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Abstract—Recently, significant efforts have been made to
explore comprehensive sleep monitoring to prevent sleep-related
disorders. Multivariate sleep stage classification has garnered
great interest among researchers in health informatics. In this
paper, we propose HybridAtt, a unified hybrid self-attentive
deep learning network, to classify sleep stages from multivariate
polysomnography (PSG) records. HybridAtt is an end-to-end
model that explicitly captures the complex correlations among
biomedical channels and the dynamic relationships over time.
By constructing a new multi-view convolutional representation
module, HybridAtt is able to extract hidden features from both
channel-specific and global views of the heterogeneous PSG
inputs. In order to enhance feature representation, a new fusion-
based attention mechanism is also proposed to integrate the
complementary information carried by each feature view. To
evaluate the performance of our model, we carry out experiments
on a benchmark PSG dataset. Experimental results show that
the proposed HybridAtt model achieves better performance com-
pared to ten baseline methods, demonstrating the effectiveness
of HybridAtt in the task of sleep stage classification.

I. INTRODUCTION

Sleep is a natural resting state of body and mind, which
covers around one-third of human lifespan. Due to the in-
creasing pressures of work and unhealthy lifestyle, sleep
disturbances become one of the serious health problems in
modern societies. In order to conduct comprehensive physio-
logical monitoring, overnight polysomnography (PSG) record-
ings are often utilized to analyze complex physiologic events
during sleep [1]. PSG can be represented as heterogeneous
multivariate time series which includes various physiological
measurements used to monitor different body functions. In
clinical practice, the collected PSG records are segmented into
30-second slots and visually inspected by well-trained experts.
However, long term PSG visual inspection is extremely time-
consuming and laborious for physicians, and requires highly-
trained professionals to diagnose sleep issues. Thus, it has
motivated researchers to develop automatic sleep stage classifi-
cation systems that can efficiently perform PSG sleep analysis.

Recently, a variety of methods has been investigated for the
classification of sleep stages using the PSG data [2], [3]. To ag-
gregate and analyze the multivariate PSG records, traditionally,
several researchers propose to combine handcrafted features
with a classifier to build a multi-stage sleep stage classifica-

tion system. More recently, in order to automatically learn
meaningful representations for such multivariate biosignals,
significant efforts have been made to explore feature extraction
techniques using deep learning methods [4]–[6]. In the task
of sleep stage classification, the features extracted by deep
learning models, such as deep belief networks (DBN) [7], [8],
convolutional neural networks (CNN) [9]–[11] and recurrent
neural networks (RNN) [12], [13], have proven to be more
robust than the handcrafted features due to better classification
performance.

Despite many deep learning studies reporting promising
results in sleep stage classification, some challenges still
need to be addressed. One of the major challenges is that
most deep learning models fail to explicitly incorporate the
inherent correlations of multivariate biosignals. On one hand,
there exist complex correlations among PSG channels which
should be captured to identify sleep stages. On the other
hand, the dynamic correlations among the data across different
timestamps (i.e., slots) are also crucial to capturing sleep-
related events. Moreover, the hidden patterns during sleep vary
significantly across individuals, rendering it a challenging task
to develop a cross-subject sleep stage classifier.

To tackle the aforementioned challenges, we propose a
hybrid self-attentive deep learning network (HybridAtt) to
classify sleep stages from multivariate PSG records. The
framework of HybridAtt is presented in Fig. 1. Specifically,
to learn informative features from the heterogeneous PSG
inputs, we first construct a multi-view convolutional encoder to
extract features from both channel-specific and global perspec-
tives, referred to as channel-view and global-view features,
respectively. Based on the learned multi-view features, we
then develop a new fusion-based hybrid attention mechanism,
which consists of a channel-wise attention layer and a time-
wise attention layer, to model the dual correlations of PSG
channels and timestamps. Finally, we adopt a softmax layer
using the obtained attentional hidden representation to train
our proposed end-to-end deep learning model as a cross-
subject classifier. We summarize the main contributions of this
paper as follows:

• We propose HybridAtt, a unified hybrid self-attentive
deep learning network, to learn informative representa-
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Fig. 1. Schematic illustration of the overall approach pipeline.

tions of multivariate PSG records for the task of cross-
subject sleep stage classification. HybridAtt explicitly
incorporates the dual correlations of PSG biomedical
channels and timestamps.

• We propose a fusion-based attention mechanism which is
able to combine the complementary information carried
by the learned multi-view convolutional features, and
hence can generate discriminative representations from
the multivariate PSG data.

