
‘-

1

Software Abstractions for Structure Preservation

Matt Knepley

Computer Science and Engineering
University at Buffalo

Geometric Mechanics Formulations for Continuum Mechanics
Banff, CA

Mar 20, 2025

Never believe anything

until you run it.

Outline

Structure Preservation

Finite Elements

Algebraic Solvers

Timesteppers

Lessons

What is a Structure-Preserving Method?
Conservation

Conserved quantities can arise,

from continuous symmetries.

(Neuenschwander 2017)

What is a Structure-Preserving Method?
Montonicity

We can preserve

solution positivity (Horvath 2004)

entropy monotonicity (Kraus and Hirvijoki 2017)

solution monotonicity (Suresh and Huynh 1997)

What is a Structure-Preserving Method?
Montonicity

We can preserve

solution positivity (Horvath 2004)

entropy monotonicity (Kraus and Hirvijoki 2017)

solution monotonicity (Suresh and Huynh 1997)

What is a Structure-Preserving Method?
Manifolds

We can preserve

symplectic manifolds, (Ranocha and Ketcheson 2020)

chiral manifolds, (Brower 1971)

group manifolds. (Munthe-Kaas 1999)

What is a Structure-Preserving Method?
Manifolds

We can preserve

symplectic manifolds, (Ranocha and Ketcheson 2020)

chiral manifolds, (Brower 1971)

group manifolds. (Munthe-Kaas 1999)

What is a Structure-Preserving Method?
Algebraic Relations

We can preserve

symplecticity, (Skeel and Cieśliński 2020)

algebraic compatibility, (Bonelle 2014)

null spaces. (Schöberl 1999)

What is a Structure-Preserving Method?
Algebraic Relations

We can preserve

symplecticity, (Skeel and Cieśliński 2020)

algebraic compatibility, (Bonelle 2014)

null spaces. (Schöberl 1999)

What might I want from Software?

Accuracy

Stability

Efficiency

Scalability

What might I want from Software?

Accuracy

Stability

Efficiency

Scalability

What might I want from Software?

Accuracy

Stability

Efficiency

Scalability

What might I want from Software?

Accuracy

Stability

Efficiency

Scalability

What might I want from Software?

Understandibility

Concision and Simplicity

Fewest Concepts (Occam’s Razor)

Ex. UNIX File abstraction

https://en.wikipedia.org/wiki/Occam's_razor

What might I want from Software?

Understandibility

Concision and Simplicity

Fewest Concepts (Occam’s Razor)

Ex. UNIX File abstraction

https://en.wikipedia.org/wiki/Occam's_razor

What might I want from Software?

Understandibility

Concision and Simplicity

Fewest Concepts (Occam’s Razor)

Ex. UNIX File abstraction

https://en.wikipedia.org/wiki/Occam's_razor

What might I want from Software?

Understandibility

Concision and Simplicity

Fewest Concepts (Occam’s Razor)

Ex. UNIX File abstraction

https://en.wikipedia.org/wiki/Occam's_razor

What might I want from Software?

Maintainability

Small maintainer group

Often depends on workflows (Configure/Build/Test)

Porting and optimization

Ex. PETSc (Brown, Knepley, and Smith 2015)

https://petsc.org/

What might I want from Software?

Maintainability

Small maintainer group

Often depends on workflows (Configure/Build/Test)

Porting and optimization

Ex. PETSc (Brown, Knepley, and Smith 2015)

https://petsc.org/

What might I want from Software?

Maintainability

Small maintainer group

Often depends on workflows (Configure/Build/Test)

Porting and optimization

Ex. PETSc (Brown, Knepley, and Smith 2015)

https://petsc.org/

What might I want from Software?

Maintainability

Small maintainer group

Often depends on workflows (Configure/Build/Test)

Porting and optimization

Ex. PETSc (Brown, Knepley, and Smith 2015)

https://petsc.org/

What might I want from Software?

Maintainability

Small maintainer group

Often depends on workflows (Configure/Build/Test)

Porting and optimization

Ex. PETSc (Brown, Knepley, and Smith 2015)

https://petsc.org/

What might I want from Software?

Extensibility

Composability (Brown, Knepley, May, et al. 2012)

Can existing objects form a new thing?

Increasing functionality, constant maintenance burden

Ex. Reynolds-robust PC (Farrell, Mitchell, et al. 2019)

What might I want from Software?

Extensibility

Composability (Brown, Knepley, May, et al. 2012)

Can existing objects form a new thing?

