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ABSTRACT

With the rich functionalities and enhanced computing capa-
bilities available on mobile computing devices with touch
screens, users not only store sensitive information (such
as credit card numbers) but also use privacy sensitive
applications (such as online banking) on these devices,
which make them hot targets for hackers and thieves. To
protect private information, such devices typically lock
themselves after a few minutes of inactivity and prompt
a password/PIN/pattern screen when reactivated. Pass-
words/PINs/patterns based schemes are inherently vulnera-
ble to shoulder surfing attacks and smudge attacks. Further-
more, passwords/PINs/patterns are inconvenient for users
to enter frequently. In this paper, we propose GEAT, a
gesture based user authentication scheme for the secure un-
locking of touch screen devices. Unlike existing authenti-
cation schemes for touch screen devices, which use what
user inputs as the authentication secret, GEAT authenti-
cates users mainly based on how they input, using distin-
guishing features such as finger velocity, device acceleration,
and stroke time. Even if attackers see what gesture a user
performs, they cannot reproduce the behavior of the user
doing gestures through shoulder surfing or smudge attacks.
We implemented GEAT on Samsung Focus running Win-
dows, collected 15009 gesture samples from 50 volunteers,
and conducted real-world experiments to evaluate GEAT’s
performance. Experimental results show that our scheme
achieves an average equal error rate of 0.5% with 3 gestures
using only 25 training samples.
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1. INTRODUCTION

1.1 Motivation
Touch screens have revolutionized and dominated the user

input technologies for mobile computing devices (such as
smart phones and tablets) because of high flexibility and
good usability. Mobile devices equipped with touch screens
have become prevalent in our lives with increasingly rich
functionalities, enhanced computing power, and more stor-
age capacity. Many applications (such as email and bank-
ing) that we used to run on desktop computers are now also
being widely run on such devices. These devices therefore
often contain privacy sensitive information such as personal
photos, email, credit card numbers, passwords, corporate
data, and even business secrets. Losing a smart phone with
such private information could be a nightmare for the owner.
Numerous cases of celebrities losing their phones with pri-
vate photos and secret information have been reported on
news [1]. Recently, security firm Symantec conducted a real-
life experiment in five major cities in North America by leav-
ing 50 smart phones in streets without any password/PIN
protection [2]. The results showed that 96% of finders ac-
cessed the phone with 86% of them going through personal
information, 83% reading corporate information, 60% ac-
cessing social networking and personal emails, 50% running
remote admin, and 43% accessing online bank accounts.

Safeguarding the private information on such mobile de-
vices with touch screens therefore becomes crucial. The
widely adopted solution is that a device locks itself af-
ter a few minutes of inactivity and prompts a pass-
word/PIN/pattern screen when reactivated. For example,
iPhones use a 4-digit PIN and Android phones use a ge-
ometric pattern on a grid of points, where both the PIN
and the pattern are secrets that users should configure on
their phones. These password/PIN/pattern based unlocking
schemes have three major weaknesses. First, they are sus-
ceptible to shoulder surfing attacks. Mobile devices are of-
ten used in public settings (such as subway stations, schools,
and cafeterias) where shoulder surfing often happens either
purposely or inadvertently, and passwords/PIN/patterns
are easy to spy [15, 18]. Second, they are susceptible to
smudge attacks, where imposters extract sensitive informa-
tion from recent user input by using the smudges left by
fingers on touch screens. Recent studies have shown that
finger smudges (i.e., oily residues) of a legitimate user left on
touch screens can be used to infer password/PIN/pattern [3].
Third, passwords/PINs/patterns are inconvenient for users
to input frequently, so many people disable them leaving
their devices vulnerable.



1.2 Proposed Approach

In this paper, we propose GEAT, a gesture based authen-
tication scheme for the secure unlocking of touch screen de-
vices. A gesture is a brief interaction of a user’s fingers with
the touch screen such as swiping or pinching with fingers.
Figure 1 shows two simple gestures on smart phones. Rather
than authenticating users based on what they input (such
as a password/PIN/pattern), which are inherently subjec-
tive to shoulder surfing and smudge attacks, GEAT authen-
ticates users mainly based on how they input. Specifically,
GEAT first asks a user to perform a gesture on touch screens
for about 15 to 25 times to obtain training samples, then ex-
tracts and selects behavior features from those sample ges-
tures, and finally builds models that can classify each gesture
input as legitimate or illegitimate using machine learning
techniques. The key insight behind GEAT is that people
have consistent and distinguishing behavior of performing
gestures on touch screens. We implemented GEAT on Sam-
sung Focus, a Windows based phone, as seen in Figure 1 and
evaluated it using 15009 gesture samples that we collected
from 50 volunteers. Experimental results show that GEAT
achieves an average Equal Error Rate (EER) of 0.5% with
3 gestures using only 25 training samples.

Figure 1: GEAT implemented on Windows Phone 7

Compared to current secure unlocking schemes for touch
screen devices, GEAT is significantly more difficult to
compromise because it is nearly impossible for an im-
poster to reproduce the behavior of others doing gestures
through shoulder surfing or smudge attacks. Unlike pass-
word/PIN/pattern based authentication schemes, GEAT al-
lows users to securely unlock their touch screen devices even
when imposters are spying on them. GEAT actually dis-
plays the gesture that the user needs to perform on the
screen for unlocking. Compared with biometrics (such as
fingerprint, face, iris, hand, and ear) based authentication
schemes, GEAT has two key advantages on touch screen de-
vices. First, GEAT is secure against smudge attacks whereas
some biometrics, such as fingerprint, are subject to such at-
tacks as they can be copied. Second, GEAT does not require
additional hardware for touch screen devices whereas bio-
metrics based authentication schemes often require special
hardware such as a fingerprint reader.

For practical deployment, we propose to use pass-
word/PIN/pattern based authentication schemes to help
GEAT to obtain the training samples from a user. In the
first few days of using a device with GEAT enabled, in
each unlocking, the device first prompts the user to do a
gesture and then prompts with the password/PIN/pattern
login screen. If the user successfully logged in based on
his password/PIN/pattern input, then the information that
GEAT recorded during the user performing the gesture is

stored as a training sample; otherwise, that gesture is dis-
carded. Of course, if the user prefers not to set up a pass-
word/PIN/pattern, then the password/PIN/pattern login
screen will not be prompted and the gesture input will be
automatically stored as a training sample. During these
few days of training data gathering, users should specially
guard their password/PIN/pattern input from shoulder surf-
ing and smudge attacks. In reality, even if an imposter com-
promises the device by shoulder surfing or smudge attacks
on the password/PIN/pattern input, the private informa-
tion stored on the device during the initial few days of using
a new device is typically minimal. Plus, the user can easily
shorten this training period to be less than a day by un-
locking his device more frequently. We only need to obtain
about 15 to 25 training samples for each gesture. After the
training phase, the password/PIN/pattern based unlocking
scheme is automatically disabled and GEAT is automati-
cally enabled. It is possible that a user’s behavior of doing
the gesture evolve over time. Such evolution can be handled
by adapting the scheme proposed by Monrose et al. [13].

