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ABSTRACT
Individuals face privacy risks when providing personal lo-
cation data to potentially untrusted location based services
(LBSs). We develop and demonstrate CacheCloak, a system
that enables realtime anonymization of location data. In
CacheCloak, a trusted anonymizing server generates mobil-
ity predictions from historical data and submits intersecting
predicted paths simultaneously to the LBS. Each new pre-
dicted path is made to intersect with other users’ paths, en-
suring that no individual user’s path can be reliably tracked
over time. Mobile users retrieve cached query responses for
successive new locations from the trusted server, triggering
new prediction only when no cached response is available
for their current locations. A simulated hostile LBS with
detailed mobility pattern data attempts to track users of
CacheCloak, generating a quantitative measure of location
privacy over time. GPS data from a GIS-based traffic simu-
lation in an urban environment shows that CacheCloak can
achieve realtime location privacy without loss of location
accuracy or availability.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.1.2 [Models and Principles]: User/Machine
Systems; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection
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1. INTRODUCTION
The proliferation of GPS and other localization technolo-

gies, coupled with ubiquitous wireless connectivity, has en-
abled new location-based services (LBSs). LBSs deliver in-
formation to a mobile user based on his/her current physical
location [1–3]. MicroBlog is an LBS that allows users to ex-
change location-based queries and answers about surround-
ing conditions [2]. Location based advertisements are be-
coming popular – a person entering a bookstore may receive
a discount coupon for purchasing books. Another example
is Geolife, an LBS that provides a location-based to-do sys-
tem. When passing by the grocery store, Geolife displays
the user’s “shopping list” in realtime on the user’s mobile
phone display [4].

These location-based services rely on an accurate, contin-
uous, and realtime stream of location data. Revealing this
information poses a significant privacy risk [5]. Exposing
users to constant identification and tracking throughout the
day invites abuse of GPS technology [6]. Strong privacy
is an important component of people-centric pervasive ser-
vices. Without a guarantee of privacy, users may be hesitant
to use LBSs that continuously monitor their location [7].

Existing work often takes the perspective that privacy and
functionality comprise a zero-sum game, where one is traded
for the other. This reduced functionality can take many
forms, including degraded spatial accuracy, increased delay
in reporting the user’s location, or even temporarily prevent-
ing the users from reporting locations at all. In all of these
cases, the user’s location data may be less useful after pri-
vacy protections have been enabled. We propose a method
to obtain the best features of all existing solutions.

The intuition behind our idea is quite simple. Where other
methods try to obscure the user’s path by hiding parts of it,
we obscure the user’s location by surrounding it with other
users’ paths. Our system, CacheCloak, mediates the flow
of data as an intermediary server between users and LBSs.
When a user requests location-centric data (say, restaurants
around the user’s current location), the CacheCloak server
either returns cached data or obtains new data from the
LBS. Instead of requesting data for a single GPS coordi-
nate, new data is requested from the LBS along an entire
predicted path. This path prediction extends until the path
intersects with other previously predicted paths. The LBS
only sees requests from a series of interweaving paths, pre-
venting it from accurately following any one user. If the LBS



attempts to track a user across the tangled web of predicted
paths, it will encounter many branches to different locations
the user might take, and each subsequent path intersection
will increase a tracker’s confusion. However, the user’s ac-
tual location will always lie on one of these existing or newly
predicted paths. Thus, CacheCloak will always have accu-
rate data available for the user from its cache or from a new
anonymous request to the LBS.

In this paper, we demonstrate and evaluate CacheCloak
[14]. By using mobility prediction to create a web of in-
tersecting paths, CacheCloak camouflages users, preventing
untrusted LBSs from tracking users while providing highly
accurate realtime location updates to the same LBSs. We
believe this is a way to break away from the zero-sum game
between privacy protection and usefulness. CacheCloak is
an enabling technology that may encourage early adoption
of LBSs with privacy concerns. Our system can either act
as a trusted intermediary for the user or, as we demonstrate
later, a distributed and untrusted intermediary.

2. LOCATION-ONLY SERVICE STRUCTURE
In order to provide privacy for users of LBSs, we must

first look at what kind of data passes between the user and
the LBS. Inherently, an LBS that must know your identity
cannot be used anonymously. For example, a banking appli-
cation might confirm financial transactions are occurring in
a user’s hometown, explicitly requiring non-anonymous use.
These LBSs reliant on a user’s identity must be considered
trusted LBSs. If a user’s identity is revealed to such an LBS,
it is an implicit statement of trust that the LBS should be
allowed to know who the user is.

Many LBSs can be used without explicitly revealing the
identity of the user. These we refer to as untrusted LBSs, as
they do not require a user’s trust before they can be used.
Applications that let the user ask the question “Where are
the nearest stores?” can reply meaningfully to anonymous
or pseudonymous users. An attacker can be either a hostile
untrusted LBS, or anyone with access to an untrusted LBS’s
data. These attackers may wish to track users throughout
the day for various reasons, including financial gain.

We suggest that there is a way to structure services such
that only the user’s location need be sent to the LBS. Us-
ing Geolife as an example, a user could maintain a todo list
on her mobile device that says “Buy Milk @ Farmer’s Mar-
ket”. The LBS would maintain a geographic information
systems (GIS) database of different events and shops. The
user would, through CacheCloak, request a list of all open
shops near his/her current location. Upon being told that
a nearby farmer’s market is open, the mobile device would
alert the user to a match with “Buy Milk”. This is beneficial
because the user does not need to provide the private con-
tents of his/her todo list to a 3rd party. The user’s location
is the only information transmitted to the LBS. Further,
the LBS maintains the frequently changing GIS database
for the user, keeping control of commercially valuable and
potentially copyrighted data. This location-only structure,
in which the user only sends GPS coordinates to the LBS, is
implicitly assumed in a number of existing location privacy
methods, as described in the next section. Practical and per-
sonalized location-based services can still be realized while

maintaining a division between personal data and global GIS
data.