• We empirically show that the proposed HybridAtt out-
performs ten baseline methods on a benchmark dataset.

II. METHODOLOGY

In this section, we introduce the methodology of our pro-
posed HybridAtt model with multivariate PSG inputs. We
discuss the details of the main components in the following
subsections.

A. Multi-view Convolutional Representation

In practice, the collected PSG data often tend to be heteroge-
neous, referred to different sample rates, signal strengths, and
rhythm patterns. In order to preserve the unique characteristics
of each biomedical channel during the feature representation,
the multi-view deep learning strategy [14] can be employed.
The benefit of adopting multi-view deep learning is to ex-
tract features from multiple perspectives using different deep
learning structure to improve the generalization performance.
It has proven to be effective for several tasks including human
activity recognition [15], EEG seizure detection [16], [17], and
3-D shape recognition [18]. Following the previous studies, in
our model, we further extend this strategy by modifying the
CNN structure to learn latent representations from channel-
specific and global views, i.e., the channel-view hidden fea-
tures d1:C

t and global-view hidden features st, respectively.

Formally, given the input xc
t ∈ R

n(c)

in the c-th channel at
timestamp t, we can obtain its channel-view representation
dc
t ∈ R

p through a 1-D channel-CNN encoder, denoted as
CNNc, as follows:

dc
t = CNNc(x

c
t ;θc), (1)

where θc denotes all the learnable parameters of CNNc.
Similarly, the global-view representation st ∈ R

p can be
calculated through a 2-D global-CNN encoder (i.e., CNNg),
as follows:

hg = CNNg(x
1:C
t ;θg), (2)

where θg denotes all the learnable parameters of CNNg . Here
in Eq. (2), to derive a unified matrix input, we adopt linear
interpolation to align the input vector of each channel into
same dimension.

In general, both the channel- and global-CNN encoders
can be parameterized by a series of convolutional-nonlinear-
pooling cells with several filter kernels. Instead of adopting
standard CNN, in our model, we construct a new CNN
structure to unleash the power of multi-view feature extraction
shown in Fig. 2. In particular, on one hand, we attempt to
convolve in parallel different sizes of feature kernels to handle
multiple object scales. In this way, the feature learning module
is able to cover a big area while keeps fine resolutions for
small patterns in biosignals. On the other hand, we adopt
max pooling and average pooling for CNNc and CNNg ,
respectively. The idea here is to guide CNNc to focus on
the most important features of different channels while let
CNNg retain more general information among all the channels.
Taking the advantage of multi-view structure, we can not
only learn informative representations from PSG data, but also
uniform the heterogeneous inputs for the following hybrid
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attention module. Note that the dimension of each cell relies
on the configurations of CNN, which is given in Section 3.2.

B. Channel-wise Attention

In the task of PSG-based sleep stage classification, there
exist complex correlations among PSG channels. An ideal
approach is to dynamically qualify the importance of infor-
mation carried by each biomedical channel and relay on more
informative ones to achieve better performance. Towards this
end, we develop a new fusion-based channel-wise attention
mechanism to adaptively capture the complex channel corre-
lations from PSG data.

Given the multi-view features dc
t and st obtained by Eq. (1)

and Eq. (2), we propose to calculate a fusional rate rct ∈ R

for each channel c at timestamp t, defined as:

rct = σ(W�
rgst +W�

rcd
c
t + brc), (3)

where Wrg ∈ R
p, Wrc ∈ R

p, and brc ∈ R are the parameters
to be learned. Here in Eq. (3), we use the sigmoid function
σ(·) to rescale the fusional rate to be in the range of [0, 1],
representing how much information carried by each CNN
encoder should be fused. Based on the fusional rate, we can
assign the attention energy eg,ct for each channel c using the
integrated information, as follows:

eg,ct = W�
ec((1− rct )� st + rct � dc

t) + bec, (4)

where � denotes the element-wise multiplication operator,
Wec ∈ R

p and bec ∈ R are the weight vector and bias value,
respectively. Then, we can derive the contribution score vector
αt normalized by the softmax function, as follows:

αt = Softmax([eg,1t , · · · , eg,ct , · · · , eg,Ct ]). (5)

Finally, the output vector of the channel-wise attention x̃t ∈
R

2p can be calculated according to the contribution score
vector αt using weighted aggregation:

x̃t = st ⊕ (
C∑

c=1

αg,c
t � dc

t), (6)

where ⊕ is the concatenation operator. In this way, the
proposed fusion-based attention mechanism can fully utilize
the multi-view information carried by both two feature views,
and thus generate more informative representations from mul-
tivariate PSG data.

