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Never believe anything

until you run 1it.



Outline

Structure Preservation



What is a Structure-Preserving Method?

Conservation

Conserved quantities can arise,

from continuous symmetries.

(Neuenschwander 2017)
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We can preserve



What is a Structure-Preserving Method?

Montonicity

We can preserve

solution positivity (Horvath 2004)
entropy monotonicity (Kraus and Hirvijoki 2017)

solution monotonicity (Suresh and Huynh 1997)
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Manifolds

We can preserve



What is a Structure-Preserving Method?
Manifolds

We can preserve

symplectic manifolds, (Ranocha and Ketcheson 2020)

chiral manifolds, (Brower 1971)
group manifolds. (Munthe-Kaas 1999)
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What is a Structure-Preserving Method?

Algebraic Relations

We can preserve

symplecticity, (Skeel and Cieslinski 2020)
algebraic compatibility, (Bonelle 2014)
null spaces. (Schoberl 1999)
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What might [ want from Software?

Accuracy
Stability

Efficiency



What might [ want from Software?

Accuracy
Stability
Efficiency

Scalability
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https://en.wikipedia.org/wiki/Occam's_razor

What might [ want from Software?

Understandibility

Concision and Simplicity
Fewest Concepts (Occam’s Razor)

Ex. UNIX File abstraction


https://en.wikipedia.org/wiki/Occam's_razor
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https://petsc.org/

What might [ want from Software?

Maintainability

Small maintainer group
Often depends on workflows (Configure/Build/Test)
Porting and optimization

Ex. PETSc (Brown, Knepley, and Smith 2015)


https://petsc.org/
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What might [ want from Software?

Extensibility

Composability (Brown, Knepley, May, et al. 2012)
Can existing objects form a new thing?
Increasing functionality, constant maintenance burden

Ex. Reynolds-robust PC (Farrell, Mitchell, et al. 2019)



What might [ want from Software?

Humility



What might [ want from Software?

Humility

Your interface might not be for everyone



What might [ want from Software?

Humility
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What might [ want from Software?

Humility

Your interface might not be for everyone
Expose multiple layers

Ex. BLAS/LAPACK (Anderson et al. 1995)



Outline

Finite Elements
Primal Basis
Dual Basis
Finite Elements
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Finite Elements
Primal Basis



Basis Representation

How should we represent an element?



Basis Representation

How should we represent an element?
Tabulate basis functions

Assemble residual/Jacobian
L, projection
Boundary conditions



Basis Representation

How should we represent an element?
Tabulate basis functions

FIAT

Deal Il
DUNE
FreeFEM++



Basis Representation

What could we do with

an explicit basis representation?



Basis Representation

What could we do with

an explicit basis representation?

Runtime tabulation for particle methods
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Finite Elements

Dual Basis



Dual Basis

How could we tabulate the dual basis?



Dual Basis

How could we tabulate the dual basis?

By Riesz-Markov-Kakutani wikipedia 20152,

dual vectors are quadrature rules.

Vi — {Xi, Wi}



Dual Basis

How could we tabulate the dual basis?

We also have a geometric

decomposition of the dual space

mesh point — {;}



Dual Basis

Exposing the dual basis allows

cheap, custom interpolation.



Dual Basis

Exposing the dual basis allows

cheap, custom interpolation.

The geometric decomposition
makes interpolation on

embedded manifolds easy.



Dual Basis

Geometric decomposition +
Discrete Hodge Star =

(Isaac 2022)



Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single isomorphism to trace-free subspaces
S PoN(T) — P, AVH(T)
S PrANNT) — Pk NH(T)



Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single isomorphism to trace-free subspaces

s AT — AK(T)

that acts pointwise.



Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single extension operator
Erg: N(f) = N(g)

that acts pointwise.



Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single extension operator that decomposes

P = @D Efg(PAk )
feAl(g

P AE) = P Efg(P M)
feA(g



Dual Basis

Geometric decomposition +
Discrete Hodge Star =

a single extension operator that decomposes

EB By (Ak(f >

fEA(g)
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Finite Elements

Finite Elements



FE Representation

Instead of names,

we can refer to elements by structure



FE Representation

Instead of names,

we can refer to elements by structure

Primal Space
polynomial
trimmed polynomial
direct product

direct sum



FE Representation

Instead of names,

we can refer to elements by structure

Dual Space
Lagrange

direct sum
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Raviart-Thomas on a Simplex

—petscspace_degree <k>
-petscspace_type ptrimmed

—-petscdualspace_form degree -1
—-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true



Raviart-Thomas on a Quadrilateral

—petscspace_type sum
—-petscspace_variables 2
—-petscspace_components 2
—petscspace_sum_spaces 2
—petscspace_sum_concatenate true



Raviart-Thomas on a Quadrilateral

—petscspace_type sum
—-petscspace_variables 2
—-petscspace_components 2
—petscspace_sum_spaces 2
—petscspace_sum_concatenate true