Increasing functionality, constant maintenance burden

Ex. Reynolds-robust PC (Farrell, Mitchell, et al. 2019)

What might I want from Software?

Extensibility

Composability (Brown, Knepley, May, et al. 2012)

Can existing objects form a new thing?

Increasing functionality, constant maintenance burden

Ex. Reynolds-robust PC (Farrell, Mitchell, et al. 2019)

What might I want from Software?

Extensibility

Composability (Brown, Knepley, May, et al. 2012)

Can existing objects form a new thing?

Increasing functionality, constant maintenance burden

Ex. Reynolds-robust PC (Farrell, Mitchell, et al. 2019)

What might I want from Software?

Extensibility

Composability (Brown, Knepley, May, et al. 2012)

Can existing objects form a new thing?

Increasing functionality, constant maintenance burden

Ex. Reynolds-robust PC (Farrell, Mitchell, et al. 2019)

What might I want from Software?

Humility

Your interface might not be for everyone

Expose multiple layers

Ex. BLAS/LAPACK (Anderson et al. 1995)

What might I want from Software?

Humility

Your interface might not be for everyone

Expose multiple layers

Ex. BLAS/LAPACK (Anderson et al. 1995)

What might I want from Software?

Humility

Your interface might not be for everyone

Expose multiple layers

Ex. BLAS/LAPACK (Anderson et al. 1995)

What might I want from Software?

Humility

Your interface might not be for everyone

Expose multiple layers

Ex. BLAS/LAPACK (Anderson et al. 1995)

Outline

Structure Preservation

Finite Elements
Primal Basis
Dual Basis
Finite Elements

Algebraic Solvers

Timesteppers

Lessons

Outline

Finite Elements
Primal Basis
Dual Basis
Finite Elements

Basis Representation

How should we represent an element?

Tabulate basis functions

Basis Representation

How should we represent an element?

Tabulate basis functions

Assemble residual/Jacobian
L2 projection
Boundary conditions

Basis Representation

How should we represent an element?

Tabulate basis functions

FIAT
Deal.II
DUNE
FreeFEM++

Basis Representation

What could we do with
an explicit basis representation?

Runtime tabulation for particle methods

Basis Representation

What could we do with
an explicit basis representation?

Runtime tabulation for particle methods

Outline

Finite Elements
Primal Basis
Dual Basis
Finite Elements

Dual Basis

How could we tabulate the dual basis?

Dual Basis

How could we tabulate the dual basis?

By Riesz-Markov-Kakutani (Wikipedia 2015a),

dual vectors are quadrature rules.

ψi → {xi,wi}

Dual Basis

How could we tabulate the dual basis?

We also have a geometric

decomposition of the dual space

mesh point → {ψi}

Dual Basis

Exposing the dual basis allows
cheap, custom interpolation.

The geometric decomposition
makes interpolation on

embedded manifolds easy.

Dual Basis

Exposing the dual basis allows
cheap, custom interpolation.

The geometric decomposition
makes interpolation on

embedded manifolds easy.

Dual Basis

Geometric decomposition +
Discrete Hodge Star =

(Isaac 2022)

Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single isomorphism to trace-free subspaces

⋆̊T : PrΛ
k(T) → P̊−

r+k+1Λ
n−k(T)

⋆̊T : P−
r Λ

k(T) → P̊r+kΛ
n−k(T)

Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single isomorphism to trace-free subspaces

⋆̊T : Λk(T) → Λ̊n−k(T)

that acts pointwise.

Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single extension operator

Ef ,g : Λ̊
k(f) → Λk(g)

that acts pointwise.

Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single extension operator that decomposes

PrΛ
k(g) =

⊕

f∈∆(g)

Ef ,g

(
P̊rΛ

k(f)
)

P−
r Λ

k(g) =
⊕

f∈∆(g)

Ef ,g

(
P̊−

r Λ
k(f)

)

Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single extension operator that decomposes

Λk(g) =
⊕

f∈∆(g)

Ef ,g

(
Λ̊k(f)

)

Outline

Finite Elements
Primal Basis
Dual Basis
Finite Elements

FE Representation

Instead of names,
we can refer to elements by structure

FE Representation

Instead of names,
we can refer to elements by structure

Primal Space
polynomial
trimmed polynomial
direct product
direct sum

FE Representation

Instead of names,
we can refer to elements by structure

Dual Space
Lagrange
direct sum

Raviart-Thomas on a Simplex

-petscspace_degree <k>
-petscspace_type ptrimmed

-petscdualspace_form_degree -1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true

