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Abstract

Background: Sleep is a complex and dynamic biological process characterized by different sleep patterns.
Comprehensive sleep monitoring and analysis using multivariate polysomnography (PSG) records has achieved
significant efforts to prevent sleep-related disorders. To alleviate the time consumption caused by manual visual
inspection of PSG, automatic multivariate sleep stage classification has become an important research topic in
medical and bioinformatics.

Results: We present a unified hybrid self-attention deep learning framework, namely HybridAtt, to automatically
classify sleep stages by capturing channel and temporal correlations from multivariate PSG records. We construct a
new multi-view convolutional representation module to learn channel-specific and global view features from the
heterogeneous PSG inputs. The hybrid attention mechanism is designed to further fuse the multi-view features by
inferring their dependencies without any additional supervision. The learned attentional representation is
subsequently fed through a softmax layer to train an end-to-end deep learning model.

Conclusions: We empirically evaluate our proposed HybridAtt model on a benchmark PSG dataset in two feature
domains, referred to as the time and frequency domains. Experimental results show that HybridAtt consistently
outperforms ten baseline methods in both feature spaces, demonstrating the effectiveness of HybridAtt in the task of
sleep stage classification.
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Background
Sleep is a complicated biological process and plays an
essential role in health. Sleep occurs in cycle and involves
different sleep stages, helping restore functions of body
and mind, such as immune, nervous, skeletal, and mus-
cular systems [1]. Unhealthy lifestyles and work-related
stress may lead to sleep disturbances, which has become
one of the serious issues in modern societies. Sleep disor-
ders not only cause a reduction in physical performance

*Correspondence: kebinj@bjut.edu.cn
1College of Information and Communication Engineering, Beijing University of
Technology, Beijing, China
2Beijing Laboratory of Advanced Information Networks, Beijing, China
Full list of author information is available at the end of the article

during the day, but have negative effects on cognitive
functions [2]. Moreover, some psychological and neuro-
logical diseases can also deteriorate normal sleep patterns
[3]. Towards this end, in order to provide prevention
and treatment of the sleep-related disorders, sleep stage
analysis has garnered great interest among researchers in
medical and bioinformatics recently.

In practice, physicians often use polysomnography
(PSG) records to comprehensively analyze sleep [4]. PSG
data contain multivariate physiological signals, such as
electroencephalogram (EEG), electromyogram (EMG),
electrocardiogram (ECG), and electrooculogram (EOG),
in order to monitor different body regions. In particular,
through visual inspection, each 30-s time slot of PSG data
can be classified into different sleep stages by different
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rules. According to the standard Rechtschaffen and Kales
(R&K) rules [5], for example, the sleep phase can be classi-
fied into stages as wakefulness, non-rapid eye movement
(NREM) sleep, and rapid eye movement sleep. Among
them, the NREM sleep is further subdivided into four
sleep stages referred to as S1, S2, S3, and S4. However, it is
extremely time-consuming and laborious for physicians to
visually inspect long-term PSG records. In addition, iden-
tifying and analyzing sleep patterns also requires highly-
trained professionals. Therefore, it is necessary to develop
an automatic system capable of classifying sleep stages to
enhance efficiency of PSG sleep analysis.

In recent years, various automatic sleep stage classifica-
tion systems have been presented utilizing overnight PSG
records [2, 3]. Several researchers focus on extracting dif-
ferent handcrafted features from multivariate PSG data
to train an aggregated classifier. On one hand, different
kinds of discriminative features, such as time-domain fea-
tures [6, 7], frequency-domain features [8, 9], and other
nonlinear measurements [10, 11], have been adopted to
analyze the PSG data in each time slot. On the other hand,
some well-known classifiers in machine learning, includ-
ing support vector machine (SVM) [12, 13] and neural
networks (NN) [14, 15], are employed to help identify the
sleep stages. These methods advance the development of
automatic sleep stage classification systems, but typically
requires a significant amount of domain knowledge and
would not guarantee consistent good performance using
multi-stage training procedures to make all the compo-
nents work together. Furthermore, the recent advances in
deep learning allow researchers to improve classification
performance by directly learning feature representations
from the multivariate biosignals [16]. By constructing
multi-layer neural networks in different way, some clas-
sic deep learning structures, such as deep belief networks
(DBN) [17, 18], convolutional neural networks (CNN)
[19–21] and recurrent neural networks (RNN) [22, 23],
have been well applied in the task of sleep stage classifica-
tion with promising results.