C. Time-wise Attention

In order to capture the dependencies of different timestamps,
the aforementioned fusion-based attention mechanism can also
be adopted in the time dimension, referred to as time-wise
attention. Specifically, given the learned vector sequence from
x̃1 to x̃T , we can obtain the hidden state ht ∈ R

2q through a
2-layer BGRU [19], as follows:

h1:T = BGRU(x̃1:T ;θr), (7)

where θr denotes all the parameters of BGRU. The extracted
hidden state ht is the concatenation of both forward and back-
ward hidden vectors, denoted as

−→
h t,

←−
h t ∈ R

q , respectively.

To calculate the time-wise contribution score vector βt, we
can reformalize the fusion-based attention mechanism from
Eq. (3) to Eq. (5) as follows:

ri = σ(W�
rtht +W�

rihi + brt),

et,i = W�
et ((1− ri)� ht + ri � hi) + bet,

βt = Softmax([et,1, · · · , et,i, · · · , et,T ]),
where Wrt ∈ R

2q , Wri ∈ R
2q , brt ∈ R, Wet ∈ R

2q , and
bet ∈ R are the learnable parameters. Subsequently, we derive
a temporal context vector ct ∈ R

2q as the output of the time-
wise attention:

ct =

T∑

i=1

βt,i � ht. (8)

D. Unified Training Procedure

Given the context vector calculated by Eq. (8), we com-
bine it with the current hidden state to derive an attentional
representation ĥ ∈ R

r, defined as:

ĥt = f(Wh[ct ⊕ ht] + bh),

where Wh ∈ R
r×4q and bh ∈ R

r denote the learnable
parameters. The attentional representation is then fed through
the softmax layer for the final task of sleep stage classification,
as follows:

ŷt = Softmax(Wsĥt + bs). (9)

where Ws ∈ R
|C|×r and bs ∈ R

|C| are the learnable weight
matrix and bias vector, respectively.

Each record Xt at timestamp t contains a set of C-
channel heterogeneous waveform vectors {x1

t ,x
2
t , · · · ,xC

t }
where xc

t ∈ R
n(c)

.
To train a unified model, we adopt cross-entropy to measure

the loss between the ground truth yt and the ŷt obtained
by Eq. 9. Formally, the final cost function of our end-to-end
HybridAtt model is defined as:

JHybridAtt(X
(1)
1 , · · · ,X(1)

T (1) , · · · ,X(M)
1 , · · · ,X(M)

T (M))

= − 1

M

M∑

i=1

1

T (i)

T (i)∑

t=1

[
y�
t log ŷt + (1− yt)

� log (1− ŷt)
]
.

III. EXPERIMENTS

A. Dataset Description

The multivariate sleep dataset we use is the UCD dataset
provided by St. Vincents University Hospital and University
College Dublin. The UCD dataset is an open access dataset and
can be download from the PhysioNet [20]. This dataset con-
tains 14-channel multivariate PSG data collected from adult
subjects, including electroencephalogram (EEG) at 128Hz,
electromyogram (EMG) at 64Hz, electrooculogram (EOG)
at 64Hz, and other biosignals related to patient movement,
posture and breathing. In addition, according to the standard
Rechtschaffen and Kales (R&K) rules [21], each 30-second
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Fig. 2. CNN Structure of the multi-view convolutional representation module in HybridAtt.

slot is labeled as in one of the five sleep stages: W, REM,
S1, S2, and S3 (merged from S3 and S4). Different from
previous work that selected specific PSG channels [7], [22]
or subject groups [8] using prior knowledge, we generate
287, 840 waveform vectors from all the 25 subjects and feed
all the channels into our model. As the original 30-second
long data contain 14 biomedical channels, we adopt short-
time Fourier transform (STFT) using the blackman window
as preprocessing, and derive the input slot with 27, 300 data
points. Note that we only retain the slots belonging to the five
sleep stages in our experiments.

B. Experiment setup
1) Baseline Approaches: To validate the effectiveness of

the proposed model, we compare it with several widely used
biosignal feature learning baseline methods. We select the
following ten existing approaches as baselines:

Support vector machine (SVM) [23]. SVM is one of the
most popular machine learning baselines. Since the standard
linear SVM model is a binary classifier, we use one-vs-all
SVM for the task of multi-class sleep stage classification.
To avoid the curse of dimensionality, we utilize principal
component analysis (PCA) to extract the features from all the
channels, and then select top-r related components as features
to train the SVM model, referred to as PSVM.