Raviart-Thomas on a Simplex

-petscspace_degree <k>
-petscspace_type ptrimmed

-petscdualspace_form_degree -1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true

Raviart-Thomas on a Quadrilateral

-petscspace_type sum
-petscspace_variables 2
-petscspace_components 2
-petscspace_sum_spaces 2
-petscspace_sum_concatenate true

-sumcomp_0_petscspace_variables 2
-sumcomp_0_petscspace_type tensor
-sumcomp_0_petscspace_tensor_spaces 2
-sumcomp_0_petscspace_tensor_uniform false
-sumcomp_0_tensorcomp_0_petscspace_degree <k>
-sumcomp_0_tensorcomp_1_petscspace_degree <k-1>

Raviart-Thomas on a Quadrilateral

-petscspace_type sum
-petscspace_variables 2
-petscspace_components 2
-petscspace_sum_spaces 2
-petscspace_sum_concatenate true

-sumcomp_0_petscspace_variables 2
-sumcomp_0_petscspace_type tensor
-sumcomp_0_petscspace_tensor_spaces 2
-sumcomp_0_petscspace_tensor_uniform false
-sumcomp_0_tensorcomp_0_petscspace_degree <k>
-sumcomp_0_tensorcomp_1_petscspace_degree <k-1>

Raviart-Thomas on a Quadrilateral

-sumcomp_1_petscspace_variables 2
-sumcomp_1_petscspace_type tensor
-sumcomp_1_petscspace_tensor_spaces 2
-sumcomp_1_petscspace_tensor_uniform false
-sumcomp_1_tensorcomp_0_petscspace_degree <k-1>
-sumcomp_1_tensorcomp_1_petscspace_degree <k>

-petscdualspace_form_degree -1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true

Raviart-Thomas on a Quadrilateral

-sumcomp_1_petscspace_variables 2
-sumcomp_1_petscspace_type tensor
-sumcomp_1_petscspace_tensor_spaces 2
-sumcomp_1_petscspace_tensor_uniform false
-sumcomp_1_tensorcomp_0_petscspace_degree <k-1>
-sumcomp_1_tensorcomp_1_petscspace_degree <k>

-petscdualspace_form_degree -1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true

Brezzi-Douglas-Marini on a Simplex

-petscspace_degree <k>

-petscdualspace_form_degree -1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed false

Brezzi-Douglas-Marini on a Simplex

-petscspace_degree <k>

-petscdualspace_form_degree -1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed false

First Kind Nedelec on a Simplex

-petscspace_degree <k>
-petscspace_type ptrimmed

-petscdualspace_form_degree 1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true

First Kind Nedelec on a Simplex

-petscspace_degree <k>
-petscspace_type ptrimmed

-petscdualspace_form_degree 1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true

Second Kind Nedelec on a Simplex

-petscspace_degree <k>

-petscdualspace_form_degree 1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed false

Second Kind Nedelec on a Simplex

-petscspace_degree <k>

-petscdualspace_form_degree 1
-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed false

Exterior Calculus

Could we build

an explicit basis for AltkV?

src/dm/dt/interface/dtaltv.c

https://gitlab.com/petsc/petsc/-/blob/main/src/dm/dt/interface/dtaltv.c?ref_type=heads

Exterior Calculus

We can check that the differential
commutes with discretization:

dΠ(ω) = Π(dω)
src/dm/dt/tests/ex14.c

Produce a constructive proof in Lean?

https://gitlab.com/petsc/petsc/-/blob/edcc29da3305830a0a8ec6a689bc6308a1397a1c/src/dm/dt/tests/ex14.c

Exterior Calculus

We can check that the differential
commutes with discretization:

dΠ(ω) = Π(dω)
src/dm/dt/tests/ex14.c

Produce a constructive proof in Lean?

https://gitlab.com/petsc/petsc/-/blob/edcc29da3305830a0a8ec6a689bc6308a1397a1c/src/dm/dt/tests/ex14.c

Outline

Structure Preservation

Finite Elements

Algebraic Solvers

Timesteppers

Lessons

Parameter-Robust Smoothers

Smoothers for

L + αK

can suffer as α → ∞ if

N (K) ̸= ∅.

Parameter-Robust Smoothers

Smoothers for

−∇ · 2νϵ(u) + (u · ∇)u − α∇(∇ · u)

can suffer as α → ∞ if

N (∇(∇ · u)) ̸= ∅.