1.3 Technical Challenges and Solutions
The first challenge is to choose features that can model

how a gesture is performed. In this work, we extract the
following seven types of features: velocity magnitude, device
acceleration, stroke time, inter-stroke time, stroke displace-
ment magnitude, stroke displacement direction, and velocity
direction. The first five feature types capture the dynamics
of performing gestures while the remaining two capture the
static shapes of gestures. (1) Velocity Magnitude: the speed
of finger motion at different time instants. (2) Device Accel-
eration: the acceleration of touch screen device movement
along the three perpendicular axes of the device. (3) Stroke
Time: the time duration that the user takes to complete each
stroke. (4) Inter-stroke Time: the time duration between
the starting time of two consecutive strokes for multi-finger
gestures. (5) Stroke Displacement Magnitude: the Euclidean
distance between the centers of the bounding boxes of two
strokes for multi-finger gestures, where the bounding box of
a stroke is the smallest rectangle that completely contains
that stroke. (6) Stroke Displacement Direction: the direction
of the line connecting the centers of the bounding boxes of
two strokes for multi-finger gestures. (7) Velocity Direction:
the direction of finger motion at different time instants.

The second challenge is to segment each stroke into sub-
strokes for a user so that the user has consistent and dis-
tinguishing behavior for the sub-strokes. It is challenging to
determine the number of sub-strokes that a stroke should
be segmented into, the starting point of each sub-stroke,
and the time duration of each sub-stroke. On one hand, if
the time duration of a sub-stroke is too short, then the user
may not have consistent behavior for that sub-stroke when
performing each gesture. On the other hand, if the time du-
ration of a sub-stroke is too large, then the distinctive in-
formation from the features is too much averaged out to
be useful for authentication. The time duration of different
sub-strokes should not be all equal because at different lo-
cations of a gesture a user may have consistent behaviors
that last different amounts of time. In this work, we propose
an algorithm that automatically segments each stroke into
sub-strokes of appropriate time duration where for each sub-
stroke the user has consistent and distinguishing behavior.
We use coefficient of variation to quantify consistency.



The third challenge is to learn multiple behaviors from the
training samples of a gesture because people exhibit different
behaviors when they perform the same gesture in different
postures such as sitting and lying down. In this work, we dis-
tinguish the training samples that a user made under differ-
ent postures by making least number of minimum variance
partitions, where the coefficient of variation for each parti-
tion is below a threshold, so that each partition represents
a distinct behavior.

The fourth challenge is to remove the high frequency noise
in the time series of coordinate values of touch points. This
noise is introduced due to the limited touch resolution of
capacitive touch screens. In this work, we pass each time
series of coordinate values through a low pass filter to remove
high frequency noise.

The fifth challenge is to design effective gestures. Not all
gestures are equally effective for authentication purposes. In
our study, we designed 39 simple gestures that are easy to
perform and collected data from our volunteers for these ges-
tures. After comprehensive evaluation and comparison, we
finally chose 10 most effective gestures shown in Figure 2.
The number of unconnected arrows in each gesture repre-
sents the number of fingers a user should use to perform the
gesture. Accordingly we can categorize gestures into single-
finger gestures and multi-finger gestures.

1 2 3 4 5

6 7 8 9 10

Figure 2: The 10 gestures that GEAT uses

The sixth challenge is to identify gestures for a given user
that result in low false positive and false negative rates. In
our scheme, we first ask a user to provide training samples
for as many gestures from our 10 gestures as possible. For
each gesture, we develop models of user behaviors. We then
perform elastic deformations on the training gestures so that
they stop representing legitimate user’s behavior. We classify
these deformed samples and calculate EER for a given user
for each gesture and rank the gestures based on their EERs.
Then we use the top n gestures for authentication using
majority voting where n is selected by the user. Although
larger n is, higher accuracy GEAT has, for practical purposes
such as unlocking smart phone screens, n = 1 (or 3 at most)
gives high enough accuracy.

1.4 Threat Model

During the training phase of a GEAT enabled touch screen
device, we assume imposters cannot have physical access to
it. After the training phase, we assume imposters have the
following three capabilities. First, imposters have physical
access to the device. Such physical access can be gained in
ways such as thieves stealing a device, finders finding a lost

device, and roommates temporarily holding a device when
the owner is taking a shower. Second, imposters can launch
shoulder surfing attacks by spying the owner when he per-
forms gestures. Third, imposters have necessary equipment
and technologies to launch smudge attacks.

1.5 Key Contributions
In this paper, we make following five key contributions.

1. We proposed, implemented, and evaluated a gesture
based authentication scheme for the secure unlocking
of touch screen devices.

2. We identified a set of effective features that capture
the behavioral information of performing gestures on
touch screens.

3. We proposed an algorithm that automatically seg-
ments each stroke into sub-strokes of different time
duration where for each sub-stroke the user has con-
sistent and distinguishing behavior.

4. We proposed an algorithm to extract multiple behav-
iors from the training samples of a given gesture.

5. We collected a comprehensive data set containing
15009 training samples from 50 users and evaluated
the performance of GEAT on this data set.

2. RELATED WORK

2.1 Gesture Based Authentication on Phones
A work parallel to ours is that Luca et al. proposed to

use the timing of drawing the password pattern on Android
based touch screen phones for authentication [9]. Their work
has following two major technical limitations compared to
our work. First, unlike ours, their scheme has low accuracy.
They feed the time series of raw coordinates of the touch
points of a gesture to the dynamic time wrapping signal
processing algorithm. They do not extract any behavioral
features from user’s gestures. Their scheme achieves an ac-
curacy of 55%; in comparison, ours achieves an accuracy of
99.5%. Second, unlike ours, they can not handle the multiple
behaviors of doing the same gesture for the same user.

Another work parallel to ours is that Sae-Bae et al. pro-
posed to use the timing of performing five-finger gestures on
multi-touch capable devices for authentication [14]. Their
work has following four major technical limitations com-
pared to our work. First, their scheme requires users to use
all five fingers of a hand to perform the gestures, which is
very inconvenient on small touch screens of smart phones.
Second, they also feed the time series of raw coordinates of
the touch points to the dynamic time wrapping signal pro-
cessing algorithm and do not extract any behavioral features
from user’s gestures. Third, they can not handle the multi-
ple behaviors of doing the same gesture for the same user.
Fourth, they have not evaluated their scheme in real world
attack scenarios such as resilience to shoulder surfing.