If users query the LBS infrequently, it is hard to track each
user and simple pseudonymous communication might suffice
to hide user identity. However, many applications require
frequent queries and must be treated differently. Geolife is
a good example; if the mobile device does not update its
location frequently, one might drive a significant distance
past the Farmer’s Market before the “Buy Milk” alert ap-
pears. On the other hand, frequent updating can create
trails of transmitted locations, much like the breadcrumbs
dropped by Hansel and Gretel in the popular tale, allowing
a hostile LBS to easily follow a user’s path.

We must also consider how these breadcrumb trails might
be used if they can connect specific individuals to specific lo-
cations. An otherwise anonymous user might send a location-
based query from his/her home. By cross-referencing the
coordinates of that query with a database, the user can be
identified to a high degree of accuracy (e.g., identified as a
resident of a particular address). Following the breadcrumb
trail away from this identifying location might reveal very
private information. If the identity of the user at home can
be tied to the user sending a location-based query from a
hospital or other private location, a clear privacy violation
has occurred. The combination of identification and track-
ing must be disrupted for private and anonymous use of
location-based services to be possible.

3. LIMITATIONS OF EXISTING WORK
Existing research has explored ways to balance privacy

with functionality. These efforts can be broadly viewed in
three different approaches to privacy. We briefly summarize
them next, and identify the scope for improvement.

3.1 K-Anonymity
The first approach we describe is k-anonymity [8]. k-

anonymity provides a form of plausible deniability by en-
suring that the user cannot be individually identified from
a group of k users. This can be achieved by sending a suffi-
ciently large “k-anonymous region” that encloses k users in
space, instead of reporting a single GPS coordinate. Intu-
itively, creating a region around multiple users significantly
decreases spatial accuracy. For example, if we use k = 5,
we might find three users in a grocery store and two users
in a coffee shop down the road. The k = 5 region would
create a region that enclosed both the grocery store and the
coffee shop. This defeats any application which depends on
the ability to resolve to a single store. Geolife might begin
signaling the presence of a grocery store long before or long
after it is appropriate to do so. Advertisements directed to
the grocery shoppers might also get displayed to people in
the coffee shop.

Alternate formulations such as CliqueCloak wait until at
least k different queries have been sent from a particular re-
gion [9]. This allows the k-anonymous area to be smaller in
space, but expands its size in time. By forcing some users to
wait until enough anonymization can take place, CliqueCloak
compromises realtime operation. The Geolife user needs the
“Buy Milk” reminder at the right place and right time. Fun-
damentally, k-anonymity reduces the quality of the user’s



localization in space or time and may prevent meaningful
use of various LBSs, especially in low user density scenarios.

3.2 Pseudonyms and Mix Zones
Pseudonyms provide a certain degree of anonymity to the

individual user. If each new location is sent to the LBS
with a new pseudonym, then the LBS may have difficulty
following a user. However, frequent updating may expose
a pattern of closely spaced queries, allowing one to easily
follow the user [10] [11]. One can imagine a trail of closely
spaced breadcrumbs being dropped behind the user; if they
are left close enough, one can easily follow the trail of crumbs
from location to location. A user’s trail may also be revealed
if the user sends distinguishable queries to the LBS. If one
pseudonymous user queries about restaurants, and another
queries about bookstores, the users can be trivially iden-
tified. Thus, the pseudonymous communication described
here implicitly assumes a location-only service structure.

Some anonymization may still occur using pseudonyms
with “mix zones” [12]. A mix zone exists whenever two users
occupy the same place at the same time, as shown in Fig-
ure 1. For instance, as two users approach an intersection,
each can be individually tracked because of the breadcrumb
effect. When they enter the intersection, they are in the
same place at the same time and their paths become indis-
tinguishable. At this point, the two trail of breadcrumbs
have met, hence, an external observer will not be able to
say which user arrived over which trail. The confusion is
sustained as the users exit the intersection – one cannot de-
termine whether the users have turned or have continued to
go straight.

1: As users move, their locations are relayed to an
LBS. Cylinders represent locations where the user
has previously revealed a location. An attacker ob-
serving the cylinders over time cannot follow two
users once they have coincided in space and time.
Past the coincidence point, the attacker cannot say
whether they turned or went straight.

A problem arises from the rarity of space-time intersec-
tions, especially in sparse systems. It is much more common
that two users’ paths intersect at different times. One might
imagine a traffic intersection where one user passes through

at 7:05pm and another user passes through at 7:09pm. No
anonymization occurs because one user can be seen pass-
ing through, then the other user passes through later. As
GPS and other localization technologies provide more fre-
quent updates, it becomes even easier to distinguish two
paths that are distinct in time. Thus, although “mix zones”
is a creative idea, it may not solve the anonymization prob-
lem in practical situations. In this paper, we aim to provide
realtime location privacy even under continuous and high-
accuracy location updates.