Parameter-Robust Smoothers

The Schur complement is almost

S−1 ≈ −(ν + α)M−1
p

but the velocity smoother is hard.

Parameter-Robust Smoothers

Patch smoothers satisfying

N (K) =
∑

i

Vi
⋂

N (K)

are robust.
(Schöberl 1999)

Parameter-Robust Smoothers

Parameter-Robust Smoothers

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PRECONDITIONERS FOR MHD B1031

Fig. 3.1. Star patch for \BbbB \BbbD \BbbM 2-elements.

Since the augmented Lagrangian term has a large kernel that consists of all
solenoidal vector fields, a robust multigrid scheme as described in section 3.3 must
be used to solve the augmented momentum block. For the H(div) \times L2-conforming
discretization the star iteration [25, section 4] can be used as a robust relaxation
method. The subspace decomposition is defined as

Vi = \{ v \in Vh : supp(v) \subset Ki\} ,(3.28)

where Ki is the patch of elements sharing the vertex i in the mesh. Example patches
are shown in Figure 3.1. Since we use a structure-preserving discretization, the prop-
erties of the de Rham complexes (2.12) and (2.13) imply that (3.28) fulfils the kernel
decomposition property (3.25). This property was also used in [6] to construct a
robust smoother for the H(div) and H(curl) Riesz maps and in [29] for the Stokes
equations. In this case we may employ the standard prolongation operator induced
by the finite element discretization, because the uniformly refined mesh hierarchy we
consider is nested.

The velocity block further includes terms given by the convection-diffusion term
(u \cdot \nabla)u, the linearization of the Lorentz force SBn \times (u\times Bn), and the stabilization
term (2.15). Numerical experiments in [24] and in the next section 4 show that
these terms only degrade the performance of the preconditioner at high Reynolds
and coupling numbers. As we have mentioned before, these somewhat surprising
numerical observations are not backed up by theory since these terms do not fit in
the framework of section 3.3, and applying geometric multigrid methods to problems
with strong advection typically requires special care. The kernel of the stabilization
\scrS \scrT (u,v) consists of all C1 vector fields. Therefore, the stabilization term slightly
degrades the performance of the solver, but the impact is not very significant as the
factor \mu h2

\partial K is small.

3.5. Solver for the electromagnetic block. The weak formulation of the
electromagnetic block is given by

(E,F) - 1

Rem
(B, curlF) + \delta (un \times B,F) = 0 \forall F \in H0(curl,\Omega),(3.29)

\eta

\Delta t
(B,C) + (curlE,C) +

1

Rem
(divB,divC) = (f ,C) \forall C \in H0(div,\Omega).

Recall that \eta , \delta \in \{ 0, 1\} distinguish between the stationary (\eta = 0) and transient
(\eta = 1) cases and the Picard (\delta = 0) and Newton (\delta = 1) linearizations. Eliminating
E, this corresponds to a mixed formulation of

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 6

8.
13

3.
27

.1
29

 b
y

M
at

th
ew

 K
ne

pl
ey

 (
kn

ep
le

y@
gm

ai
l.c

om
).

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Parameter-Robust Smoothers
Incompressible Navier-Stokes

PRECONDITIONERS FOR HIGH-RE 3D STATIONARY FLOW 13

Continuation

Newton solver with line search

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization on assembled matrix

Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Matrix-free additive star iteration

Fig. 5.1: An outline of the algorithm for solving (1.1).

We use flexible GMRES [63] as the outermost solver for the linearized Newton
system, as we employ GMRES in the multigrid relaxation. If the pressure is only
defined up to a constant, then the appropriate nullspace is passed to the Krylov solver
and the solution orthogonalized against the nullspace at every iteration. The solve is
done matrix-free, i.e. the entire sparse Jacobian matrix is not assembled; instead its
action is computed by finite element assembly every time it is required. We use the
full block factorization preconditioner

(5.1) P�1 =

✓
I �Ã�1

� BT

0 I

◆✓
Ã�1

� 0

0 S̃�1

◆✓
I 0

�BÃ�1
� I

◆

with approximate inner solves Ã�1
� and S̃�1 for the augmented momentum block and

the Schur complement respectively. The diagonal, upper and lower triangular variants
described in [56, 42] also converge well, but these took longer runtimes in preliminary
experiments.