Deep Neural Networks (DNN) [24]. DNN is a commonly
used baseline for deep learning. We first concatenate the
waveform vectors of all the channels together, and then feed
them into a 3-layer DNN with softmax.

RNN. RNN is another widely used deep learning baseline.
Similar to DNN, we feed the concatenated vectors into the
BGRU. The hidden representations produced by the BGRU
are directly used for training using softmax.

RNNAtt. We incorporate attention mechanism into RNN.
After the BGRU outputs the hidden vectors h1:T , RNNAtt
adopts attention mechanism to obtain a context vector ct.
Then, RNNAtt concatenates both ct and ht as an atten-
tional representation for final training. Two existing strategies,
namely location-based and concatenation-based attention [25],
are employed, referred to as RNNAttl and RNNAttc, respec-
tively.

CNN. We first integrate the inputs from all the channels
as a matrix, and then extract features through the multi-view

convolutional architecture shown in Fig. 2. The learned hidden
representations are directly used for training.

CRNN. CRNN is a RNN variant combined with a CNN,
which is widely used in several view-related tasks. We first
derive the multi-view features using the aforementioned CNN,
then feed the representations to BGRU to train an end-to-end
model.

CRNNAtt. CRNNAtt employs attention mechanism after the
feature extraction of CRNN. Similarly, we perform the same
process as RNNAtt, referred to as CRNNAttl and CRNNAttc,
respectively.

ChannelAtt [17]. ChannelAtt focuses on soft-selecting crit-
ical channels from multivariate biosignals. Compared to RN-
NAtt, ChannelAtt adopts a new global attention mechanism
in the channel domain instead of the time domain. Different
from the original model using fully-connected layer for feature
extraction, we use the proposed CNN structure as the feature
encoder to train the model.

2) Our Approaches: We show the performance of the
following two approaches in the experiments.

HybridAttl. HybridAttl is a reduced model that employs the
location-based attention mechanism in Hybrid to classify sleep
stages.

HybridAttf . This model uses the proposed fusion-based
attention mechanism when calculating both the channel-wise
and time-wise score vectors.

3) Evaluation criteria: Since the evaluation task belongs to
a classification problem, F1 score and Accuracy are used to
validate our model. We also employ the area-under-the-curve
of receiver operator characteristic (AUCROC) and precision-
recall (AUCPR) scores to numerically evaluate the quality
of each method. In addition, as the dataset contains multiple
classes, here we show both the Macro-F1 and MicroF1 scores.
MacroF1 score biases the metric towards the least populated
classes, while MicroF1 score biases towards to the most
populated classes. Note that the AUC-ROC and AUC-PR
scores are both based on the Macro metric.

To evaluate our model as a cross-subject classifier, consid-
ering the computational expense, we perform 5-fold subject-
independent cross validation and report the average test per-
formance for each method. The ratio of training, validation
and test sets is 0.7 : 0.1 : 0.2. Note that, the models are never
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TABLE I
CONFIGURATIONS OF THE MULTI-VIEW CONVOLUTIONAL

REPRESENTATION MODULE IN HYBRIDATT.

Type Kernel size Stride Padding

Conv1d1 1 8× 8 2 3

Conv1d1 2 16× 8 2 7

Conv1d1 3 32× 8 2 3

Conv1d1 4 64× 8 2 7

MaxPool1d1 6 4 1

Conv1d2 1 3× 16 1 1

Conv1d2 2 5× 16 1 2

MaxPool1d2 3 2 1

Conv1d3 1 3× 16 1 1

Conv1d3 2 5× 16 1 2

MaxPool1d3 3 2 1

Conv2d1 1 1× 8× 8 1, 2 0, 3

Conv2d1 2 1× 16× 8 1, 2 0, 7

Conv2d1 3 1× 32× 8 1, 2 0, 3

Conv2d1 4 1× 64× 8 1, 2 0, 7

AvgPool2d1 1× 6 1, 4 0, 1

Conv2d2 1 3× 3× 16 1, 1 1, 1

Conv2d2 2 5× 5× 16 1, 1 2, 2

AvgPool2d2 1× 3 1, 2 0, 1

Conv2d3 1 3× 3× 16 1, 1 1, 1

Conv2d3 2 5× 5× 16 1, 1 2, 2

AvgPool2d3 14× 3 14, 2 0, 1

trained on data from the test subjects, and we adopt the same
subject combination for all the models in each fold in order
to fairly compare the performance.