2.2 Phone Usage Based Authentication
Another type of authentication schemes leverages the be-

havior in using several features on the smart phones such
as making calls, sending text messages, and using camera



[5, 17]. Such schemes were primarily developed for contin-
uously monitoring smart phone users for their authenticity.
These schemes take a significant amount of time (often more
than a day) to determine the legitimacy of the user and are
not suitable for instantaneous authentication, which is the
focus of this paper.

2.3 Keystrokes Based Authentication
Some work has been done to authenticate users based

on their typing behavior [13,19]. Such schemes have mostly
been proposed for devices with physical keyboards and have
low accuracy [10]. It is inherently difficult to model typing
behavior on touch screens because most people use the same
finger(s) for typing all keys on the keyboard displayed on a
screen. Zheng et al. [20] reported the only work in this di-
rection in a technical report, where they did a preliminary
study to check the feasibility of using tapping behavior for
authentication.

2.4 Gait Based Authentication
Some schemes have been proposed that utilize accelerom-

eter in smart phones to authenticate users based upon their
gaits [6, 11, 12]. Such schemes have low true positive rates
because gaits of people are different on different types of
surfaces such as grass, road, snow, wet surface, and slippery
surface.

3. DATA COLLECTION AND ANALYSIS
In this section, we first describe our data collection process

for gesture samples from our volunteers. Second, we extract
the seven types of features from our data and validate our
hypothesis that people have consistent and distinguishing
behaviors of performing gestures on touch screens.

3.1 Data Collection
We developed a gesture collection program on Samsung

Focus, a Windows based phone. During the process of a
user performing a gesture, our program records the coordi-
nates of each touch point and the accelerometer values and
time stamps associated with each touch point. The duration
between consecutive touch points provided by the Windows
API on our device is 18ms. To track movement of multiple
fingers, our program ascribes each touch point to its corre-
sponding finger.

We found 50 volunteers with age ranging from 19 to 55
and jobs ranging from students, faculty, to corporate em-
ployees. We gave a phone to each volunteer for a period of
7 to 10 days and asked them to perform gestures over this
period. Our data collection process consists of two phases.
In the first phase, we chose 20 of the volunteers to collect
data for the 39 gestures that we designed and each volunteer
performed each gesture for at least 30 times. We conducted
experiments to evaluate the classification accuracy of each
gesture. An interesting finding is that different gestures have
different average classification accuracies. We finally choose
10 gestures that have the highest average classification ac-
curacies and discarded the remaining 29 gestures. These 10
gestures are shown in Figure 2. In the second phase, we
collected data on these 10 gestures from the remaining 30
volunteers, where each volunteer performed each gesture for
at least 30 times. Finally, we obtained a total of 15009 sam-
ples for these 10 gestures. The whole data collection took
about 5 months.

3.2 Data Analysis
We extract the following seven types of features from

each gesture sample: velocity magnitude, device acceler-
ation, stroke time, inter-stroke time, stroke displacement
magnitude, stroke displacement direction, and velocity di-
rection.
• Velocity and Acceleration Magnitude: From our data
set, we observe that people have consistent and distinguish-
ing patterns of velocity magnitudes and device accelerations
along its three perpendicular axes while doing gestures. For
example, Figure 3(a) shows the time series of velocity mag-
nitudes of two samples of gesture 4 in Figure 2 performed
by a volunteer. Figure 3(b) shows the same for another vol-
unteer. Similarly Figures 4(a) and 4(b) show the time series
of acceleration along the x-axis in two samples of gesture 4
by two volunteers. We observe that the samples from same
user are similar and at the same time different from samples
from another user.

To quantify the similarity between any two time series, f1
with m1 values and f2 with m2 values, where m1 ≤ m2, we
calculate the root mean squared (RMS) value of the time
series obtained by subtracting the normalized values of f1
from the normalized values of f2. Normalized time series f̂i
of a time series fi is calculated as below, where fi[q] is the
qth value in fi.

f̂i[q] =
fi[q]−min(fi)

max
(

fi −min(fi)
) ∀q ∈ [1,mi] (1)

Normalizing the time series brings all its values in the range
of [0, 1]. We do not use metrics such as correlation to mea-
sure similarity between two time series because their values
are not bounded.

To subtract one time series from the other, the number
of elements in the two need to be equal; however, this often
does not hold. Thus, before subtracting, we re-sample f2 at a
sampling rate of m1/m2 to make f2 and f1 equal in number
of elements. The RMS value of a time series f containing N
elements, represented by Pf , is calculated as:

Pf =

√

√

√

√

1

N

N
∑

m=1

f2[m] (2)

Normalizing the two time series before subtracting them to
obtain f ensures that each value in f lies in the range of
[−1, 1] and consequently the RMS value lies in the range of
[0, 1]. An RMS value closer to 0 implies that the two time
series are highly alike while an RMS value closer to 1 implies
that the two time series are very different. For example, the
RMS value between the two time series from the volunteer
in Figure 3(a) is 0.119 and that between the two time series
of the volunteer in Figure 3(b) is 0.087, whereas the RMS
value between a time series in Figure 3(a) and another in
Figure 3(b) is 0.347. Similarly, the RMS values between the
two time series of each volunteer in Figures 4(a) and 4(b)
are 0.159 and 0.144, respectively, whereas the RMS value
between one time series in Figure 4(a) and another in Figure
4(b) is 0.362.
• Stroke Time, Inter-stroke Time, and Stroke Dis-
placement Magnitude: From our data set, we observe
that people take consistent and distinguishing amount of
time to complete each stroke in a gesture. For multi-finger
gestures, people have consistent and distinguishing time du-
ration between the starting times of two consecutive strokes
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Figure 3: Velocity magnitudes of gesture 4
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Figure 4: Device acceleration of gesture 4
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in a gesture and have consistent and distinguishing magni-
tudes of displacement between the centers of any two strokes.
The distributions of stroke times of different users are cen-
tered at different means and the overlap is usually small,
which becomes insignificant when the feature is used with
other features. Same is the case for inter-stroke times and
stroke displacement magnitudes. Figures 5, 6, and 7 plot the
distribution of stroke time of gesture 4, inter-stroke time of
gesture 6, and stroke displacement magnitude of gestures 7,
respectively, for different volunteers. The figures show that
the overlap in distributions for different users is small and
are centered at different means.
• Stroke Displacement and Velocity Directions From
our data set, we observe that people have consistent, but
not always distinguishing, patterns of velocity and stroke
displacement directions because different people may pro-
duce gestures of similar shapes. For example, Figure 8 plots
the distributions of the displacement direction of gesture 1
for three volunteers. Figure 9 shows the time series of veloc-
ity directions of gesture 10 for three volunteers. Volunteers
V1 and V2 produced similar shapes of gesture 1 as well as
gesture 10, so they have overlapping distributions and time
series. Volunteer V3 produced shapes of the two gestures dif-
ferent from the corresponding shapes produced by volunteers
V1 and V2, and thus has a non-overlapping distribution and
time series.
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Figure 9: Velocity direction of gesture 10

4. GEAT OVERVIEW
To authenticate a user based on his behavior of preform-

ing a gesture, GEAT needs to have a model of the legitimate
user’s behaviors of preforming that gesture. Given the train-
ing samples of the gesture performed by the legitimate user,
GEAT builds this model using Support Vector Distribution
Estimation (SVDE) in the following five steps.