However, existing deep learning models lack a mecha-
nism to extract comprehensive correlations of the multi-
variate PSG records, presenting a challenge to accurately
classify sleep stages. Specifically, the complex correla-
tions among PSG channels are important to recognize
sleep patterns. For instance, the abnormal wake-up (i.e.,
wakefulness stage) in central sleep apnea is caused by
the nervous system irregularities which trigger the heart
abnormalities and muscles movements [24]. These cor-
related physiological conditions can be reflected from
EEG, ECG, and EMG, respectively, which are helpful
for sleep stage classification. Secondly, PSG data involve
dynamic correlations across different timestamps (or time
slots), which help identify informative events during
sleep, such as irregular sleep-wake rhythm and sudden

involuntary movement [25], to improve classification
performance.

To this end, we propose HybridAtt, a deep learn-
ing framework with hybrid self-attention mechanism to
classify sleep stages from the multivariate PSG inputs.
The proposed hybrid self-attention mechanism is able
to capture the dual correlations of PSG channels and
timestamps by inferring their dependencies without any
additional supervision. Moreover, a multi-view convolu-
tional representation module is constructed to help the
proposed attention mechanism fuse PSG data. We con-
duct cross-subject experiments in comparison with ten
baseline methods, and demonstrate the effectiveness of
our proposed HybridAtt model on a benchmark PSG
dataset in two feature domains, referred to as the time
and frequency domains. We summarize our main contri-
butions as follows:

• We propose HybridAtt, an end-to-end hybrid
self-attention deep learning framework for sleep stage
classification using multivariate PSG records.

• HybridAtt explicitly extracts the dual correlations of
PSG channels and timestamps by inferring their
dependencies based on multi-view convolutional
representations.

• We empirically show that HybridAtt consistently
achieve best performance compared with ten
baselines on a benchmark dataset under different
feature domains.

Methods
In this section, we introduce the technical details of our
HybridAtt model with multivariate PSG inputs. We first
describe the overall architecture and then detail the main
components of HybridAtt.

Model architecture
Figure 1 presents the architecture of our proposed
HybridAtt model. The goal of HybridAtt is to capture
dual correlations of PSG channels and timestamps by
calculating the dependencies of their multi-view convo-
lutional representations, in order to improve the perfor-
mance of sleep stage classification using multivariate PSG
records. Formally, we assume that there are M multi-
variate PSG records with T (M) timestamps, denoted as{

X(m)
1 , X(m)

2 , · · · , X(m)

T (m)

}M

m=1
. Each record Xt at timestamp

t contains a set of C-channel heterogeneous waveform
vectors

{
x1

t , x2
t , · · · , xC

t
}

where xc
t ∈ R

n(c) . To learn infor-
mative features from the heterogeneous inputs, in our
model, we first feed the input Xt into a multi-view con-
volutional representation module to extract the channel-
view hidden features d1:C

t and global-view hidden features
st , respectively. We then develop a channel-wise attention
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Fig. 1 Main architecture of the HybridAtt model. The goal of HybridAtt is to capture dual correlations of PSG channels and timestamps by
calculating the dependencies of their multi-view convolutional representations, in order to improve the performance of sleep stage classification
using multivariate PSG records

module to capture the complex channel correlations at
each timestamp based on the learned multi-view features.
Subsequently, a time-wise attention module, combined
with bidirectional gated recurrent units (BGRU), is uti-
lized to distinguish the dynamic correlations. Here we use
ht and ct to denote the learned hidden state and context
vector at timestamp t. Finally, we can further obtain an
attentional hidden representation h̃t to predict the label
yt ∈ {0, 1}|C| where |C| is the unique number of categories
related to sleep stages. The proposed model can be trained
in an end-to-end fashion.

Multi-view convolutional representation
In practice, the collected PSG data often tend to be
heterogeneous, referred to different sample rates, signal
strengths, and rhythm patterns. Inspired by the rapid
development of multi-view deep learning [26–29], we
propose to modify the CNN structure to preserve the
unique characteristics of each biomedical channel during
feature representation. Given the input xc

t in the c-th chan-
nel at timestamp t, we use a 1-D channel-CNN encoder
(i.e., CNNc) to derive its channel-view representation dc

t ∈
R

p, as follows:

dc
t = CNNc

(
xc

t ; θc
)

, (1)

where θc denotes the learnable parameter set of CNNc.
Similarly, we utilize a 2-D global-CNN encoder (i.e.,
CNNg) to obtain a global-view representation st ∈ R

p

based on all the channels, as follows:

st = CNNg
(

x1:C
t ; θg

)
, (2)

where θg denotes the learnable parameter set of CNNg .
Here we align the input dimension of each channel using
linear interpolation to obtain a matrix input for Eq. (2).

