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What is a Structure-Preserving Method?
Conservation

Conserved quantities can arise,

from continuous symmetries.

(Neuenschwander 2017)
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How should we represent an element?

Tabulate basis functions

Assemble residual/Jacobian
L2 projection
Boundary conditions



Basis Representation

How should we represent an element?

Tabulate basis functions

FIAT
Deal.II
DUNE
FreeFEM++
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How could we tabulate the dual basis?



Dual Basis

How could we tabulate the dual basis?

By Riesz-Markov-Kakutani (Wikipedia 2015a),

dual vectors are quadrature rules.

ψi → {xi,wi}



Dual Basis

How could we tabulate the dual basis?

We also have a geometric

decomposition of the dual space

mesh point → {ψi}
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Exposing the dual basis allows
cheap, custom interpolation.

The geometric decomposition
makes interpolation on

embedded manifolds easy.
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Dual Basis

Geometric decomposition +
Discrete Hodge Star =

(Isaac 2022)



Dual Basis
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Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single extension operator that decomposes

Λk(g) =
⊕

f∈∆(g)

Ef ,g

(
Λ̊k(f )

)
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Primal Space
polynomial
trimmed polynomial
direct product
direct sum



FE Representation

Instead of names,
we can refer to elements by structure

Dual Space
Lagrange
direct sum
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Exterior Calculus

Could we build

an explicit basis for AltkV?

src/dm/dt/interface/dtaltv.c

https://gitlab.com/petsc/petsc/-/blob/main/src/dm/dt/interface/dtaltv.c?ref_type=heads


Exterior Calculus

We can check that the differential
commutes with discretization:

dΠ(ω) = Π(dω)
src/dm/dt/tests/ex14.c

Produce a constructive proof in Lean?

https://gitlab.com/petsc/petsc/-/blob/edcc29da3305830a0a8ec6a689bc6308a1397a1c/src/dm/dt/tests/ex14.c
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Parameter-Robust Smoothers

Smoothers for

L + αK

can suffer as α → ∞ if

N (K) ̸= ∅.



Parameter-Robust Smoothers

Smoothers for

−∇ · 2νϵ(u) + (u · ∇)u − α∇(∇ · u)

can suffer as α → ∞ if

N (∇(∇ · u)) ̸= ∅.



Parameter-Robust Smoothers

The Schur complement is almost

S−1 ≈ −(ν + α)M−1
p

but the velocity smoother is hard.



Parameter-Robust Smoothers

Patch smoothers satisfying

N (K) =
∑

i

Vi
⋂

N (K)

are robust.
(Schöberl 1999)
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PRECONDITIONERS FOR MHD B1031

Fig. 3.1. Star patch for \BbbB \BbbD \BbbM 2-elements.

Since the augmented Lagrangian term has a large kernel that consists of all
solenoidal vector fields, a robust multigrid scheme as described in section 3.3 must
be used to solve the augmented momentum block. For the H(div) \times L2-conforming
discretization the star iteration [25, section 4] can be used as a robust relaxation
method. The subspace decomposition is defined as

Vi = \{ v \in Vh : supp(v) \subset Ki\} ,(3.28)

where Ki is the patch of elements sharing the vertex i in the mesh. Example patches
are shown in Figure 3.1. Since we use a structure-preserving discretization, the prop-
erties of the de Rham complexes (2.12) and (2.13) imply that (3.28) fulfils the kernel
decomposition property (3.25). This property was also used in [6] to construct a
robust smoother for the H(div) and H(curl) Riesz maps and in [29] for the Stokes
equations. In this case we may employ the standard prolongation operator induced
by the finite element discretization, because the uniformly refined mesh hierarchy we
consider is nested.

The velocity block further includes terms given by the convection-diffusion term
(u \cdot \nabla )u, the linearization of the Lorentz force SBn \times (u\times Bn), and the stabilization
term (2.15). Numerical experiments in [24] and in the next section 4 show that
these terms only degrade the performance of the preconditioner at high Reynolds
and coupling numbers. As we have mentioned before, these somewhat surprising
numerical observations are not backed up by theory since these terms do not fit in
the framework of section 3.3, and applying geometric multigrid methods to problems
with strong advection typically requires special care. The kernel of the stabilization
\scrS \scrT (u,v) consists of all C1 vector fields. Therefore, the stabilization term slightly
degrades the performance of the solver, but the impact is not very significant as the
factor \mu h2

\partial K is small.