The first step is noise removal, where GEAT passes the
time series of touch point coordinates in each gesture sample
through a filter to remove high frequency noise.

The second step is feature extraction, where GEAT ex-
tracts the values of the seven types of features from the ges-
ture samples and concatenates these values to form a feature
vector. To extract feature values of velocity magnitude, ve-
locity direction, and device accelerations, GEAT segments
each stroke in a gesture sample into sub-strokes at multiple
time resolutions and extracts values from these sub-strokes.
We call these three types of features sub-stroke based fea-
tures. For the remaining four types of features, GEAT ex-
tracts values from the entire strokes in each gesture. We call
these four types of features stroke based features.

The third step is feature selection. For each feature ele-
ment, GEAT first partition all its N values, where N is the
total number of training samples, into the least number of
minimum variance partitions, where the coefficient of vari-
ation for each partition is below a threshold. If the number
of minimum variance partitions is less than or equal to the
number of postures in which the legitimate user provided
the training samples, then we select this feature element;
otherwise, we discard it. For this purpose, ideally the user
should inform GEAT the number of postures in which he
performed the training gestures. However, if the user does
not provide this information, the classification accuracy of
GEAT decreases, but only very slightly, as shown in our
experimental results in Section 9.

The fourth step is classifier training. GEAT first partitions
all N feature vectors into the minimum number of groups



so that within each group, all feature vectors belong to the
same minimum variance partition for any feature element.
We call each group a consistent training group. Then, for
each group of feature vectors, GEAT builds a model in the
form of an ensemble of SVDE classifiers trained using these
vectors. Note that we do not use any gestures from imposters
in training GEAT because in the real-world deployment of
authentication systems, training samples are typically avail-
able only from the legitimate user.

The fifth step is gesture ranking. For each gesture, GEAT
repeats the above four steps and then ranks the gestures
based on their EERs. A user can pick 1 ≤ n ≤ 10 gestures
to be used in each user authentication. Although the larger
n is, the higher accuracy GEAT has, for practical purposes
such as unlocking smart phone screens, n = 1 (or 3 at most)
gives us high enough accuracy. To calculate the EER of a
gesture, GEAT needs the true positive rates (TPR) and false
positive rates (FPR) for that gesture. TPRs for each gesture
are calculated using 10 fold cross validation on legitimate
user’s samples of the gesture. To calculate FPRs, GEAT
needs imposter samples, which are not available in real world
deployment at the time of training. Therefore, GEAT gener-
ates synthetic imposter samples by elastically deforming the
samples of legitimate user using cubic B-splines and calcu-
lates the FPRs using these synthetic imposter samples. Note
that the synthetic imposter samples are used only in rank-
ing gestures, the performance evaluation of GEAT that we
present in Section 9 is done entirely on real world imposter
samples. These synthetic imposter samples are not used in
classifier training either.

When a user tries to login on a touch screen device with
GEAT enabled, the device displays the n top ranked gestures
for the user to perform. Then authentication process behind
the scene works as follows. First, for each gesture, GEAT ex-
tracts the values of all the feature elements selected earlier
by the corresponding classification model for this gesture.
Second, GEAT feeds the feature vector consisting these val-
ues to the ensemble of SVDE classifiers of each consistent
training group and gets a classification decision. If the clas-
sification decision of any ensemble is positive, which means
that the gesture has almost the same behavior as one of the
consistent training groups that we identified from the train-
ing samples of the legitimate user, then GEAT accepts that
gesture input to be legitimate. Third, after GEAT makes the
decision for each of the n gestures, GEAT makes the final
decision on whether to accept the user as legitimate based
on the majority voting on the n decisions.

Table 1 summarizes the symbols used in this paper.

5. NOISE REMOVAL
The time series of x and y coordinates of the touch points

of each stroke contain high frequency noise as we can see
from the time series of x coordinates for a sample gesture
in Figure 10(a). There are two major contributors to this
noise. First, the touch resolution of capacitive touch screens
is limited. Second, because capacitive touch screens deter-
mine the coordinates of each touch point by calculating the
coordinates of the centroid of the area on the screen touched
by a finger, when a finger moves on the screen, its contact
area varies and the centroid changes at each time instant,
resulting in high frequency noise. Such noise should be re-
moved because it affects velocity magnitude and direction
values.

Table 1: Symbols used in the paper

Symbol Description

fi Time series of values

f̂i Normalized time series of fi
mi # of values in time series fi
fi[q] qth value in time series fi
Pf RMS value of time series f

N # of elements in time series f

n # of gestures used when authenticating
α # of points used in SMA for averaging
N # of training samples
b # of postures user provided training samples
k # of minimum variance partitions
Pk Partitioning of N values into k partitions
Qk Partitioning of N values into k partitions

σ2
i (Pk) Variance in partition i of partitioning Pk

t time duration of a stroke
p time duration to segment strokes into sub-strokes
c # of sub-strokes with consistent behavior
s # of sub-strokes in a stroke
γ Parameter of RBF kernel
ν Parameter of SVDE
z # of classifiers in an ensemble
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Figure 10: Unfiltered and filtered time series

We remove such high frequency noise by passing the time
series of x and y coordinates of touch points through a low
pass filter. We consider frequencies above 20Hz as high fre-
quencies because the time series of touch points contain most
of their energy in frequencies lower than 20Hz, as we can see
from the magnitude of the fourier transform of this time
series in Figure 10(b). In this work, we use a simple mov-
ing average (SMA) filter, which is the unweighted mean of
previous α data points. We choose the value of α to be 10.
Figure 10(c) shows the time series of Figure 10(a) after pass-
ing through the SMA filter. We can see that the filtered time
series is much smoother compared to the unfiltered time se-
ries. Figure 10(d) shows the magnitude of fourier transform
of the filtered time series. We observe from this figure that
the magnitudes of frequency components above 20Hz are
negligible.



6. FEATURE EXTRACTION & SELECTION
In this section, we describe the feature extraction and se-

lection process in GEAT. We categorize the seven types of
features into stroke based features, which include stroke time,
inter-stroke time, stroke displacement magnitude, and stroke
displacement direction, and sub-stroke based features, which
include velocity magnitude, velocity direction, and device
acceleration.