We use one F-cycle of the geometric multigrid algorithm described in section 4 as
Ã�1

� . The problem on each level is constructed by rediscretization; fine grid functions,
such as the current iterate in the Newton scheme, are transferred to the coarse levels
via injection. On all levels except for the coarsest, the only matrices assembled are the
local problems on each star patch (for the relaxation) and each coarser cell (for the
prolongation). For each relaxation sweep we perform 6 (in 2D) or 10 (in 3D) GMRES
iterations preconditioned by the additive star iteration; at lower Reynolds numbers
this can be reduced, but we found that these expensive smoothers represented the
optimal tradeo↵ between inner and outer work at higher Reynolds numbers. The
coarsest level is assembled explicitly as a global sparse matrix and solved with the
SuperLU DIST sparse direct solver [52, 51]. For scalability, the coarse grid solve
is agglomerated onto a single compute node using PETSc’s telescoping facility [55].
As all inner solvers are additive, the convergence of the solver is independent of the
parallel decomposition (up to roundo↵).

5.2. Software implementation. The solver proposed in the previous section is
complex, and relies heavily on PETSc’s capability for the arbitrarily nested composi-

(Farrell, Mitchell, et al. 2019)

Mesh Topology

Hasse Diagram (Wikipedia 2015b)

2 3

4 5

6

7

8 9

10

0

1

0 1

6 7 8 9 10

2 3 4 5

Mesh Topology

DMPlex (Lange et al. 2016)

2 3

4 5

6

7

8 9

10

0

1

0 1

6 7 8 9 10

2 3 4 5

Parameter-Robust Smoothers

Solver for the H(div) Riesz map
-ksp_type cg
-pc_type mg
-mg_levels_ksp_type richardson
-mg_levels_ksp_richardson_scale 0.333333
-mg_levels_pc_type patch
-mg_levels_patch_pc_patch_local_type additive
-mg_levels_patch_pc_patch_construct_type star
-mg_levels_patch_pc_patch_construct_dim 0

(Farrell, Knepley, et al. 2021)

Parameter-Robust Smoothers

Many papers followed
(Adler, Benson, et al. 2021)

(Adler, He, et al. 2022)

(Laakmann, Farrell, et al. 2022)

(Abu-Labdeh et al. 2023)

(Laakmann, Hu, et al. 2023)

on different problems.

Composable Solvers
Incompressible Viscoresistive MHD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1034 F. LAAKMANN, P. E. FARRELL, AND L. MITCHELL

Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Fig. 4.1. Graphical outline of the solver.

imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 6

8.
13

3.
27

.1
29

 b
y

M
at

th
ew

 K
ne

pl
ey

 (k
ne

pl
ey

@
gm

ai
l.c

om
).

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

(Laakmann, Farrell, et al. 2022)

Composable Solvers
Incompressible Viscoresistive MHD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1034 F. LAAKMANN, P. E. FARRELL, AND L. MITCHELL

Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Fig. 4.1. Graphical outline of the solver.

imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 6

8.
13

3.
27

.1
29

 b
y

M
at

th
ew

 K
ne

pl
ey

 (k
ne

pl
ey

@
gm

ai
l.c

om
).

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

(Laakmann, Farrell, et al. 2022)

Composable Solvers
Incompressible Viscoresistive MHD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1034 F. LAAKMANN, P. E. FARRELL, AND L. MITCHELL

Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Fig. 4.1. Graphical outline of the solver.

imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine

D
ow

nl
oa

de
d

03
/1

3/
25

 to
 6

8.
13

3.
27

.1
29

 b
y

M
at

th
ew

 K
ne

pl
ey

 (k
ne

pl
ey

@
gm

ai
l.c

om
).

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

(Laakmann, Farrell, et al. 2022)

Outline

Structure Preservation

Finite Elements

Algebraic Solvers

Timesteppers

Lessons

High-Level Interface

Separate implicit and explicit parts

F(u, u̇, x, t) = G(u, x, t)

High-Level Interface

Separate implicit and explicit parts

Jα = αFu̇ + Fu

Im/Ex Split

Explicit Methods:

Define only G,
F is assumed to be u̇

Im/Ex Split

Implicit Methods:

Define only F,
G is empty

Im/Ex Split

IMEX Methods:

Define both F and G,
but splitting is fixed

Im/Ex Split

(Implicit) Runge-Kutta
Diagonally implicit Runge-Kutta
ARKIMEX
Strong Stability Preserving (Ketcheson 2008)
Relaxation Runge-Kutta (Ketcheson 2019)

θ method
Backward Differentiation Formula
General Linear (Butcher et al. 2007)
α method (Jansen et al. 2000)
Extrapolated IMEX (Constantinescu and Sandu 2010)
Rosenbrock-W (Shampine 1982)