3.3 Path Confusion
Path confusion [13] extends the method of mix zones by

resolving the same-place same-time problem. In path con-
fusion, one incorporates a delay in the anonymization. Let
us imagine a user passing through an intersection at time
t0 and another user passes through the intersection at time
t1, where t0 < t1 < t0 + tdelay. At the end of tdelay, the
path confusion algorithm will do an a posteriori analysis of
the users’ paths. Seeing that the paths have intersected in a
way that creates anonymity, the users’ locations will then be
revealed together to the LBS. Even though the users were
not in the same place at the same time, the LBS does not
know the users’ locations until both have crossed the same
place. In reference to the above example, t0 = 7:05pm, t1
= 7:09pm, and tdelay could be 10 minutes. Thus, the users’
trail of locations are exposed at 7:15pm, ensuring confusion
at the LBS.

Path confusion creates a similar problem as CliqueCloak.
By the initial introduction of a delay, realtime operation is
compromised. Further, path confusion will decide to not
release the users’ locations at all if insufficient anonymity
has been accumulated after t0 + tdelay. This poses the risk
that, for significant intervals of time, users’ locations will
not be exposed to the LBS. Naturally, service from the LBS
will be unavailable for this entire duration.

3.4 Limitations
As mentioned earlier, several applications may demand

realtime location updates and complete service availability.
Meeting these needs effectively remains an open research
problem. There are no existing adequate privacy solutions
for certain combinations of quality of service (QoS) con-
straints. We will now explain our solution that can meet
these QoS constraints.

4. PREDICTIVE PRIVACY
We propose a new method for ensuring privacy that would

obviate the need to sacrifice availability or accuracy at any
point. Path confusion is a good step towards this goal be-
cause, when queries are eventually answered, they are an-
swered without any degradation in accuracy. We suggest
using mobility prediction to do a prospective form of path
confusion. By predicting that these users will eventually
pass through the intersection, we can prefetch responses to
the user’s continuous location queries. Predicted path inter-
sections are indistinguishable to the LBS from a posteriori
path intersections; the LBS must still reply to the user’s
queries along these paths. Doing so prospectively allows us
to keep the accuracy benefits of path confusion, but without
incurring the delay of path confusion.



Using the terminology of caching, let us consider the sce-
nario of a cache hit and a cache miss. If we have a cache hit,
that means that a user has submitted coordinates (x1, y1)
to CacheCloak and has received the correct data for (x1, y1)
from CacheCloak’s spatial cache. This can be seen in Figure
2, where a flat cylinder on the road represents a location
where CacheCloak has cached data for the user and a raised
cylinder represents a location where the user has asked for
cached data. In the case of a cache miss, we find a user at
(x2, y2) where CacheCloak has no cached data. To fetch the
appropriate data for (x2, y2), CacheCloak generates a pre-
dicted path for the user. The predicted path is extrapolated
until it is connected on both ends to other existing paths in
the cache, as shown in Figure 3. After these connections are
made, the entire path is sent to the LBS and all responses
for locations along the path are retrieved and cached. The
new data for (x2, y2) is then forwarded to the user. As the
user moves to the subsequent (xi, yi) locations along the
predicted path, the LBS responses will be forwarded from
the cache for the exact current position of the user. This
process will continue, without degrading spatial or temporal
accuracy of any single data point the user sees. Each time
the user deviates from a predicted path, new requests to the
LBS will be triggered and new data will be retrieved and
cached.

It is the path intersections at the ends of the predictions
that provide the anonymity. An attacker attempting to
track a user anonymized by CacheCloak will not be able
to determine why the new path has been generated. To the
responding LBS, the combination of the previously cached
requests and the newly cached requests creates an unclear
trail to follow. The trigger for the new path prediction could
have come from a user entering either end of the new pre-
dicted path. The trigger could also come from a user first
accessing the LBS while between two existing paths. Figure
4 gives a visual representation of what the LBS sees after re-
ceiving the new queries. The user cannot be tracked, as will
be shown quantitatively in Section 7. However, CacheCloak
has data available to the user in realtime and without inter-
ruption. We have not altered the accuracy of the location
data in any way. This is a privacy system that can provide
the desired QoS constraints.

2: The flat cylinders indicate responses that
CacheCloak has already retrieved from the LBS, and
cached in its server. The user receives cached re-
sponses from CacheCloak for each of its current lo-
cations – shown by raised cylinders.

3: If the user enters a road with no cached data,
CacheCloak makes a prediction that connects the
predicted path to existing paths with cached data.
CacheCloak requests the LBS for responses along
the entire predicted path. The LBS responds, and
the data is cached at CacheCloak. As the user moves
to a specific location along that path, CacheCloak
sends the data for that location.

4: This figure is the view through the eyes of the
LBS. The cylinders show locations for which the LBS
has received data queries. The LBS cannot deter-
mine what triggered the new set of queries along
Main Street. It could be users turning in from Uni-
versity Avenue, or from Stadium Drive, or a user
coming out into Main Street from her driveway.

5. CACHECLOAK: PREDICTION ENGINE
To describe CacheCloak’s operation in more detail, we first

discuss mobility prediction. A mobility prediction algorithm
is necessary to enable CacheCloak’s prospective path confu-
sion. An important note here is that any prediction mecha-
nism will be sufficient, provided path predictions can be ex-
tended a variable distance to ensure intersections with other
paths. The cost of an incorrect prediction is expressed as un-
necessary responses requested from the LBS and unneeded
data cached by CacheCloak. Thus, we see a communication
cost for poor predictions, and a computational cost for in-
creasingly sophisticated mobility prediction. We note that
this communication cost is over the wired network connect-
ing CacheCloak and the LBS.