6.1 Stroke Based Features

6.1.1 Extraction

To extract the stroke time of each stroke, we calculate
the time duration between the time of the first touch point
and that of the last touch point of the stroke. To extract
the inter-stroke time between two consecutive strokes in a
gesture, we calculate the time duration between the time of
the first touch point of the first stroke and that of the sec-
ond stroke. To extract the stroke displacement magnitude
between any two strokes in a gesture, we calculate the Eu-
clidean distance between the centers of the two bounding
boxes of the two strokes. To extract stroke displacement di-
rection between any two strokes in a gesture, we calculate
the arc-tangent of the ratio of the magnitudes of the vertical
component and the horizontal component of the stroke dis-
placement vector directed from the center of one bounding
box to the center of the other bounding box. We calculate
inter-stroke time and stroke displacement magnitude and
direction from all pairs of strokes in a gesture.

6.1.2 Selection

Given N training samples, for each feature element, we
first partition all its N values into the least number of min-
imum variance partitions (MVPs) where the coefficient of
variation (cv) for each partition is below a threshold. Let
Pk and Qk represent two different partitionings of N val-
ues, each containing k partitions. Let σ2

i (Pk) and σ2
i (Qk)

represent the variance of values in partition i (1 ≤ i ≤ k)
of partitioning Pk and Qk, respectively. Partitioning Pk is
the MVP if for any Qk, maxi

(

σ2
i (Pk)) ≤ maxi(σ

2
i (Qk)

)

.
We empirically determined the threshold of the cv to be 0.1.
The detailed empirical evaluation of this threshold is given
in Section 9.

To find the least number of MVPs, we start by increas-
ing the number of MVPs from one until cv of all parti-
tions is below the threshold. To obtain MVPs, we use ag-
glomerative hierarchical clustering with Ward’s method [7].
Ward’s method allows us to make any number of partitions
by cutting the dendrogram built by agglomerative hierarchi-
cal clustering at an appropriate level. Figure 11 shows den-
drograms made through hierarchical clustering with Ward’s
method form the values of stroke time of two volunteers
for gesture 5. A dendrogram visually illustrates the pres-
ence and arrangement of clusters in data. The dendrogram
in Figure 11(a) is for a volunteer who performed gestures in
two postures, sitting and laying down. The dendrogram in
Figure 11(b) is for a volunteer who performed gestures in
one posture. We make two MVPs for Figure 11(a) and one
for Figure 11(b).

After we find the least number of MVPs, where the cv
for each partition is below the threshold, we decide whether
to select this feature element. If the number of partitions in
these MVPs is less than or equal to the number of postures

(a) Two behaviors (b) One behavior

Figure 11: Dendrograms for feature values with one
and two behaviors

in which the training samples are performed, then we select
this feature element; otherwise, we discard it. We ask the
user to enter the number of postures in which he performed
training samples. If the user does not provide this input, we
assume the number of postures to be 1.

6.2 Sub-stroke Based Features
Sub-stroke based features include velocity magnitude, ve-

locity direction, and device acceleration. To extract values
for these features, GEAT needs to segment each stroke into
sub-strokes because of two major reasons. First, at differ-
ent segments of a stroke, the finger often has different mov-
ing speed and direction. Second, at different segments of a
stroke, the device often has different acceleration. If we mea-
sure the feature values from the entire stroke, we will only
utilize the information measured at the starting and ending
points of the stroke, by which we will miss the distinguishing
information of velocity magnitude, velocity direction, and
device acceleration at different segments of the stroke.

Our goal is to segment a stroke into sub-strokes so that
the velocity magnitude, velocity direction, and device ac-
celeration information measured at each sub-stroke charac-
terizes the distinguishing behaviors of the user who made
the stroke. There are three key technical challenges to this
goal. The first technical challenge is how we should segment
N stroke samples of different time durations assuming that
we are given an appropriate time duration as the segmenta-
tion guideline. The second technical challenge is how to find
the appropriate time duration as the segmentation guideline.
The third technical challenge is how to select sub-strokes
whose velocity magnitude, velocity direction, and device ac-
celeration information will be included in the feature vector
used by GEAT for training. Next, we present our solutions
to these three technical challenges.

6.2.1 Stroke Segmentation and Feature Extraction

Given N strokes performed by one user and the appropri-
ate time duration p as the segmentation guideline, we need
to segment each stroke into the same number of segments so
that for each stroke we obtain the same number of feature
elements. However, because different strokes have different
time durations, segmenting each stroke into sub-strokes of
time duration p will not give us the same number of seg-
ments for different strokes. To address this issue, we first
calculate ⌈ t

p
⌉ for each stroke where t is the time duration

of the stroke. From the resulting N values, we use the most
frequent value, denoted s, to be the number of sub-strokes
that each stroke should be segmented into. Finally, we seg-
ment each stroke into s sub-strokes where each sub-stroke
within a stroke has the same time duration.



After segmenting all strokes into sub-strokes, we extract
velocity magnitude, velocity direction, and device accelera-
tion from each sub-stroke. To calculate velocity magnitude
and direction, we first obtain the coordinates of the start-
ing and ending points of the sub-stroke. The starting and
ending points of a sub-stroke, which is segmented from a
stroke based on time duration, often do not lie exactly on
touch points reported by the touch screen device. For any
end point that lies between two consecutive touch points
reported by the touch screen device, we calculate its coordi-
nates by interpolating between these two touch points. Let
(xi, yi) be the coordinates of a touch point with time stamp
ti and (xi+1, yi+i) be the coordinates of the adjacent touch
point with time stamp ti+1. Suppose the time stamp of an
end point is t where ti < t < ti+1. Then, we calculate the
coordinates (x, y) of this end point based on the straight line
between (xi, yi) and (xi+1, yi+i) as follows:

x =
(t− ti)

(ti+1 − ti)
× (xi+1 − xi) + xi (3)

y =
(t− ti)

(ti+1 − ti)
× (yi+1 − yi) + yi (4)

We extract the velocity magnitude of each sub-stroke by
calculating the Euclidean distance between the starting and
ending points of the sub-stroke divided by the time duration
of the sub-stroke. We extract the velocity direction of each
sub-stroke by calculating the arc-tangent of the ratio of the
magnitudes of the vertical and horizontal components of the
velocity vector directed from the starting point to the ending
point of the sub-stroke. We extract the device acceleration
during each sub-stroke by averaging the device acceleration
values reported by the touch screen device at each touch
point in that sub-stroke in all three directions.