—sumcomp_0_petscspace_variables 2
—-sumcomp_0_petscspace_type tensor
—sumcomp_0_petscspace_tensor_spaces 2
—sumcomp_0_petscspace_tensor_uniform false
—sumcomp_0_tensorcomp_0_petscspace_degree <k>
—sumcomp_0_tensorcomp_1_petscspace_degree <k-1>



Raviart-Thomas on a Quadrilateral

—sumcomp_1_petscspace_variables 2
—sumcomp_1_petscspace_type tensor
—sumcomp_1_petscspace_tensor_spaces 2
—sumcomp_1_petscspace_tensor_uniform false
—sumcomp_1_tensorcomp_0_petscspace_degree <k—-1>
—sumcomp_1_tensorcomp_1_petscspace_degree <k>



Raviart-Thomas on a Quadrilateral

—sumcomp_1_petscspace_variables 2
—sumcomp_1_petscspace_type tensor
—sumcomp_1_petscspace_tensor_spaces 2
—sumcomp_1_petscspace_tensor_uniform false
—sumcomp_1_tensorcomp_0_petscspace_degree <k—-1>
—sumcomp_1_tensorcomp_1_petscspace_degree <k>

—petscdualspace_form_degree -1
—-petscdualspace_order <k>
—-petscdualspace_lagrange_trimmed true



Brezzi-Douglas-Marini on a Simplex

—petscspace_degree <k>



Brezzi-Douglas-Marini on a Simplex

—petscspace_degree <k>

—-petscdualspace_form _degree -1
—-petscdualspace_order <k>
—petscdualspace_lagrange_trimmed false



First Kind Nedelec on a Simplex

—-petscspace_degree <k>
-petscspace_type ptrimmed



First Kind Nedelec on a Simplex

—petscspace_degree <k>
-petscspace_type ptrimmed

—-petscdualspace_form degree 1
—-petscdualspace_order <k>
-petscdualspace_lagrange_trimmed true



Second Kind Nedelec on a Simplex

—petscspace_degree <k>



Second Kind Nedelec on a Simplex

—petscspace_degree <k>

-petscdualspace_form degree 1
—-petscdualspace_order <k>
—petscdualspace_lagrange_trimmed false



Exterior Calculus

Could we build
an explicit basis for AltKV?

src/dm/dt/interface/dtaltv.c


https://gitlab.com/petsc/petsc/-/blob/main/src/dm/dt/interface/dtaltv.c?ref_type=heads

Exterior Calculus

We can check that the differential

commutes with discretization:

dTT(w) = TT(dw)

src/dm/dt/tests/ex14.c


https://gitlab.com/petsc/petsc/-/blob/edcc29da3305830a0a8ec6a689bc6308a1397a1c/src/dm/dt/tests/ex14.c

Exterior Calculus

We can check that the differential

commutes with discretization:

dTT(w) = TT(dw)

src/dm/dt/tests/ex14.c

Produce a constructive proof in Lean?


https://gitlab.com/petsc/petsc/-/blob/edcc29da3305830a0a8ec6a689bc6308a1397a1c/src/dm/dt/tests/ex14.c
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Algebraic Solvers



Parameter-Robust Smoothers

Smoothers for
L+ aK

can suffer as o — oo 1f

N(K) # 0.



Parameter-Robust Smoothers

Smoothers for
—V - 2ve(u) + (u- Viu—aV(V - u)
can suffer as o — oo if

N(V(V -u)) # 0.



Parameter-Robust Smoothers

The Schur complement 1s almost
Sta—(v+am,!

but the velocity smoother 1s hard.



Parameter-Robust Smoothers

Patch smoothers satisfying
N(K) =Y Vi[ JN(K)
[

are robust.
(Schoberl 1999)



Parameter-Robust Smoothers

@
~

L]

L]

L]




Parameter-Robust Smoothers

Fi1Gc. 3.1. Star patch for BDMs-elements.



Parameter-Robust Smoothers

Incompressible Navier-Stokes
Newton solver with line searchl

Krylov solver (FGMRES) |

Block preconditioner

Approximate Schur complement inversel

F-cycle on augmented momentum block |

Coarse grid solver

LU factorization on assembled matrix|

Prolongation operator

Local solves over coarse cells |

Matrix-free additive star iteration

(Farrell, Mitchell, et al. 2019)



Mesh Topology

Hasse Diagram (Wikipedia 2015b)




Mesh Topology
DMPlex (Lange et al. 2016)




Parameter-Robust Smoothers

Solver for the #(div) Riesz map

-ksp_type cg

—pc_type mg

-mg_levels_ksp_type richardson
-mg_levels_ksp_richardson_scale 0.333333
-mg_levels_pc_type patch
-mg_levels_patch_pc_patch_local_type additive
-mg_levels_patch_pc_patch_construct_type star
-mg_levels_patch_pc_patch_construct_dim O

(Farrell, Knepley, et al. 2021)



Parameter-Robust Smoothers

Many papers followed
(Adler, Benson, et al. 2021)

(Adler, He, et al. 2022)
(Laakmann, Farrell, et al. 2022)
(Abu-Labdeh et al. 2023)
(Laakmann, Hu, et al. 2023)

on different problems.