In order to unleash the power of the multi-view con-
volutional representation module, we further polish the
CNN structure design in our HybridAtt model, as shown
in Fig. 2. The main design strategy consists of two aspects.
First, the convolutional layer should cover multiple reso-
lution scales since the waveform patterns of biosignals are
related to different frequency modes [30]. Here we set dif-
ferent sizes of feature kernels in parallel to extract multi-
scale features from biosignals. Second, CNNc and CNNg
should focus on different characteristics of input data dur-
ing feature learning. Towards this end, we guide these two
encoders by setting max pooling for CNNc to extract the
most important features of different channels, and setting
average pooling for CNNg to retain more general infor-
mation among all the channels. Taking the advantage of
the multi-view structure, informative features with same
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Fig. 2 CNN Structure of the multi-view convolutional representation module in HybridAtt. Informative features can be well extracted from the
heterogeneous PSG inputs, and hence can further help the hybrid attention mechanism capture dual correlations

dimensions can be well learned from the heterogeneous
PSG inputs, and hence further help the hybrid attention
mechanism capture the dual correlations.

Hybrid self-attention mechanism
Channel-wise attention
In order to capture the complex correlations among PSG
channels, we develop a channel-wise attention layer that
is able to infer the importance of each channel based on
the learned multi-view features, and fuse representations
relied on more informative ones. Given the multi-view
features dc

t and st obtained by Eqs. (1) and (2), we first
compute a fusional rate rc

t ∈ R for each channel c at
timestamp t, inferring how much information carried by
each CNN encoder should be fused. The formulation is as
follows:

rc
t = σ

(
W �

rgst + W �
rcdc

t + brc
)

, (3)

where W rg ∈ R
p, W rc ∈ R

p, and brc ∈ R are learn-
able parameters. Here we rescale rc

t into the range of [ 0, 1]
using sigmoid function σ(·) in Eq. (3). Then, we assign an
attention energy ec

t for each channel c based on its fusional
rate rc

t , as follows:

ec
t = W �

ec
((

1 − rc
t
) � st + rc

t � dc
t
) + bec, (4)

where W ec ∈ R
p and bec ∈ R are learnable parameters,

and � denotes the element-wise multiplication operator.
Given the attention energy, a channel-wise contribution
score vector αt ∈ R

C can be normalized using softmax
function, as follows:

αt = Softmax
([

e1
t , · · · , ec

t , · · · , eC
t

])
. (5)

Each element αc
t in the vector measures the importance

of information carried by the c-th channel.

Accordingly, we use weighted aggregation to calculate
the output vector of the channel-wise attention x̃t ∈ R

2p

based on the contribution score vector αt :

x̃t = st ⊕
( C∑

c=1
αc

t � dc
t

)
, (6)

where ⊕ is the concatenation operator. In this way, our
model can fully incorporate the multi-view information
carried by both two feature views, and thus fuse more
informative features from multivariate PSG records.

Time-wise attention
To capture the dynamic correlations across timestamps,
the aforementioned attention strategy can be employed as
well, namely time-wise attention. Given the learned vector
sequence from x̃1 to x̃T , we derive the hidden state ht ∈
R

2q through a 2-layer BGRU [31], as follows:

h1:T = BGRU(x̃1:T ; θ r), (7)

where θ r is the learnable parameter set of BGRU. Here the
hidden state ht at timestamp t is obtained by concatenat-
ing the forward hidden vector

−→
h t ∈ R

q and the backward
hidden vector

←−
h t ∈ R

q in BGRU.
Subsequently, we can reformalize the attention strategy

from Eqs. (3) to (5), to compute the time-wise contribu-
tion score vector βt ∈ R

T :

ri = σ
(

W �
rtht + W �

ri hi + brt
)