6.2.2 Sub-stroke Time Duration

Next, we investigate how to find the appropriate sub-
stroke time duration. On one hand, when the sub-stroke time
duration is too small, the behavior information extracted
from each sub-stroke of the same user may become incon-
sistent because when feature values become instantaneous,
they are unlikely to be consistent for the same user. For ex-
ample, from Figure 12, which shows the cv for the velocity
magnitude values extracted from the first sub-stroke from
all samples of a gesture performed by a random volunteer
in our data set, when we vary the sub-stroke time duration
from 5ms to 100ms, we observe that the cv is too large to
be usable when the sub-stroke time duration is too small
and the cv decreases as we increase sub-stroke time dura-
tion. On the other hand, when the sub-stroke time duration
is too large, the behavior information extracted from each
sub-stroke of different users may become similar because all
unique dynamics of individual users are too averaged out to
be distinguishable. For example, treating all the samples of
a gesture performed by all our volunteers as if they are all
performed by the same person, Figure 13 shows that when
the sub-stroke time duration is 80ms, over 60% of feature
elements of velocity magnitude are consistent, which means
that they do not have any distinguishing power among dif-
ferent users. It is therefore challenging to trade off between
consistency and distinguishability in choosing the appropri-
ate time duration for sub-strokes.
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Next, we present the way that we achieve this tradeoff
and find the appropriate time duration for sub-strokes. We
first define a metric called consistency factor. Given a set
of samples of the same stroke, which are segmented using
time duration p as the guideline, let s be the number of
sub-strokes, c be the number of sub-strokes that have the
consistent behavior for a particular feature, we define the
consistency factor of this set of samples under time dura-
tion p to be c

s
. For simplicity, we use combined consistency

factor to mean the consistency factor of the set of all sam-
ples of the same stroke from all volunteers, and individual
consistency factor to mean the consistency factor of the set
of all samples of the same stroke from the same volunteer.
Figure 13 shows the combined consistency factor plot and
two individual consistency factor plots of an example ges-
ture. We have two important observations from this figure.
First, the individual consistency factors mostly keep increas-
ing as we increase sub-stroke time duration p. Second, the
combined consistency factor has a significant dip when p is
in the range from 30ms to 60ms. We conducted the simi-
lar measurement for other strokes from other gestures for
velocity magnitude, velocity direction, and device accelera-
tion and made the same two observations. This means that
when sub-stroke time duration is between 30ms to 60ms,
people have distinguishing behavior for the features of ve-
locity magnitude, velocity direction, and device acceleration.
Therefore, we choose time duration p to be between 30ms
to 60ms.

6.2.3 Sub-stroke Selection at Appropriate Resolutions

So far we have assumed that all sub-strokes segmented
from a stroke have the same time duration. However, in re-
ality, people have consistent and distinguishing behavior for
sub-strokes of different time durations. Next, we discuss how
we find such sub-strokes of different durations. For each type
of sub-stroke based features, we represent the entire time
duration of a stroke as a line with the initial color of white.
Given a set of samples of a stroke performed by one user
under b postures, we first segment the stroke with the time
duration p = 60ms and the number of MVPs k = 1. For each
resulting sub-stroke, we measure cv of the feature values ex-
tracted from the sub-stroke. If it is lower than the threshold,
then we choose this sub-stroke with k MVPs as a feature el-
ement and color this sub-stroke in the line as black. After
this round of segmentation, if any white sub-stroke is left,
we move to the next round of segmentation on the entire
stroke with p = 55ms and the number of MVPs k still being
1. In this round, for any sub-stroke whose color is completely
white, we measure its cv; if it is lower than the threshold,
then we choose this sub-stroke with k MVPs as a feature
element and color this sub-stroke in the line as black. We
continue this process, decrementing the time duration p by



5ms in each round until either there is no white region of
length greater than or equal to 30ms left in the line or p is
decremented to 30. If p is decremented to 30 but there are
still white regions of length greater than or equal to 30ms,
we increase k by 1, reset p to be 60ms, and repeat the above
process again. The last possible round is the one with k = b
and p = 30ms. The process also terminates whenever there
is no white region of length greater than or equal to 30ms.

7. CLASSIFIER TRAINING
In this section, we explain the internal details of GEAT

on training its classifiers. After feature extraction and selec-
tion, we obtain one feature vector for each training sample
of a gesture. For a single-finger gesture, the feature vector
contains the values of the selected feature elements such
as stroke time and the velocity magnitude, velocity direc-
tion, and device acceleration from selected sub-strokes. For
a multi-finger gesture, the feature vector additionally con-
tains the selected feature elements such as inter-stroke time,
displacement magnitude, and direction between all pairs of
strokes.

7.1 Partitioning the Training Sample
Before we use these N feature vectors to train our clas-

sifiers, we partition them into consistent training groups so
that the user has the consistent behavior for each group for
any feature element. Recall that for each feature element, we
have already partitioned the N feature vectors into the least
number of MVPs. For different feature elements, we may
have partitioned the N feature vectors differently. Thus, we
partition the N feature vectors into the least number of con-
sistent training groups so that for each feature element, all
feature vectors within a training group belong to one mini-
mum variance partition. If the number of feature vectors in
a resulting consistent training group is below a threshold,
then it is not used to train classifiers.

7.2 Training the SVDE Classifiers
In real world deployment of authentication schemes, train-

ing samples are often all from the legitimate user. When
training data is only from one class (i.e., the legitimate user
in our scenario) while test samples can come from two classes
(i.e., both the legitimate user and imposters), Support Vec-
tor Distribution Estimation (SVDE) with the Radial Basis
Function (RBF) kernel is effective and efficient [8, 16]. We
use the open source implementation of SVDE in libSVM [4].

We build an ensemble of classifiers for each consistent
training group. First, for each feature element, we normalize
its N values to be in the range of [0, 1]; otherwise feature ele-
ments with larger values will dominate the classifier training.
Second, we empirically find the appropriate values for γ, a
parameter for RBF kernel, and ν, a parameter for SVDE, by
performing a grid search on the ranges 2−17 ≤ γ ≤ 20 and
2−10 ≤ ν ≤ 20 with 10-fold cross validation on each training
group. As the training samples are only from one class (i.e.,
the legitimate user), cross validation during grid search only
measures the true positive rate (TPR). Figure 14(a) plots
a surface of TPR resulting from cross validation during the
grid search for a training group of a gesture for one volunteer.
We see that TPR values are different for different parameter
values and there is a region where the TPR values are par-
ticularly high. The downside of selecting parameter values
with higher TPR is that it increases the false positive rate

(FPR). While selecting parameter values with lower TPR
decreases the FPR, it is inconvenient for the legitimate user
if he cannot successfully authenticate in several attempts.
Therefore, we need to tradeoff between usability and secu-
rity in selecting parameter values. In this paper, we choose
the highest value of TPR such that 1−TPR equals FPR,
which results in the lowest EER. To calculate FPRs, GEAT
needs imposter samples, which are not available in real world
deployment at the time of training. Therefore, GEAT gen-
erates synthetic imposter samples by elastically deforming
the samples of legitimate user using cubic B-splines and cal-
culates the FPRs using these synthetic imposter samples.
Note that these synthetic imposter samples are not used in
classifier training.
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Figure 14: Parameter selection

Once we decide on TPR, we obtain the coordinates of
the points on the contour of that TPR from the surface
formed by the grid search. Figure 14(b) shows the 95% TPR
contour on the surface in Figure 14(a). From the points on
this contour, we randomly select z (say z = 10) points, where
each point provides us with the parameter values of γ and ν.
For each of the z pairs of parameter values of γ and ν, GEAT
trains an SVDE classifier on a consistent training group.
Thus, for each consistent training group, we get an ensemble
of z classifiers for modeling the behavior of the legitimate
user. This ensemble can now be used to classify any test
sample. The decision of this ensemble of classifiers for a test
sample is based on the majority voting on the decision of
the z classifiers in the ensemble. Larger value of z increases
the probability of achieving the TPR at which the contour
was made, however, the computation required to perform
authentication also increases. Therefore, we need to tradeoff
between classification reliability and efficiency in choosing
the value of z. We choose z = 10 in our experiments.

