary

•  Unbalanced interconnect resources
require new thinking about performance

•  Shared memory, used directly either by
threads or MPI processes, can improve
performance by reducing memory
motion and footprint

•  MPI-3 shared memory provides an
option for MPI-everywhere codes

•  Shared memory programming is hard
♦ There are good reasons to use data parallel

abstractions and let the compiler handle
shared memory synchronization

20

Thanks!

• Philipp Samfass
• Luke Olson
• Pavan Balaji, Rajeev Thakur,

Torsten Hoefler
• ExxonMobile
• Blue Waters Sustained Petascale

Project