,

et,i = W �
et((1 − ri) � ht + ri � hi) + bet ,

βt = Softmax([ et,1, · · · , et,i, · · · , et,T ] ),

where W rt ∈ R
2q, W ri ∈ R

2q, brt ∈ R, W et ∈ R
2q, and

bet ∈ R are the learnable parameters. Finally, a temporal



Yuan et al. BMC Bioinformatics 2019, 20(Suppl 16):586 Page 5 of 10

context vector ct ∈ R
2q can be derived as the output of the

time-wise attention:

ct =
T∑

i=1
βt,i � ht . (8)

Unified neural classifier
With the help of our hybrid attention mechanism, we
can obtain an attentional representation ĥ ∈ R

r by fus-
ing the context vector ct and the current hidden state ht ,
defined as:

ĥt = f (W h[ ct ⊕ ht] +bh),

where W h ∈ R
r×4q and bh ∈ R

r denote the learn-
able parameters. The attentional representation is then
fed through the softmax layer to classify sleep stages, as
follows:

ŷt = Softmax(W sĥt + bs). (9)

where W s ∈ R
|C|×r and bs ∈ R

|C| are the learnable
parameters. To train HybridAtt in an end-to-end man-
ner, we employ cross-entropy to measure the classification
loss between the ŷt obtained by Eq. 9 and the ground
truth yt . The cost function of our unified HybridAtt model
JHybridAtt is defined as:

JHybridAtt

(
X(1)

1 , · · · , X(1)

T (1) , · · · , X(M)
1 , · · · , X(M)

T (M)

)

= − 1
M

M∑
i=1

1
T (i)

T (i)∑
t=1

[
y�

t log ŷt + (1 − yt)
� log (1 − ŷt)

]
.

Results and discussion
In this section, we evaluate HybridAtt on a benchmark
PSG dataset in two feature domains, referred to as the
time and frequency domains. We first introduce the
dataset, then describe the baselines and some experiment
details. We finally present and discuss the quantitative
results in terms of different evaluation metrics.

Dataset description
We conduct experiments for multivariate PSG sleep stage
classification based on the UCD dataset collected from
St. Vincent’s University Hospital and University College
Dublin [32]. This dataset contains 14-channel overnight
PSG data, consisting of 128Hz EEG, 64Hz EMG, and other
types of biosignals. We generate 287,840 input vectors
from all 25 subjects, and each 30-s fragment is labeled
as in one of the five sleep stages. In more detail, a 30-s
long timestamp contains 53,760 data points in the time
domain, and 27,300 data points in the frequency domain
using short-time Fourier transform (STFT). Note that we
merge the original S3 and S4 stages as a new S3 stage, and
only retain the time slots belonging to the five sleep stages
in our experiments.

Baselines
We compare HybridAtt with the following ten existing
biosignal feature learning baselines:

SVM. SVM is a classic machine learning method. Here
we use one-vs-all SVM for the five-class classification
task. To avoid the curse of dimensionality, we utilize prin-
cipal component analysis (PCA) to select top-r related
components from all the PSG channels as features before
training SVM, namely PSVM.

Deep neural networks (DNN). DNN is a basic multi-layer
neural network. We train a 3-layer DNN with softmax by
concatenating all the PSG channels as input.

RNN. RNN is designed for time series. Similar to DNN,
we concatenate data and train the same BGRU structure
as HybridAtt used with a softmax layer.

RNNAtt. RNNAtt is a RNN variant with attention
mechanism. We add two existing attention strategies,
called location-based and concatenation-based attention
[33], after the BGRU structure, referred to as RNNAttl and
RNNAttc, respectively.

CNN. CNN is a commonly used deep learning model
for biosignals. We integrate the PSG data as a matrix,
and train the same CNN structure in our multi-view
convolutional representation module.

CRNN. CRNN is a CNN variant combined with RNN.
Here we directly integrate the aforementioned CNN and
BGRU to train a unified model.

CRNNAtt. CRNNAtt utilizes attention mechanism after
the CRNN structure. Similarly, we perform the same
process as RNNAtt, namely CRNNAttl and CRNNAttc,
respectively.

ChannelAtt. ChannelAtt [34] is proposed to soft-select
critical channels from multivariate biosignals using a
global attention mechanism. Different from the original
model using fully-connected layer for feature extraction,
we use the proposed CNN structure as the feature encoder
to train the model.

Our approaches
To fairly evaluate our proposed attention strategy, we
show the performance of the following two approaches in
the experiments.