7.3 Classifying the Test Samples
Given a test sample of a gesture on a touch screen device,

we first extract values from this test sample for the selected
feature elements of the legitimate user of this device and
form a feature vector. Then, we feed this feature vector to
all ensembles of classifiers. If any ensemble of classifiers ac-
cepts this feature vector as legitimate, which means that
this test sample gesture is similar to one of the identified
behavior of the legitimate user, we accept this test sample
as legitimate and skip the remaining ensembles of classifiers.
If no ensemble accepts this test sample as legitimate, then
this test sample is deemed as illegitimate.

8. RANKING AND CLASSIFICATION
For each gesture, GEAT repeats the above three steps

given in Sections 5, 6, and 7 and then ranks the gestures
based on their EERs. The user chooses the value of n, the



number of gestures with lowest EERs that the user needs
to do in each authentication attempt. Although larger n is,
higher accuracy GEAT has, for practical purposes, n = 1
(or 3 at most) gives high enough accuracy.

When a user tries to unlock, the device displays the n top
ranked gestures for the user to perform. GEAT classifies each
gesture input as discussed in Section 7.3, and uses majority
voting on the n decisions to make the final decision about
the legitimacy of the user.

9. EXPERIMENTAL RESULTS
In this section, we present the results from our evaluation

of GEAT. First, we report EERs from Matlab simulations on
gestures in our data set. Second, we study the impact of the
number of training samples on the EER of GEAT. Third, we
study the impact of the threshold of cv on the EER of GEAT
and justify our choice of using 0.1 as the threshold. Fourth,
we report the results from real world evaluation of GEAT
implemented on Windows smart phones. Last, we compare
the performance of GEAT with the scheme proposed in [9].
We report our results in terms of equal error rates (EER),
true positive rates (TPR), false negative rates (FNR), and
false positive rates (FPR). EER is the error rate when the
classifier parameters are selected such that FNR equals FPR.

9.1 Accuracy Evaluation
First, we present our error rates when the number of pos-

tures b is equal to 1, which means that GEAT only looks
for a single consistent behavior among all training samples.
Second, we present the error rates of GEAT when b > 1,
which means that GEAT looks for multiple consistent be-
haviors in training samples. We present these error rates for
n = 1 and n = 3 where n is the number of gestures that
the user needs to do for authentication. Recall that GEAT
allows a user to choose the n top ranked gestures. Third, we
present the average error rates for each of the 10 gestures.
We calculated the average error rates by treating each vol-
unteer as a legitimate user once and treating the remaining
as imposters for the current legitimate user. To train SVDE
classifiers on legitimate user for a given gesture, we used a set
of 15 samples of that gesture from that legitimate user. For
testing, we used remaining samples from the legitimate user
and 5 randomly chosen samples of that gesture from each
imposter. We repeated this process of training and testing
on the samples of the given gesture for 10 times, each time
choosing a different set of training samples. We did not use
imposter samples in training.

For the training samples of a gesture performed by a user,
ideally, we would like to know the number of postures b in
which the user performed the gesture. Knowing the value of
b helps us to achieve higher classification accuracy. However,
in real deployment, the value of b may not be available. In
such scenarios, actually our classification accuracy is still
very high. Next, we first present the evaluation results if we
do not know the value of b. In such cases, we treat all training
samples to be from the same posture by setting b = 1. Then,
we present the evaluation results if we know the value of b.

9.1.1 Single Behavior Results

In this case, we assume b = 1. Figure 15(a) plots the cumu-
lative distribution functions (CDFs) of the EERs of GEAT
with and without accelerometers, and the FNR of GEAT
when FPR is less than 0.1%, for n = 1. Similarly, Figure

15(b) shows the corresponding plots for n = 3. We make fol-
lowing two observations when device acceleration features
are used in training and testing. First, the average EER of
users in our data set for n = 1 and n = 3 is 4.8% and 1.7%,
respectively. Second, over 80% of users have their EERs less
than 4.9% and 3.4% for n = 1 and n = 3, respectively. We
make following two observations when device acceleration
features are not available. First, the average EER of users
in our data set for n = 1 and n = 3 is 6.8% and 3.7%,
respectively. That is, EER increases by 2% for both n = 1
and n = 3 when accelerometers are not available. This shows
that even when accelerometers are not available, GEAT still
has high classification accuracy. Second, over 80% of users
have their EERs less than 6.7% and 5.2% for n = 1 and
n = 3, respectively. We also observe that the average FNR
is less than 14.4% and 9.2% for n = 1 and n = 3, respectively
when FPR is taken to be negligibly small (i.e. FPR < 0.1%).
These CDFs show that if the parameters of the classifiers in
GEAT are selected such that the legitimate user is rejected
only once in 10 attempts i.e., for TPR≈ 90%, an imposter
will almost never be accepted i.e. FPR≈ 0%.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

EER

C
D
F

w/ accelerometer

wo/ accelerometer

FNR@FPR<0.1%

(a) n = 1

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

EER

C
D
F

w/ accelerometer

wo/ accelerometer

FNR@FPR<0.1%

(b) n = 3

Figure 15: EERs with and without accelerometer
and FNR at FPR < 0.1%

9.1.2 Multiple Behaviors

Among our volunteers, we requested ten volunteers to do
each of the 10 gestures in 2 postures (i.e., sitting and laying
down). In this case, b = 2. Figure 16(a) shows the EER for
these ten volunteers for b = 1, 2, and 3. We see that the EER
is minimum when b = 2 for these ten volunteers because
these volunteers provided training samples of gestures in two
postures. Figure 16(a) shows that the use of b < 2 results
in a larger EER because it renders most of the sub-strokes
inconsistent, which leaves lesser consistent information to
train the classifiers. Figure 16(a) shows that the use of b > 2
results in a larger EER as well because dividing the training
samples made under b postures into more than b consistent
training groups reduces the training samples in each group,
resulting in increased EER.