For this particular implementation of CacheCloak, we find
a balance between these two factors by utilizing a simple,
fast, and adequate prediction method. The method is di-



rected at predicting vehicular movements. The area in which
CacheCloak operates is pixellated into a regular grid of squares
10m × 10m. Each “pixel” is assigned an 8 × 8 historical
counter matrix C, where each element of the matrix cij rep-
resents the number of times a user has entered from neigh-
boring pixel i and exited toward neighboring pixel j. As
we are using a square grid, each pixel has 8 neighbors, il-
lustrated in Figure 5. This data has been previously accu-
mulated from a historical database of vehicular traces from
multiple users. These matrices can continue to be updated
during CacheCloak’s operation as necessary. This historical
view of user behavior provides a valuable base for prediction.

The source of the data for the matrix C can come from
a number of places. As we describe later, mobility simula-
tions using virtual representations of a city can be used to
initially populate the matrix. Once real users begin using
the system, the historical data can be gradually overwritten
with real user traces.

5: The map of a real city is pixellated, and each
pixel is assigned a 8 x 8 count matrix. These count
matrices are then used to predict users’ paths.

We use a first-order Markov model, in which the proba-
bility that a user will exit side j given an entry from side i
is:

P (j|i) =
cijP
i cij

(1)

The probability that a user will exit side j without any
knowledge of the entering side is given by:

P (j) =

P
j cijP

i

P
j cij

(2)

If a prediction is triggered, CacheCloak will extrapolate
from P (j|i) towards the most probable next pixel for that
user. Subsequent pixels will be “colored” in the direction of
most likely next pixel max(P (j|i) for j = 1...8). This color-
ing process will continue until the predicted path intersects
with another previously predicted path. The predicted path

will also be extrapolated backwards until it intersects an-
other previously predicted path. The entire set of colored
pixels will then be sent as an unordered sequence of pre-
dicted GPS coordinates to the LBS.

CacheCloak is robust to a high number of mispredictions
or rapidly expiring cached data. When a user deviates from
a predicted path or has data expire, CacheCloak may sim-
ply make a new prediction. The user will see only up-to-date
cached data, and mispredicted segments of his/her path and
stale data would not be transmitted to the user. Request-
ing additional data for the new prediction comes at a low
cost compared to the necessity of privacy, and the requests
between the CacheCloak server and LBS would be on a low-
cost wired network. The amount of data that users see com-
pared to the amount of data requested by CacheCloak will
vary according to individual mobility patterns. The abil-
ity to “purchase”user privacy through purely computational
means may enable new classes of privacy-protected applica-
tions, and we suggest that this is an acceptable tradeoff.

This iterated Markov model brings a number of benefits.
The first benefit is that our mobility predictions are based
entirely on previously observed user movements. This pre-
vents predictions from absurdities such as passing through
impassible structures or going the wrong way on one-way
streets. The second benefit is that this allows us a very rapid
and computationally cheap way to create our predictions, as
we are maintaining only one time-step of state throughout
the prediction. Maintaining multiple steps from the past
may improve prediction accuracy, but we must be careful
to not reveal too much information about the users them-
selves. If we watch each user very carefully and can provide
perfect predictions of user mobility, we may actually reveal
the user’s identity to the attacker. For example, if only cer-
tain military personnel are allowed to use a restricted road
within a military facility, we may identify the user to the
attacker by creating an individualized prediction along that
road.

6. SYSTEM EVALUATION
In this section, we will detail the evaluation of CacheCloak.

A simulation module to load users’ GPS traces from the
filesystem in realtime, the attacker model, and the evalua-
tion module for the privacy metrics were all coded in the C
language on a Unix system.

6.1 Simulation
To simulate realistic operating conditions for CacheCloak,

we utilized a trace-based simulation. We first obtained a
map of a 6km × 6km region of Durham, North Carolina,
sourced from publicly accessible 2006 US Census Bureau
TIGER GIS data [15]. Our segment of the map, shown in
Figure 5, includes the relatively sparse road network of Duke
University’s campus, surrounding residential areas, and higher
density road networks in the neighboring commercial ar-
eas. The map was loaded into VANETMobiSim and vir-
tual drivers obeyed traffic laws, performed collision detec-
tion, and accelerated according to physical laws and Census-
defined speed limits [16]. Vehicles were initially placed ran-
domly on the map. Routes were determined by randomly se-
lecting addresses on the map and routing intelligently to the



destination. Upon arrival at the destination, a new address
was selected and the vehicle would begin routing anew after
a short pause. To generate C, the historical data matrix,
we aggregated data from thirty day-long traffic simulations
in the map of a city with fifty users in each simulation. We
assume that each user’s localization is accurate to one pixel,
and updated every second.

The users’ locations were written to the filesystem as the
simulation continued in time. These trace files were then
loaded into CacheCloak chronologically, simulating a real-
time stream of location updates from users. A 1-bit mask
axy was generated for each pixel in the map to signify caching
for that pixel. The bit was flipped “on” if data was cached
for that location and it was flipped “off” if no data was yet
available. When a user requests a prediction, the prediction
engine will continue to extend the predicted path until it
intersects with an “on” pixel in axy.

6.2 Attacker Model
To simulate an attacker attempting to track a user via

CacheCloak’s output, we must first consider how an attacker
might start tracking a user. Previous literature has devel-
oped the concept of “identifying locations”. An identifying
location is a place where a query’s location identifies the
sender. One example would be a home or a private office; a
query sent with the coordinates of a private office will typi-
cally identify the sender as the occupant of that office. Users
naturally enter these kinds of locations throughout the day.
The user may choose to suppress or reveal their location in
an identifying location, but it is inherently difficult to keep
a user anonymous in such locations. We wish to look at the
ability of an attacker to follow a user a significant distance
away from these locations, assuming the worst-case scenario
where users continue to use LBSs in their homes and offices.