Composable Solvers

Incompressible Viscoresistive MHD

| Continuation in Re,, and Re (in stationary case) |

\—| Newton/Picard iteration with line search|

L] Krylov solver (FGMRES) |

—' Block preconditioner with (u,p) and (E, B)—block|
—' Solver for (u, p)-block|

4' Schur complement approximation with Sup)

Solver for S(w:»)

(Laakmann, Farrell, et al. 2022)



Composable Solvers

Incompressible Viscoresistive MHD

Solver for (u, p)-block

Krylov solver (FGMRES) |

Block preconditioner

Approximate Schur complement inverse |

L|Exa.ct pressure mass matrix inverse

F-cycle on augmented momentum blockl

Additive star iteration

(Laakmann, Farrell, et al. 2022)



Composable Solvers

Incompressible Viscoresistive MHD

Solver for §(p)
Krylov solver (FGMRES) |

Monolithic F-cycle multigrid |

GMRES

Additive star iteration

(Laakmann, Farrell, et al. 2022)
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Timesteppers



High-Level Interface

Separate implicit and explicit parts

F(u,u,x,t) = G(u, x, 1)



High-Level Interface

Separate implicit and explicit parts



Im/Ex Split

Explicit Methods:

Define only G,

F 1s assumed to be u



Im/Ex Split

Implicit Methods:

Define only F,
G 1s empty



Im/Ex Split

IMEX Methods:

Define both F and G,
but splitting is fixed



Im/Ex Split

(Implicit) Runge-Kutta
Diagonally implicit Runge-Kutta
ARKIMEX
Strong Stability Preserving (Ketcheson 2008)
Relaxation Runge-Kutta (Ketcheson 2019)

6 method

Backward Differentiation Formula

General Linear (Butcher et al. 2007)

a method (Jansen et al. 2000)

Extrapolated IMEX (Constantinescu and Sandu 2010)
Rosenbrock-W (Shampine 1982)



Hamiltonian Systems
Implicit Runge-Kutta (IRK) 1s

SymplecticC (Benettin and Giorgilli 1994)
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Hamiltonian Systems
Implicit Runge-Kutta (IRK) 1s
SymplectiC (Benettin and Giorgilli 1994)
could also use DIRK

Relaxation Runge-Kutta (RRK) 1s
conservative / monotonic

Needs a projection P



Hamiltonian Systems

Explicit methods,



Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)



Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)

Boris (volume-preserving) (Qin et al. 2013)



Hamiltonian Systems

Explicit methods,

basic symplectic (Hairer et al. 2002)

Boris (volume-preserving) (Qin et al. 2013)

need field splitting!



High-Level Interface

Separate implicit and explicit parts,

and ;

Fiu,u,x,t) = Gj(u,x,t)



High-Level Interface

Separate implicit and explicit parts,

and ;

]’a:OéFﬂ;t—l—F’u



Discrete Gradients

u; = S(u)VF(u)



Discrete Gradients

Upi1 — Uy = Atg(um un—l—l)VF(um un—f—l)



Discrete Gradients

(U1 — ) W(’/‘nv Uni1) = Flupg1) — Fluy)
VF(u,,u,) = VF(u,)



Discrete Gradients

VF(l/ln, ui’l+1> - VF(MIH—I/Z) + (un—H — un)
F(upi1) — F(un) = (Unp1 — tn) - VF(th11)2)

Hun-I—l - unHz

(Gonzalez 1996)



Discrete Gradients

1
VF<un7un—l—1) :/0 d€VF(<1 _€)Mn+€un+1)

(Harten et al. 1983)
(Finn et al. 2025)



Discrete Gradients

St 1) — (i) = (Etnsr) — Flats)) — (Elun) — Flaa)
= — (Flun1) — Fun))
- = ((un—l—l — i) - VF(up, Mn+1))
= —AtVF(uy, un+1)§TVF(un, Upi1)

For metric systems, S is symmetric negative definite.
(Kraus and Hirvijoki 2017)
(Ottinger 2018)



Discrete Gradients

ur = S(u)VF(u)



Interface Extensions

Field split (BSI)
Domain split (PRK)
Term split (IMEX)
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Lessons



Software Lessons

Expose better abstractions



Software Lessons
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Software Lessons

Expose better abstractions
at runtime

that compose together.



Software Lessons

Expose better abstractions
at runtime
that compose together.

(Brown, Knepley, and Smith 2015)
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Software Lessons

Build in Layers
to allow targeted APIs



Software Lessons

Build in Layers
to allow targeted APIs

that preserve understandability.



Software Lessons

Build in Layers
to allow targeted APIs
that preserve understandability.

(Smith and Gropp 1996)
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