9.1.3 Individual Gestures

The FPR of each gesture averaged over all users is al-
ways below 5% for a TPR of 90% and decreases with the
decrease in TPR. Figures 17(a) and 17(b) show the plots of
FPRs vs. TPRs for each of the 10 gestures, averaged over all
users. Table 2 shows AUC, the area under the receiver op-
erating characteristic (ROC) curve, of all gestures for both
filtered and unfiltered samples. Unfiltered samples are the
samples before the noise is removed. We see that the AUC
values are greater than 0.95 for most gestures. Note that
an ideal classification scheme that never misclassifies any
samples has AUC=1. We also see from Table 2 that AUC
values for unfiltered gestures are slightly lower compared to
AUC values for filtered gestures showing that filtering before
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Figure 16: EER under different scenarios
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Figure 17: Average FPR vs. TPR for all gestures

feature extraction improves classification accuracy. We have
presented both FPR and TPR for all gestures individually
only to show how individual gestures perform. In real world
implementation, a user will only perform n top ranked ges-
tures, resulting in much lower FPR at much higher TPR as
shown by the small values of EER in 15(b).

Table 2: AUC for filtered and unfiltered gestures
Filtered

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0.94 0.96 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96

Unfiltered

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

0.92 0.95 0.94 0.93 0.94 0.95 0.94 0.95 0.95 0.94

9.2 Impact of Training Samples Size
The EER decreases with the increase in the number of

training samples. Figure 18(a) plots the EERs averaged over
all users for n = 1 and n = 3 for the increasing number of
training samples. For n = 1 and n = 3, average EER falls to
3.2% and 0.5%, respectively, with just 25 training samples.
An EER of 0.5% means TPR=99.5% and FPR=0.5%, which
are very good results for classification schemes. A user can
achieve these rates by providing only 25 training samples
for each gesture. Providing more training samples over time
further lowers the EER.
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Figure 18: Effect of system parameters on EER

9.3 Determining Threshold for cv
The average EER is a convex function in terms of the

threshold of cv, denoted by Tcv. On one hand, if Tcv is too
small, then it is difficult to find sub-strokes in which the user
has consistent behavior, which gives us less information for
classifier training. On the other hand, if Tcv is too large,
then the feature elements with less consistent behavior will
be selected, which adds noise in the user behavior models.
Figure 18(b) shows the average EER for n = 1 and n = 3.
We see that the average EER is the smallest for Tcv = 0.1.

9.4 Real-world Evaluation
We evaluated GEAT on two sets of 10 volunteers each in

real-world settings by implementing it on Samsung Focus
running Windows. We used the first set to evaluate GEAT’s
resilience to attacks by imposters that have not observed
the legitimate users while doing the gestures. We used the
second set to evaluate GEAT’s resilience to shoulder surfing
attack, where imposters have observed the legitimate users
while doing the gestures.

9.4.1 Non-shoulder Surfing Attack

In this case, our implementation requests the user to pro-
vide training samples for all gestures and trains GEAT on
those samples. We asked each volunteer in the first set to
provide at least 15 training samples for each gesture. GEAT
also asks the user to select a value of n. We used n = 1 and
3 in our experiments. Once trained, we asked the legitimate
user to do his n top ranked gestures ten times and recorded
the authentication decisions to calculate TPR. After this,
we randomly picked 5 out of 9 remaining volunteers to act
as imposters and did not show them how the legitimate user
does the gestures. We asked each imposer to do the same
top n ranked gestures, and recorded the authentication de-
cisions to calculate FPR. We repeated this process for each
volunteer by asking him to act as the legitimate user once.
Furthermore, we repeated this entire process for all ten vol-
unteers five times on five different days. The average (TPR,
FPR) over all volunteers for n = 1 and n = 3 turned out to
be (94.6%, 4.02%) and (98.2%, 1.1%), respectively. Figures
19(a) and 19(b) show the bar plots of TPR and FPR of each
of the 10 volunteers for n = 1 and 3, respectively.
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Figure 19: Real world results of GEAT

9.4.2 Shoulder Surfing Attack

For this scenario, we made a video of a legitimate user
doing all gestures on the touch screen of our Samsung Focus
phone and showed this video to each of the 10 volunteers
in the second set. The volunteers were allowed to watch the
video as many times as they wanted and then requested
them to perform each gesture ten times. The average FPR
over all 10 volunteers turned out to be 0% for n = 1 as well as



n = 3 when we set the TPR at 80%. The average EER over
all volunteers for n = 1 and n = 3 turned out to be only 2.1%
and 0.7%, respectively. These results show that GEAT is
very resilient to shoulder surfing attack. Figure 16(b) shows
the bar plots of EER for each of the 10 volunteers in the
second set for n = 1 and n = 3.

9.5 Comparison with Existing Schemes
We compared the performance of GEAT with the only

work in this direction reported in [9] where Luca et al.
used the following four gestures: swipe left with one finger,
swipe down with one finger, swipe down with two fingers,
and swipe diagonally up from bottom left of the screen to
top right. The highest FPR, when TPR= 93%, that they
achieved is 43%, which is way higher than our average FPR
of 4.77% at TPR of 95.23%. For a fair comparison, we also
collected data for these 4 gestures from 45 volunteers and
calculated the value of FPR at the TPRs reported in [9].
Table 3 reports the FPR achieved by GEAT and the scheme
in [9]. We see that the FPRs of GEAT on these gestures are
at least 4.66 times lesser than the corresponding FPRs in [9]
for the TPRs used in [9]. We do not use these 4 gestures be-
cause their average EERs are larger compared to the average
EERs of the 10 gestures we have proposed in this paper.

Table 3: Comparison of GEAT with [9]

TPR
FPR

Luca et al. [9] GEAT
Swipe left 85.11 48 5.12
Swipe down–1 finger 95.71 50 10.71
Swipe down–2 fingers 89.58 63 8.12
Swipe diagonal 90.71 43 8.01

10. CONCLUSIONS
In this paper, we propose a gesture based user authen-

tication scheme for the secure unlocking of touch screen
devices. Compared with existing passwords/PINs/ patterns
based schemes, GEAT improves both the security and us-
ability of such devices because it is not vulnerable to shoul-
der surfing attacks and smudge attacks and at the same time
gestures are easier to input than passwords and PINs. Our
scheme GEAT builds single-class classifiers using only train-
ing samples from legitimate users. We identified seven types
of features (namely velocity magnitude, device acceleration,
stroke time, inter-stroke time, stroke displacement magni-
tude, stroke displacement direction, and velocity direction).
We proposed algorithms to model multiple behaviors of a
user in performing each gesture. We implemented GEAT on
real smart phones and conducted real-world experiments.
Experimental results show that GEAT achieves an average
equal error rate of 0.5% with 3 gestures using only 25 train-
ing samples.
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