To simulate this, we choose a time tidentified after a simu-
lation warmup period and choose a user in our simulation to
be identified. After doing so, we use a vector-based diffusion
model to simulate the attacker’s view of the user’s possible
travel through the map. We first associate a probability vec-
tor ~p(x, y) with each existing pixel on the map. The eight
elements of ~p(x, y), pk(x, y) for k = 1, 2, .., 8, represent the
probability that a user is occupying pixel (x, y) and entered
from side k. The user’s location at time tidentified is initial-
ized by equation 3. This sets the probability of the identified
user being in its current pixel as

P
k pk(x, y) = 1. Thus, the

identified user’s location is known exactly by the attacker.
The initialized values of pk(x, y) represent the best-guess
prior as to where the user might have come from before be-
ing identified.

pk(x, y) =

P
j ckj(x, y)P

i

P
j cij(x, y)

(3)

This equation makes the implicit assumption that the at-
tacker has access to the same historical matrix elements cij

as the prediction engine. In doing so, we simulate the worst-
case scenario where the attacker’s historical data is of the
same quality as CacheCloak’s itself.

As time progresses, the attacker expects that the user will
leave this location and head in an unknown direction. This
requires that the attacker both estimate the user’s speed and
direction of travel. To ensure that we do not underestimate
the attacker, we give the attacker perfect knowledge of the
user’s speed. Each time the user moves to a new pixel, the
attacker uses a diffusive model to determine the likelihood
that the user has gone in any specific direction.

The diffusion model uses the constants cij and the con-
ditional probability P (j|i) to set the discrete diffusion gra-
dient. Each element pk(x, y) is updated per the equation
below, where we define dxj as the x-axis movement needed
to exit the jth side, dyj as the y-axis analogue, and inv(j)
giving the side opposite from j. Diffusion for each pixel is
described by the equation below.

pk(x + dxj , y + dyj) = a(x + dxj , y + dyj) ∗
pi(x, y) ∗ P (j|i)

= a(x + dxj , y + dyj) ∗ pj(x, y) ∗
cijP

i(a(x + dxi, y + dyi) ∗ cij)

forj = 1, 2, .., 8, k = inv(j)

An example will be useful to explain this diffusion process.
Let us imagine a user is identified at (x0, y0) in the middle of
a straight two-way road, perhaps because the user has just
exited his/her driveway. For the sake of a simple example,
we assume traffic is equally likely to proceed in either direc-
tion. Given this assumption, two elements of ~p(x0, y0) will
be initialized to 0.5, representing the idea that the user is
definitely at pixel (x0, y0) and is equally likely to have en-
tered that pixel from either direction on the road. The as-
sumption that the traffic is equally likely to proceed in either
direction sets a constraint P (k0|inv(k0)) = P (inv(k0)|k0).
Thus, when the diffusion occurs, P (j|i) is zero for all pairs
of i, j except for one set {k0, inv(k0)}, {inv(k0), k0}.

After the first time-step of diffusion, we would see thatP
k pk(x0, y0) = 0, but

P
k pk = 0.5 at (x0 + dxk0 , y0 +

dyk0) and (x0 + dxinv(k0), y0 + dyinv(k0)). Thus, the “spike”P
k pk = 1 has split into equally sized peaks of location

probability of
P

k pk = 0.5 to each side of the initial pixel.
These peaks will continue to propagate down the roads until
they hit an intersection of roads, where later P (j|i) values
will further split the peaks down different possible roads.

This diffusive method models an attacker trying to follow
every possible way the user might go, at the speed the user
is going. In this example, the attacker is simulating a 50/50
chance that the user went left or right out of a driveway. If,
later, there is a peak of p = 0.2 on a particular road, this
clearly corresponds to the attacker’s belief that there is a
20% chance that the user is on that road.

6.3 Privacy Metrics
The next step past the diffusive attacker model is creat-

ing a quantitative measure of privacy based on the attacker’s
ability or inability to track the user over time. A good quan-
titative measure is location entropy. Location entropy is de-
fined as the number of bits S = −

P
P (x, y)log2(P (x, y))

for the probability
P

k pk(x, y) = P (x, y) that the user is at
location (x, y). To be sure that results are not overstated,



some abstraction for various pk values of each pixel’s vec-
tor is necessary. Were we to use ~p(x, y) to calculate en-
tropy S, we might find

P
k pk(x1, y1) = p1 = 0.5 that the

user is in one pixel in a location (x1, y1), and P (x2, y2, ) =
0.1, P (x2 + 1, y2) = 0.1, .., P (x2 + 3, y2 + 1) = 0.1 that the
user is anywhere among five neighboring pixels near location
(x2, y2). In this instance we might calculate an entropy of
2.1 bits, noting Px1 = 0.5 that the user is in the first location
and Px2 = 0.5 that the user is somewhere near the second
location. This means the attacker thinks it is equally likely
that the user is in one of these two locations and nowhere
else. The logical expectation would be for such a scenario
to result in only 1 bit of entropy. We must calculate the
entropy on a ‘per-location’ basis, not on a ’per-pixel’ basis,
as we wish to avoid overstating the user’s privacy.

To resolve this issue, we utilize a location-finding algo-
rithm that finds peaks of probability like Px1 and Px2 before
calculating the user’s entropy. The algorithm finds peaks
across the map and sequentially groups their neighboring
pixels into different contiguous location-groups, producing a
small number of different locations. The probability values
across all pixels in a group are then summed to produce an
appropriate Pxi for calculating entropy. This reduces the
reported entropy, as the number of groups will be equal to
or less than than the number of non-zero pixels, and gives a
more realistic measure of the attacker’s knowledge.