Hamiltonian Systems

Implicit Runge-Kutta (IRK) is
symplectic (Benettin and Giorgilli 1994)

could also use DIRK

Relaxation Runge-Kutta (RRK) is
conservative / monotonic

Needs a projection P

Hamiltonian Systems

Implicit Runge-Kutta (IRK) is
symplectic (Benettin and Giorgilli 1994)

could also use DIRK

Relaxation Runge-Kutta (RRK) is
conservative / monotonic

Needs a projection P

Hamiltonian Systems

Implicit Runge-Kutta (IRK) is
symplectic (Benettin and Giorgilli 1994)

could also use DIRK

Relaxation Runge-Kutta (RRK) is
conservative / monotonic

Needs a projection P

Hamiltonian Systems

Implicit Runge-Kutta (IRK) is
symplectic (Benettin and Giorgilli 1994)

could also use DIRK

Relaxation Runge-Kutta (RRK) is
conservative / monotonic

Needs a projection P

Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)

Boris (volume-preserving) (Qin et al. 2013)

need field splitting!

Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)

Boris (volume-preserving) (Qin et al. 2013)

need field splitting!

Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)

Boris (volume-preserving) (Qin et al. 2013)

need field splitting!

Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)

Boris (volume-preserving) (Qin et al. 2013)

need field splitting!

High-Level Interface

Separate implicit and explicit parts,
and fields,

Fi(u, u̇, x, t) = Gi(u, x, t)

High-Level Interface

Separate implicit and explicit parts,
and fields,

Ji,α = αFi,u̇ + Fi,u

Discrete Gradients

ut = S(u)∇F(u)

Discrete Gradients

un+1 − un = ∆t S(un, un+1)∇F(un, un+1)

Discrete Gradients

(un+1 − un) · ∇F(un, un+1) = F(un+1)− F(un)

∇F(un, un) = ∇F(un)

Discrete Gradients

∇F(un, un+1) = ∇F(un+1/2) + (un+1 − un)·
F(un+1)− F(un)− (un+1 − un) · ∇F(un+1/2)

||un+1 − un||2

(Gonzalez 1996)

Discrete Gradients

∇F(un, un+1) =

∫ 1

0
dξ∇F ((1 − ξ)un + ξun+1)

(Harten et al. 1983)
(Finn et al. 2025)

Discrete Gradients

S(un+1)− S(un) = (E(un+1)− F(un+1))− (E(un)− F(un))

= − (F(un+1)− F(un))

= −
(
(un+1 − un) · ∇F(un, un+1)

)

= −∆t∇F(un, un+1)ST∇F(un, un+1)

For metric systems, S is symmetric negative definite.
(Kraus and Hirvijoki 2017)

(Öttinger 2018)

Discrete Gradients

ut = S(u)∇F(u)

Interface Extensions

Field split (BSI)

Domain split (PRK)

Term split (IMEX)

Outline

Structure Preservation

Finite Elements

Algebraic Solvers

Timesteppers

Lessons

Software Lessons

Expose better abstractions

at runtime

that compose together.

(Brown, Knepley, and Smith 2015)

Software Lessons

Expose better abstractions

at runtime

that compose together.

(Brown, Knepley, and Smith 2015)

Software Lessons

Expose better abstractions

at runtime

that compose together.

(Brown, Knepley, and Smith 2015)

Software Lessons

Expose better abstractions

at runtime

that compose together.

(Brown, Knepley, and Smith 2015)

Software Lessons

Build in Layers

to allow targeted APIs

that preserve understandability.

(Smith and Gropp 1996)

Software Lessons

Build in Layers

to allow targeted APIs

that preserve understandability.

(Smith and Gropp 1996)

Software Lessons

Build in Layers

to allow targeted APIs

that preserve understandability.

(Smith and Gropp 1996)

Software Lessons

Build in Layers

to allow targeted APIs

that preserve understandability.

(Smith and Gropp 1996)

References I

Neuenschwander, Dwight E. (2017). Emmy Noether’s wonderful theorem. JHU Press.

Horvath, Zoltan (2004). “On the positivity of matrix-vector products”. In: Linear algebra and its applications 393, pp. 253–258.

Kraus, Michael and Eero Hirvijoki (2017). “Metriplectic integrators for the Landau collision operator”. In: Physics of Plasmas 24.10.