3.5. Solver for the electromagnetic block. The weak formulation of the
electromagnetic block is given by

(E,F) - 1

Rem
(B, curlF) + \delta (un \times B,F) = 0 \forall F \in H0(curl,\Omega ),(3.29)

\eta 

\Delta t
(B,C) + (curlE,C) +

1

Rem
(divB,divC) = (f ,C) \forall C \in H0(div,\Omega ).

Recall that \eta , \delta \in \{ 0, 1\} distinguish between the stationary (\eta = 0) and transient
(\eta = 1) cases and the Picard (\delta = 0) and Newton (\delta = 1) linearizations. Eliminating
E, this corresponds to a mixed formulation of
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Incompressible Navier-Stokes
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Continuation

Newton solver with line search

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization on assembled matrix

Prolongation operator

Local solves over coarse cells

Relaxation

GMRES

Matrix-free additive star iteration

Fig. 5.1: An outline of the algorithm for solving (1.1).

We use flexible GMRES [63] as the outermost solver for the linearized Newton
system, as we employ GMRES in the multigrid relaxation. If the pressure is only
defined up to a constant, then the appropriate nullspace is passed to the Krylov solver
and the solution orthogonalized against the nullspace at every iteration. The solve is
done matrix-free, i.e. the entire sparse Jacobian matrix is not assembled; instead its
action is computed by finite element assembly every time it is required. We use the
full block factorization preconditioner

(5.1) P�1 =

✓
I �Ã�1

� BT

0 I

◆✓
Ã�1

� 0

0 S̃�1

◆✓
I 0

�BÃ�1
� I

◆

with approximate inner solves Ã�1
� and S̃�1 for the augmented momentum block and

the Schur complement respectively. The diagonal, upper and lower triangular variants
described in [56, 42] also converge well, but these took longer runtimes in preliminary
experiments.

We use one F-cycle of the geometric multigrid algorithm described in section 4 as
Ã�1

� . The problem on each level is constructed by rediscretization; fine grid functions,
such as the current iterate in the Newton scheme, are transferred to the coarse levels
via injection. On all levels except for the coarsest, the only matrices assembled are the
local problems on each star patch (for the relaxation) and each coarser cell (for the
prolongation). For each relaxation sweep we perform 6 (in 2D) or 10 (in 3D) GMRES
iterations preconditioned by the additive star iteration; at lower Reynolds numbers
this can be reduced, but we found that these expensive smoothers represented the
optimal tradeo↵ between inner and outer work at higher Reynolds numbers. The
coarsest level is assembled explicitly as a global sparse matrix and solved with the
SuperLU DIST sparse direct solver [52, 51]. For scalability, the coarse grid solve
is agglomerated onto a single compute node using PETSc’s telescoping facility [55].
As all inner solvers are additive, the convergence of the solver is independent of the
parallel decomposition (up to roundo↵).

5.2. Software implementation. The solver proposed in the previous section is
complex, and relies heavily on PETSc’s capability for the arbitrarily nested composi-

(Farrell, Mitchell, et al. 2019)



Mesh Topology

Hasse Diagram (Wikipedia 2015b)
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Mesh Topology

DMPlex (Lange et al. 2016)
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Parameter-Robust Smoothers

Solver for the H(div) Riesz map
-ksp_type cg
-pc_type mg
-mg_levels_ksp_type richardson
-mg_levels_ksp_richardson_scale 0.333333
-mg_levels_pc_type patch
-mg_levels_patch_pc_patch_local_type additive
-mg_levels_patch_pc_patch_construct_type star
-mg_levels_patch_pc_patch_construct_dim 0

(Farrell, Knepley, et al. 2021)



Parameter-Robust Smoothers

Many papers followed
(Adler, Benson, et al. 2021)

(Adler, He, et al. 2022)

(Laakmann, Farrell, et al. 2022)

(Abu-Labdeh et al. 2023)

(Laakmann, Hu, et al. 2023)

on different problems.