Entropy is valuable for location privacy because it gives
a precise quantitative measure of the attacker’s uncertainty.
Further, is it comparable to the thresholds H and C of Hoh
and Gruteser’s path confusion [13]. There is also some equiv-
alence between the entropy S and the k of k-anonymity. By
definition, 2S equally likely locations will result in S bits
of entropy. The inverse does not strictly hold; S bits does
not equate to 2S possible locations, as not all locations will
be equally likely locations for the user. Still, 2S is a good
intuitive approximation to understand how many different
places the attacker might expect to find the user.

7. RESULTS AND ANALYSIS
In this section, we show that our results provide evidence

for strong anonymization. Gruteser and Hoh’s previous em-
pirical work has suggested that the average user’s trip from
location to location takes approximately 10 minutes [13].
CacheCloak is shown here to provide users with multiple
bits of entropy within 10 minutes. Such entropies can be
achieved even in sparse populations. Density variations and
the typical anonymization case are explored. Peak counting
results are presented to explain some of the dynamics within
the system as entropy increases.

7.1 Evaluation
CacheCloak was simulated in parallel over nineteen sepa-

rate computers. The simulations were identical across all the
computers, except the random number seeds. Each simula-
tion generated fifty mobility traces for vehicular users. We
began evaluation with a ten-user scenario. After a warmup
period, users would be “identified” and diffusive entropy
measurements would begin. Ten minutes of entropy mea-
surements were taken after the point of identification. The
simulation would then restart and re-warmup, but with an-
other ten users added. This continued until all fifty mobility

traces had been evaluated, spanning average densities from 1
user / 3.6 km2 to 1 user / 0.72 km2. In total, 2,850 diffusive
measurements were performed across 95 separate scenarios.
Approximately 5% of the measurements were culled before
data analysis, as simulated vehicles could occasionally get
trapped on isolated segments of road on the edges of the
evaluated map. Figure 6 shows the distribution of users’
traveled distances during the twenty minute measurement
period, showing that most users traveled between 2 to 3.5
km in those twenty minutes.
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6: Distribution of users Vs. distance traversed in 20
minutes. Most users traversed around 1 to 2 miles.
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7: Mean entropy over time for different user densi-
ties. Even with 10 to 50 users, the achieved entropy
is around 5 bits in 10 minutes (600s). In reality, the
number of users are likely to be far greater, resulting
in greater entropy.

7.2 Mean and Minimum Entropy
Our first step is to observe the time evolution of the mean

entropy across all users in a given scenario. We see in Fig-
ure 7 that users reach two bits of location entropy before
two minutes (120s) and six bits before ten minutes (600s) in
the n = 50 case. As described in the previous section, two
bits of location entropy is roughly equivalent to the attacker



only seeing four equally likely locations for the user. Simi-
larly, the higher value of six bits suggests sixty four possible
locations. It is difficult to set a hard quantitative threshold
for entropy, above which the user is anonymous and below
which the user is identified. However, it is evident that the
attacker has no hope of knowing where the user is with any
fidelity after ten minutes for any of the different densities.
Even in the lowest density case of n = 10, over five mean
bits of entropy are achieved before the ten minute mark.
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8: Worst-case entropy over time for different user
densities. Around 2.7 bits of entropy achieved even
with 10 users.

However, it will be valuable to see more about worst-case
anonymization in a given scenario. To this end, we show the
mean entropy of the least-anonymized users for each density
in Figure 81. Again, even in the lowest density scenario, a
reasonable amount of entropy is obtained. There, the users
reach an average of 2.7 bits of entropy before 10 minutes
elapse, suggesting around 6 different possible locations the
user might be.

Similarly, the mean entropy of the most-anonymized users
across different densities is shown in Figure 9, giving a sense
for the variation between the least-anonymized users and the
most-anonymized users protected by CacheCloak.

7.3 Density Variations
The variations caused by differing densities show that

CacheCloak’s system is robust even in extreme low densi-
ties. It is in this low density regime that CacheCloak’s ef-
fectiveness is most drastic. As the simulation area includes
an entire university, dozens of blocks of residential neighbor-
hoods, and several commercial sectors, one can easily imag-
ine at least ten people driving on the roads (even at late
nights). As Figure 10 shows, CacheCloak can still provide
up to five bits of anonymity after ten minutes in this sparse
scenario. Clearly, k-anonymity will require significant degra-
dation of accuracy to anonymize users in the n = 10 case
here, with an effective density of 1 user per 3.6km2. Path

1More specifically, for each density, we take the least
anonymized user from each scenario, and compute their av-
erage entropy.
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9: Best-case entropy over time for different user
densities.
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10: Entropy after 10 minutes of attempted tracking
for different user densities.

confusion will also have very few path intersections to work
with, resulting in a higher degree of service unavailability or
considerably higher delay.

7.4 Typical case
There are results which help to understand the typical

performance of CacheCloak. Qualitatively, we expect en-
tropy to increase quasi-monotonically over time as the user
moves further away from the identifying location. Proba-
bilities branching at an intersection will cause a jump in
entropy. Entropy will decrease if the model shows that, re-
gardless of which direction the user goes, two possible paths
will lead to the same location at the same time. We see
these different forces in action as the individual user’s en-
tropy increases in Figures 11 and 12.