Suresh, A. and H.T. Huynh (1997). “Accurate Monotonicity-Preserving Schemes with Runge–Kutta Time Stepping”. In: Journal of Computational Physics
136.1, pp. 83–99. ISSN: 0021-9991. DOI: 10.1006/jcph.1997.5745.

Ranocha, Hendrik and David I Ketcheson (2020). “Relaxation Runge–Kutta methods for Hamiltonian problems”. In: Journal of Scientific Computing 84.1,
p. 17.

Brower, Richard C (1971). “A chiral invariant dual model”. In: Physics Letters B 34.2, pp. 143–146.

Munthe-Kaas, Hans (1999). “High order Runge–Kutta methods on manifolds”. In: Applied Numerical Mathematics 29.1, pp. 115–127.

Skeel, Robert D. and Jan L. Cieśliński (2020).
On the famous unpublished preprint “Methods of integration which preserve the contact transformation property of the Hamilton equations” by René De Vogelaere.
arXiv: 2003.12268 [math.NA]. URL: https://arxiv.org/abs/2003.12268.

Bonelle, Jérôme (2014). “Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations”. PhD thesis. Université Paris-Est.

Schöberl, Joachim (1999). “Multigrid methods for a parameter dependent problem in primal variables”. In: Numerische Mathematik 84.1, pp. 97–119.

Brown, Jed, Matthew G. Knepley, and Barry Smith (Jan. 2015). “Run-time extensibility and librarization of simulation software”. In:
IEEE Computing in Science and Engineering 17.1, pp. 38–45. DOI: 10.1109/MCSE.2014.95.

https://doi.org/10.1006/jcph.1997.5745
https://arxiv.org/abs/2003.12268
https://arxiv.org/abs/2003.12268
https://doi.org/10.1109/MCSE.2014.95

References II
Brown, Jed, Matthew G. Knepley, David A. May, Lois C. McInnes, and Barry F. Smith (2012). “Composable linear solvers for multiphysics”. In:
Proceeedings of the 11th International Symposium on Parallel and Distributed Computing (ISPDC 2012). IEEE Computer Society, pp. 55–62. DOI:
10.1109/ISPDC.2012.16.

Farrell, Patrick E, Lawrence Mitchell, and Florian Wechsung (2019). “An augmented Lagrangian preconditioner for the 3D stationary incompressible
Navier-Stokes equations at high Reynolds number”. In: SIAM Journal on Scientific Computing 41.5, A3073–A3096. eprint: 1810.03315.

Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Cros, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen (1995).
LAPACK User’s Guide. Second. Philadelphia, Pennsylvania: SIAM.

Wikipedia (2015a). Riesz-Markov-Kakutani Representation Theorem.
http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem. URL:
http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem.

Isaac, Toby (2022). Unifying the geometric decompositions of full and trimmed polynomial spaces in finite element exterior calculus. arXiv: 2112.02174
[math.NA]. URL: https://arxiv.org/abs/2112.02174.

Wikipedia (2015b). Hasse Diagram. http://en.wikipedia.org/wiki/Hasse_diagram. URL:
http://en.wikipedia.org/wiki/Hasse_diagram.

Lange, Michael, Lawrence Mitchell, Matthew G. Knepley, and Gerard J. Gorman (2016). “Efficient mesh management in Firedrake using PETSc-DMPlex”.
In: SIAM Journal on Scientific Computing 38.5, S143–S155. DOI: 10.1137/15M1026092. eprint: http://arxiv.org/abs/1506.07749.

Farrell, Patrick E, Matthew G Knepley, Lawrence Mitchell, and Florian Wechsung (2021). “PCPATCH: software for the topological construction of multigrid
relaxation methods”. In: ACM Transaction on Mathematical Software 47.3, pp. 1–22. ISSN: 0098-3500. DOI: 10.1145/3445791. eprint:
http://arxiv.org/abs/1912.08516.

Adler, James H, Thomas R Benson, Eric C Cyr, Patrick E Farrell, Scott P MacLachlan, and Ray S Tuminaro (2021). “Monolithic Multigrid Methods for
Magnetohydrodynamics”. In: SIAM Journal on Scientific Computing 0, S70–S91.

https://doi.org/10.1109/ISPDC.2012.16
1810.03315
http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem
http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem
https://arxiv.org/abs/2112.02174
https://arxiv.org/abs/2112.02174
https://arxiv.org/abs/2112.02174
http://en.wikipedia.org/wiki/Hasse_diagram
http://en.wikipedia.org/wiki/Hasse_diagram
https://doi.org/10.1137/15M1026092
http://arxiv.org/abs/1506.07749
https://doi.org/10.1145/3445791
http://arxiv.org/abs/1912.08516

References III

Adler, James H, Yunhui He, Xiaozhe Hu, Scott MacLachlan, and Peter Ohm (2022). “Monolithic multigrid for a reduced-quadrature discretization of
poroelasticity”. In: SIAM Journal on Scientific Computing 45.3, S54–S81.