Composable Solvers
Incompressible Viscoresistive MHD
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Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Fig. 4.1. Graphical outline of the solver.

imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine
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(Laakmann, Farrell, et al. 2022)
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imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine
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(Laakmann, Farrell, et al. 2022)
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Continuation in Rem and Re (in stationary case)

Newton/Picard iteration with line search

Krylov solver (FGMRES)

Block preconditioner with (u, p) and (E,B)-block

Solver for (u, p)-block

Schur complement approximation with S̃(u,p)

Solver for S̃(u,p)

Solver for (u, p)-block

Krylov solver (FGMRES)

Block preconditioner

Approximate Schur complement inverse

Exact pressure mass matrix inverse

F-cycle on augmented momentum block

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Solver for S̃(u,p)

Krylov solver (FGMRES)

Monolithic F-cycle multigrid

Coarse grid solver

LU factorization

Relaxation

GMRES

Additive star iteration

Fig. 4.1. Graphical outline of the solver.

imply that div Bh = 0 holds. However, the degrees of freedom for the interpolation are
moments and are usually implemented by a quadrature rule whose quadrature degree
is based on the polynomial degree of the finite element space. If g is a nonpolynomial
expression, this quadrature rule might not interpolate the boundary condition exactly
and therefore one loses the property that div gh = 0 on @⌦ holds exactly.

To circumvent this problem we use high order quadrature rules for the evaluation
of the degrees of freedom to ensure that the interpolation is exact up to machine
precision. In Figure 4.2 we have illustrated the e↵ect of the quadrature degree on
the enforcement of the divergence constraint. We have used the method of manufac-
tured solutions for a smooth problem to compute k div Bhk0 for di↵erent quadrature
degrees. Moreover, we have plotted the L2-norm over @⌦ of the interpolation of the
divergence-free function B into the RT2 space. One can clearly observe that a quadra-
ture degree of 2 for RT2 elements is not su�cient to enforce div Bh = 0 up to machine
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High-Level Interface

Separate implicit and explicit parts

F(u, u̇, x, t) = G(u, x, t)



High-Level Interface

Separate implicit and explicit parts

Jα = αFu̇ + Fu



Im/Ex Split

Explicit Methods:

Define only G,
F is assumed to be u̇



Im/Ex Split

Implicit Methods:

Define only F,
G is empty



Im/Ex Split

IMEX Methods:

Define both F and G,
but splitting is fixed



Im/Ex Split

(Implicit) Runge-Kutta
Diagonally implicit Runge-Kutta
ARKIMEX
Strong Stability Preserving (Ketcheson 2008)
Relaxation Runge-Kutta (Ketcheson 2019)

θ method
Backward Differentiation Formula
General Linear (Butcher et al. 2007)
α method (Jansen et al. 2000)
Extrapolated IMEX (Constantinescu and Sandu 2010)
Rosenbrock-W (Shampine 1982)
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could also use DIRK

Relaxation Runge-Kutta (RRK) is
conservative / monotonic

Needs a projection P
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Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)

Boris (volume-preserving) (Qin et al. 2013)

need field splitting!



High-Level Interface

Separate implicit and explicit parts,
and fields,

Fi(u, u̇, x, t) = Gi(u, x, t)



High-Level Interface

Separate implicit and explicit parts,
and fields,

Ji,α = αFi,u̇ + Fi,u



Discrete Gradients

ut = S(u)∇F(u)



Discrete Gradients

un+1 − un = ∆t S(un, un+1)∇F(un, un+1)



Discrete Gradients

(un+1 − un) · ∇F(un, un+1) = F(un+1)− F(un)

∇F(un, un) = ∇F(un)



Discrete Gradients

∇F(un, un+1) = ∇F(un+1/2) + (un+1 − un)·
F(un+1)− F(un)− (un+1 − un) · ∇F(un+1/2)

||un+1 − un||2

(Gonzalez 1996)



Discrete Gradients

∇F(un, un+1) =

∫ 1

0
dξ∇F ((1 − ξ)un + ξun+1)

(Harten et al. 1983)
(Finn et al. 2025)



Discrete Gradients

S(un+1)− S(un) = (E(un+1)− F(un+1))− (E(un)− F(un))

= − (F(un+1)− F(un))

= −
(
(un+1 − un) · ∇F(un, un+1)

)

= −∆t∇F(un, un+1)ST∇F(un, un+1)

For metric systems, S is symmetric negative definite.
(Kraus and Hirvijoki 2017)

(Öttinger 2018)



Discrete Gradients

ut = S(u)∇F(u)



Interface Extensions

Field split (BSI)

Domain split (PRK)

Term split (IMEX)
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Software Lessons

Expose better abstractions

at runtime

that compose together.

(Brown, Knepley, and Smith 2015)
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