The effect of density is shown in Figure 11, as the same
mobility trace of an arbitrary user is observed as CacheCloak
is evaluated with increasing numbers of simulated vehicles.
We see a strong correspondence between each line, showing
that the effect of density on entropy increases with time.
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12: Three arbitrary users’ entropies over time (n =
50)

Figure 12 zooms into the evolution of three arbitrary users’
entropies over time. When the attacker estimates that a user
has reached an intersection, the figure shows a substantial
jump in entropy. In some cases, two different paths con-
verge to the same place, temporarily reducing the attacker’s
uncertainty. In Figure 13, we continued to measure one ran-
domly chosen user’s entropy out to thirty minutes. While
ten minutes clearly suffices to anonymize a user, this figure
corresponds well with the intuition that, beyond a certain
point, one’s ability to track a user cannot become worse.

7.5 Peak Counting
One final measurement involves peak counting. As we are

grouping the probabilities ~px,y into different location prob-
abilities pA, pB , and so forth (described in Section 6.3), we
can look at these location probabilities directly. These peaks
in the diffusive probability map represent the locations the
attacker is most certain a user has gone. This will give a
sense for how sure an attacker might be that a user is in any
one location. While entropy is a meaningful measurement,
location counting has a more immediately intuitive mean-
ing. For example, at ten minutes in all densities, on average

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8

9

10

Time (seconds)

En
tro

py
 (b

its
)

Single User for 30 Minutes

13: The time evolution of a random user’s entropy
over 30 minutes.
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14: Average number of locations a user might be
according to a 0.05 threshold.

an attacker cannot track the user to even one location with
probability > 0.2. To observe this, we turn to Figures 14, 15,
and 16 to look at the number of location probabilities that
are above different thresholds. This is like observing a 3D
contour of identification probability, and counting how many
peaks rise above a horizontal cut (at that threshold). Our
peak counting results show two main phases, first increasing
and then decreasing. This can be explained as follows.

At the time a user is identified (i.e., the attacker knows the
location of the user), we see a single peak of p = 1 above the
threshold. As the user moves, the number of peaks above
the threshold increases because the user can be assigned to
a few locations that it could have moved to within this small
time. Of course, the probability of these few locations is less
than one, but still above the threshold. As time progresses,
the number of locations a user might have possibly traveled
to increases, and the probability that the user is in any one
place drops as more and more possible locations must be
considered. Thus the number of peaks above the threshold
starts decreasing. This continues until locations becomes
so less likely that their probability values drop below the



threshold. After 10 minutes, we see no peak above a 0.2
probability threshold. For even lower thresholds (0.05, 0.1,
and 0.2), the effects are shown in the Figures 14, 15, and 16
respectively.
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15: Average number of locations a user might be
according to a 0.1 threshold.
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16: Average number of locations a user might be
according to a 0.2 threshold.

We also look at density variations for the peak count. Fig-
ure 17 shows the different mean peak numbers for different
densities and thresholds. We see the beneficial effects of
having a larger number of users to hide with here.

8. DISTRIBUTED CACHECLOAK
One issue that might be raised with CacheCloak is that it

requires the users to trust the server. What if the users do
not wish to trust CacheCloak?

We show that a distributed form of CacheCloak is prac-
tical. We achieve this by carefully rearranging the struc-
ture of the system. Recall that in the centralized version
of CacheCloak, the trusted CacheCloak server determines
if the user’s query has a cached response by checking the
ON/OFF flag in the bit-mask. If the bit-mask for that loca-
tion is OFF, CacheCloak performs the mobility prediction,
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17: Variation of number of peaks left after 10 min-
utes at different densities and thresholds. The num-
ber of peaks for a given threshold decreases with in-
creasing users, showing that more users offer greater
opportunity to hide.

and caches the LBS’s response along the predicted path. All
bit-masks on the predicted path is now turned ON. As the
user moves down the predicted path, CacheCloak responds
with the cached information (Figure 18). However, if we sim-
ply provide CacheCloak’s city-wide bit-mask axy to mobile
devices, the devices could cache their own data and gener-
ate their own mobility predictions. When a mobile device
does not have cached data for its current location, it gener-
ates a mobility prediction until the predicted path intersects
with an ON pixel in axy. The user then pseudonymously re-
quests the desired data along that path through CacheCloak.
CacheCloak then updates its copy of axy to show that new
data requests had been made. The LBS responds to this new
path, and CacheCloak forwards all the responses to the mo-
bile device. Thus, for each new location, the user either has
data in its local cache, or pseudonymously sends a predicted
path to an untrusted CacheCloak server. This untrusted
server only keeps track of the global bit-mask for all users
about what data requests are being made. Users periodi-
cally update their copy of axy to use the most recent global
data from CacheCloak. The advantage of this arrangement
(Figure 19) is that the user never reveals to CacheCloak
nor the LBS its actual location. Both CacheCloak and the
LBS see the same criss-crossing pattern of connected paths.
While the user must trust CacheCloak to accurately cache
other users’ data request patterns, the user need not trust
CacheCloak with any more data than is available to the LBS.

As the mobility predictions are represented as a first-order
Markov model, little computation is required to produce a
prediction. The historical prediction matrix needs to be ob-
tained from the server, which creates bandwidth overhead.
We can substantially compress this data. A user can enter
a pixel from any of its eight neighboring pixels. Depend-
ing on which neighboring pixel it entered from (say X), we
can predict the user is most likely to go towards one of its
new eight neighboring pixels (say Y). Thus, for each value
of Xi, i = [1, 2, 3...8], we have a corresponding Yi. By rep-
resenting each value of Yi with three bits, we can specify
[Y1, Y2, Y3...Y8] in a total of 24 bits, for each pixel. On a



600 × 600 pixel map, we come to approximately 1MB of
data. Further, the average case gives room for significant
compression. The average pixel will not be on a road and,
having never been traveled, have a null matrix. Even pixels
on bidirectional roads are not likely to have more than a cou-
ple non-zero mappings. The only case where a user might
enter from any arbitrary side and exit any arbitrary side is
at intersections. As roads are only a fraction of the area of
any city, and intersections an even smaller fraction, there is
much room to optimize CacheCloak client’s bandwidth and
memory usage. Though the amount will vary across differ-
ent maps, opportunities for compression exist.