4) Implementation Details: We implement all the ap-
proaches with Pytorch. The training process is done locally
using NVIDIA Titan Xp GPU. During the training phase,
we minimize the cost function by utilizing the Adadelta
optimization algorithm [26]. We also use momentum (ρ =
0.95), weight decay (L2 penalty with the coefficient 0.001),
and dropout strategies (the dropout rate is 0.5) for all the
approaches. Furthermore, the configurations of our multi-view
convolutional representation module is shown in Table I, and
we set the same p = 128, q = 128, and r = 128 for baselines
and our models.

C. Experimental results

In this subsection, we compare the performance of our
proposed HybridAtt model with the aforementioned baselines
in the task of sleep stage classification. The experimental
results are listed in Table II. We can observe that our pro-
posed HybridAtt networks outperform all the baselines on the
benchmark dataset.

Given the results of the baselines, PSVM performs better
than DNN and the RNN-based models. The reason is that
representing signals in the frequency domain would provide
more powerful information, and SVM can hence learn a
more distinct hyper-lane to separate each sleep stage in the

TABLE II
CLASSIFICATION PERFORMANCE COMPARISONS ON THE UCD DATASET IN

THE FREQUENCY DOMAIN.

UCD Dataset (frequency Domain)

Method AUCROC AUCPR MacroF1 MicroF1 Accuracy

PSVM 0.8177 0.5767 0.5204 0.5854 0.6193
DNN 0.7213 0.5224 0.3542 0.4331 0.5262
RNN 0.6228 0.3350 0.2663 0.3970 0.5091
RNNAttl 0.6172 0.3305 0.2457 0.3734 0.5002
RNNAttc 0.6234 0.3335 0.2554 0.3712 0.5010
CNN 0.8732 0.6725 0.5925 0.6492 0.6590
CRNN 0.8660 0.6454 0.5693 0.6395 0.6634
CRNNAttl 0.8570 0.6281 0.5810 0.6486 0.6683
CRNNAttc 0.8671 0.6418 0.5849 0.6528 0.6791
ChannelAtt 0.8705 0.6818 0.6517 0.7070 0.7152

HybridAttl 0.8719 0.6669 0.6342 0.6962 0.7070
HybridAttf 0.8854 0.6886 0.6639 0.7231 0.7328

vector space. This observation can also be found from the
performance of DNN where it achieves better results benefiting
from the handcrafted spectral features. Not surprisingly, CNN-
based models work well on this task, which justifies the
effectiveness of the proposed multi-view feature representation
using convolutional operators. We can also observe that the
attention-based CRNN models get better results than the
plain CRNN model. This is because attention mechanism
can help model to focus on more useful information car-
ried by sequential hidden features and hence improve the
classification performance. The ChannelAtt model adopting
channel-aware attention performs better than the time-aware
attention models. It illustrates that there exist more useful
connections among PSG channels, and it is reasonable to
employ attention mechanism to capture those connections for
feature representation. Furthermore, taking the hybrid attention
strategy into consideration, our proposed HybridAtt model
yields better performance of sleep stage classification.

From the results of our models, we can see that the
HybridAttf model outperforms the other methods on all five
evaluation measurements. Based on the overall performance
comparisons, we can conclude that the single-dimension at-
tention networks may lose critical information, and hence do
not work well dealing with multivariate PSG data. By incorpo-
rating the hybrid attention structure, the proposed fusion-based
hybrid attention mechanism achieves better results compared
with the location-based hybrid attention mechanism. We arrive
at a conclusion that our proposed HybridAtt model indeed
learns informative representations to improve the performance
of sleep stage classification.

IV. CONCLUSIONS

Multivariate sleep stage classification has become a hot
research topic in a variety of medical applications in health-
care. In this paper, we propose a hybrid self-attentive deep
learning network, named HybridAtt, to classify sleep stages
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of heterogeneous PSG records. The proposed HybridAtt is
an end-to-end model that combines multi-view convolutional
representation with hybrid self attention mechanism to extract
representative features from multivariate biosignals. In order to
unleash the power of multi-view feature learning, we construct
a new CNN structure to learn latent representations from
channel-specific and global views. A new fusion-based hybrid
attention mechanism, consisting of channel-wise and time-
wise attention layers, is proposed to capture the dual corre-
lations of PSG channels and timestamps. It can also integrate
the complementary information carried by both learned feature
views. Experimental results on a benchmark PSG dataset
justify the effectiveness of our proposed HybridAtt model.
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