HybridAttl. HybridAttl is a reduced model using the
location-based attention mechanism in HybridAtt for
sleep stage classification.

HybridAttf . HybridAttf uses the proposed attention
strategy to calculate score vectors in the channel-wise and
time-wise layers.

Evaluation criteria
To quantify the performance, five evaluation measure-
ments are used to validate HybridAtt for PSG-based
sleep stage classification. Both accuracy and F1-score
are adopted for evaluation. Here we employ Macro and
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Micro metric to measure F1-score, namely Macro-F1 and
Micro-F1, respectively. The Macro-based area-under-the-
curve (AUC) of precision-recall (PR) and receiver opera-
tor characteristic (ROC) are also utilized to evaluate each
approach, namely AUC-PR and AUC-ROC, respectively.
Moreover, to evaluate our model as a general cross-subject
classifier, we perform 5-fold subject-independent cross
validation and report the average test performance with
standard deviation (μ ± σ ) for each method. The ratio of
training, validation and test sets is 0.7 : 0.1 : 0.2.

Implementation details
We implement all the approaches with Pytorch. The
training process is done locally using NVIDIA Titan Xp
GPU. Adadelta [35] is adopted for the training process
to optimize the cost function in terms of the learnable
parameters. We also use weight decay with 0.001 L2
penalty coefficient, 0.95 momentum, and 0.5 dropout rate
for all the approaches. The structure configuration of our
multi-view convolutional representation module is listed
in Table 1, and we set p = 128, q = 128, and r = 128 for
our models and baselines.

Table 1 Configurations of the multi-view convolutional
representation module in HybridAtt

Type Kernel size Stride Padding

Conv1d1_1 8 × 8 2 3

Conv1d1_2 16 × 8 2 7

Conv1d1_3 32 × 8 2 3

Conv1d1_4 64 × 8 2 7

MaxPool1d1 6 4 1

Conv1d2_1 3 × 16 1 1

Conv1d2_2 5 × 16 1 2

MaxPool1d2 3 2 1

Conv1d3_1 3 × 16 1 1

Conv1d3_2 5 × 16 1 2

MaxPool1d3 3 2 1

Conv2d1_1 1 × 8 × 8 1,2 0,3

Conv2d1_2 1 × 16 × 8 1,2 0,7

Conv2d1_3 1 × 32 × 8 1,2 0,3

Conv2d1_4 1 × 64 × 8 1,2 0,7

AvgPool2d1 1 × 6 1,4 0,1

Conv2d2_1 3 × 3 × 16 1,1 1,1

Conv2d2_2 5 × 5 × 16 1,1 2,2

AvgPool2d2 1 × 3 1,2 0,1

Conv2d3_1 3 × 3 × 16 1,1 1,1

Conv2d3_2 5 × 5 × 16 1,1 2,2

AvgPool2d3 14 × 3 14,2 0,1

Experimental results
We investigate the effectiveness of our proposed Hybri-
dAtt model, compared to the aforementioned baseline
methods in the task of sleep stage classification. Tables 2
and 3 report the comparison results tested in the fre-
quency and time domains, respectively. We highlight the
best evaluation scores in boldface. We observe that Hybri-
dAtt achieves the best performance compared with the
corresponding baselines in both feature domains on the
UCD dataset.

Given the results of the baselines, the performance
of the traditional classification method PSVM is better
than DNN and the RNN-based models in the frequency
domain, but worse in the time domain. It means that the
raw frequency features of PSG data would carry distinc-
tive information which help SVM learn relatively clear
hyper-lane to separate sleep stages. The results of DNN
between two feature domains also make the same obser-
vation, demonstrating the capability of the PSG spec-
tral features. The limited improvement of attention-based
RNN models, compared with RNN in both domains, show
that the features learned by RNN does not provide enough
information for attention mechanisms to make correct
classification. This also indicates that simply concatenat-
ing PSG data is unsuitable for fully-connected networks
to learn informative features, since it would ignore mul-
tivariate prior information. We can see that CNN-based
models get better performance than the other baselines,
benefiting from the proposed structure in the multi-view
convolutional representation module. Compared with
CRNN, the attention-based CRNN models perform bet-
ter, because attention mechanism is able to fuse features
based on more useful information carried by sequen-
tial representations. To fuse features from multi-channel
representations using attention mechanism, ChannelAtt
works well in classifying sleep stages and achieve better
results than CRNNAtt. It illustrates that the hidden con-
nections among PSG channels, captured by ChannelAtt,
are more helpful for sleep stage classification. Further-
more, by capturing dual correlations among channels and
timestamps, our proposed HybridAtt model consistently
gains the best evaluation scores in both the time and
frequency feature domains.