18: The system diagram for the centralized form of
CacheCloak. Mobility prediction based on historical
mobility patterns and the bit-mask of caches is per-
formed at the intermediate server. LBS responses
for the entire path is cached, and the responses for-
warded according to the current (x,y) coordinate of
the mobile user.

In the distributed form, CacheCloak provides global data
about other data requests. Individual mobile devices per-
form the mobility prediction using this data and send an
entire predicted path to the CacheCloak server. Users re-
ceive the same quality of service in the distributed form, but
their mobile devices must perform more computation. The
centralized model benefits by keeping the caching and pre-
dictions on low-cost wired equipment, where the distributed
model places a greater computational burden on the mo-
bile device and a greater bandwidth burden on the last-
hop wireless connection. The advantage is that distributed
CacheCloak receives no more information about a user’s lo-
cation than the untrusted LBS does, obviating the need to
completely trust the CacheCloak server.

9. DISCUSSIONS
We discuss some issues and opportunities with CacheCloak.

9.1 Pedestrian Users
The specific application of CacheCloak to vehicular move-

ment is due to the ease with which realistic vehicular move-
ments can be simulated in very large numbers. CacheCloak
should be able to work with pedestrian data, as pedestri-
ans follow paths between a source and a destination just

19: A distributed form of CacheCloak. The histor-
ical patterns and the global bit-mask is periodically
shared with the mobile device, which can then pre-
dict its mobility and request information along the
predicted path. The path-wide responses are cached
on the mobile. The CacheCloak server is only neces-
sary to maintain the global bit-mask from all users
in the system.

as vehicles do. One caveat with pedestrian data is that it
may be more difficult to get enough historical mobility data
to bootstrap the prediction system. One way to solve this
could be to obtain walking directions from realistic source-
destination pairs on Google Maps, and parse them to get
the mobility patterns. We plan to investigate such schemes
in future.

9.2 Bootstrapping CacheCloak
CacheCloak addresses an important concern with many

existing privacy methods. The inability of the existing tools
to deal with sparse systems plays an important role in mo-
tivating CacheCloak. One can imagine an early adopter sce-
nario in which one starts with zero users for a new LBS. In
order to attract users to this new LBS, some kind of privacy
guarantee may be necessary before users consent to reveal-
ing personal location data. If privacy cannot be provided
to the few first users, it may be difficult to gain a critical
mass of users for the system. CacheCloak has been shown
to work well with very sparse populations, and can be used
initially with simulation-based historical data. This can be
effective in bootstrapping the system.

9.3 Coping with Distinguishable Queries
There are future directions to explore with CacheCloak.

One problem is that the LBS must be sent indistinguish-
able queries from different users. If each user continued to
send a distinguishable or unique location-based query, then
tracking that user would be trivial. This has previously lim-
ited path confusion [13] to traffic-management applications,
where queries do not require an instantaneous response by
the LBS, and the only content of the query is the location of
the user and the direction of travel. CacheCloak supports re-
altime anonymization and the location-only structure may
work for some applications, but to be useful to a broader
selection of LBSs, distinguishable queries must also be sup-
ported.



If a user issues query Q1 and another user issues query
Q2, one can still use CacheCloak with a generalized query
Qg, provided responses R1,R2 ⊆ Rg and ∃F1, F2 such that
F1(Rg) = R1 and F2(Rg) = R2. Creating Qg and Fi will
pose different challenges between applications, but general
methods may exist for broad classes of applications. Sup-
port for these LBSs may be possible by grouping all user
queries into a small number of equivalence classes and run-
ning CacheCloak separately for each. For example, there
may be one user asking specifically about restaurants in
the area and another user asking specifically about book-
stores. By caching responses to the joint query “Where
are the restaurants and/or bookstores?”, CacheCloak could
make these different queries look identical to the LBS. These
responses could then be locally refined to ensure that only
the requested information is sent to the mobile user.

10. CONCLUSION
Existing location privacy methods require a compromise

between accuracy, realtime operation, and continuous oper-
ation. We present a location privacy system, CacheCloak,
that obviates the need for these compromises. Mobility pre-
dictions are made for each mobile user, and the users’ loca-
tions are simultaneously sent to an LBS with predicted fu-
ture positions. These predicted paths are extrapolated until
they intersect other paths, camouflaging users in a “crowd”.
A centralized and a distributed form are presented. Trace-
based simulation of CacheCloak with GIS data of a real
city with realistic mobility modeling was performed. En-
tropy monitoring shows that even an attacker with a pri-
ori knowledge of historical mobility patterns cannot track a
user over a significant amount of time. Density simulations
show that CacheCloak can work in extremely sparse systems
where other techniques fail. We believe that CacheCloak and
the location-only service structure show a new way to ap-
proach privacy issues for LBSs. Anonymization need not
come from suppressing some of the user’s location informa-
tion, and services can be structured to be inherently privacy-
preserving. The cost of this privacy preservation is purely
computational, and places no new limitations on the quality
of user location data. By predicting the user’s future loca-
tions, we can camouflage the user’s location with preemptive
data requests. This is a new location privacy method that
can meet the demands of emerging location based services.
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