Laakmann, Fabian, Patrick E Farrell, and Lawrence Mitchell (2022). “An augmented Lagrangian preconditioner for the magnetohydrodynamics equations at
high Reynolds and coupling numbers”. In: SIAM Journal on Scientific Computing 44.4, B1018–B1044.

Abu-Labdeh, Razan, Scott MacLachlan, and Patrick E Farrell (2023). “Monolithic multigrid for implicit Runge–Kutta discretizations of incompressible fluid
flow”. In: Journal of Computational Physics 478, p. 111961.

Laakmann, Fabian, Kaibo Hu, and Patrick E Farrell (2023). “Structure-preserving and helicity-conserving finite element approximations and preconditioning
for the Hall MHD equations”. In: Journal of Computational Physics 492, p. 112410.

Ketcheson, David I (2008). “Highly Efficient Strong Stability Preserving Runge-Kutta Methods with Low-Storage Implementations”. In:
SIAM Journal on Scientific Computing 30, pp. 2113–2136.

— (2019). “Relaxation Runge–Kutta methods: Conservation and stability for inner-product norms”. In: SIAM Journal on Numerical Analysis 57.6,
pp. 2850–2870.

Butcher, J.C., Z. Jackiewicz, and W.M. Wright (2007). “Error propagation of general linear methods for ordinary differential equations”. In:
Journal of Complexity 23.4-6, pp. 560–580. ISSN: 0885-064X. DOI: 10.1016/j.jco.2007.01.009.

Jansen, Kenneth E, Christian H Whiting, and Gregory M Hulbert (2000). “A generalized-α method for integrating the filtered Navier–Stokes equations with a
stabilized finite element method”. In: Computer methods in applied mechanics and engineering 190.3-4, pp. 305–319.

Constantinescu, E.M. and A. Sandu (2010). “Extrapolated implicit-explicit time stepping”. In: SIAM Journal on Scientific Computing 31.6, pp. 4452–4477.
DOI: 10.1137/080732833.

Shampine, Lawrence F (1982). “Implementation of Rosenbrock methods”. In: ACM Transactions on Mathematical Software (TOMS) 8.2, pp. 93–113.

https://doi.org/10.1016/j.jco.2007.01.009
https://doi.org/10.1137/080732833

References IV

Benettin, Giancarlo and Antonio Giorgilli (1994). “On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to
symplectic integration algorithms”. In: Journal of Statistical Physics 74, pp. 1117–1143.

Hairer, E., Ch. Lubich, and G. Wanner (2002). Geometric Numerical Integration. Berlin Heidelberg: Springer-Verlag.

Qin, Hong, Shuangxi Zhang, Jianyuan Xiao, Jian Liu, Yajuan Sun, and William M Tang (2013). “Why is Boris algorithm so good?” In: Physics of Plasmas
20.8.

Gonzalez, Oscar (1996). “Time integration and discrete Hamiltonian systems”. In: Journal of Nonlinear Science 6, pp. 449–467.

Harten, Amiram, Peter D Lax, and Bram van Leer (1983). “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”. In:
SIAM review 25.1, pp. 35–61.

Finn, Daniel S., Joseph V. Pusztay, Matthew G. Knepley, and Mark F. Adams (2025). “Entropy Monotonicity using Discrete Gradients in the
Vlasov-Poisson-Landau System”. In: Journal of Computational Physics. Submitted.

Öttinger, Hans Christian (Apr. 2018). “GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems”. In:
Journal of Non-Equilibrium Thermodynamics 43 (2), pp. 89–100. ISSN: 14374358. DOI: 10.1515/jnet-2017-0034.

Smith, Barry F. and William D. Gropp (1996). “The Design of Data-structure-neutral Libraries for the Iterative Solution of Sparse Linear Systems”. In:
Scientific Programming 5, pp. 329–336.

https://doi.org/10.1515/jnet-2017-0034

	Structure Preservation
	Finite Elements
	Primal Basis
	Dual Basis
	Finite Elements

	Algebraic Solvers
	Timesteppers
	Lessons
	References