From the results of our models, HybridAttf outperforms
the baselines in terms of all five evaluation measurements.
For example, HybridAttf obtains the best accuracy of
0.7424 in the time domain, compared with 0.7317 and
0.7169 achieved by our reduced model HybridAttl and the
baseline model ChannelAtt, respectively. Compared the
results between two domains, on one hand, we observe
that the results of HybridAttl performs on par with
those of ChannelAtt in the frequency domain. It means
that adopting traditional location-based attention in the
channel-wise layer cannot capture enough information
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Table 2 Classification performance comparisons on the UCD dataset in the frequency domain

UCD Dataset (frequency Domain)

Method AUC-ROC AUC-PR Macro-F1 Micro-F1 Accuracy

PSVM 0.8177 ±0.0142 0.5767 ±0.0172 0.5204 ±0.0275 0.5854 ±0.0733 0.6193 ±0.1053

DNN 0.7213 ±0.1435 0.5224 ±0.1048 0.3542 ±0.2171 0.4331 ±0.2269 0.5262 ±0.1613

RNN 0.6228 ±0.0465 0.3350 ±0.0394 0.2663 ±0.0241 0.3970 ±0.0428 0.5091 ±0.0391

RNNAttl 0.6172 ±0.0386 0.3305 ±0.0386 0.2457 ±0.0307 0.3734 ±0.0566 0.5002 ±0.0476

RNNAttc 0.6234 ±0.0451 0.3335 ±0.0345 0.2554 ±0.0258 0.3712 ±0.0325 0.5010 ±0.0367

CNN 0.8732 ±0.0129 0.6725 ±0.0120 0.5925 ±0.0604 0.6492 ±0.0841 0.6590 ±0.0979

CRNN 0.8660 ±0.0074 0.6454 ±0.0135 0.5693 ±0.0060 0.6395 ±0.0370 0.6634 ±0.0412

CRNNAttl 0.8570 ±0.0183 0.6281 ±0.0359 0.5810 ±0.0371 0.6486 ±0.0641 0.6683 ±0.0657

CRNNAttc 0.8671 ±0.0274 0.6418 ±0.0401 0.5849 ±0.0577 0.6528 ±0.0547 0.6791 ±0.0546

ChannelAtt 0.8705 ±0.0483 0.6818 ±0.0580 0.6517 ±0.0334 0.7070 ±0.0605 0.7152 ±0.0574

HybridAttl 0.8719 ±0.0214 0.6669 ±0.0297 0.6342 ±0.0316 0.6962 ±0.0645 0.7070 ±0.0707

HybridAttf 0.8854 ±0.0137 0.6886 ±0.0256 0.6639 ±0.0301 0.7231 ±0.0489 0.7328 ±0.0546

from multi-view representations, and hence fail to help
time-wise attention extract high-level features. On the
other hand, HybridAttf , utilizing the proposed attention
strategy fuse multi-view features, achieves a robust per-
formance under different raw feature spaces. Moreover,
the results of HybridAtt in the time domain performs bet-
ter than those in the frequency domain. We conjecture
that CNN has a similar convolution procedure as STFT,
but CNN adopts learnable kernels during convolution
while STFT employs fixed Fourier functions. Taking the
advantage of end-to-end learning, our hybrid attention
mechanism can help learn more representative convo-
lutional kernels in CNN than the handcrafted window
functions in STFT.

Figure 3 illustrates the ROC and PR curves of all
the test folds on the UCD dataset, respectively. We
observe that the proposed HybridAttf method consis-
tently gains the best AUC in terms of the PR and ROC
in different domains, demonstrating an effective cross-
subject method in the task of sleep stage classification.
Based on the overall performance comparisons, we con-
clude that attention mechanism is key to identify sleep
patterns for sleep stage classification. Adopting single-
dimension attention in different aspects, such as CRN-
NAtt and ChannelAtt, may lose useful information dealing
with multivariate PSG records. Multi-view representa-
tion is also essential for attention mechanism inferring
important information. By constructing hybrid attention

Table 3 Classification performance comparisons on the UCD dataset in the time domain

UCD Dataset (Time Domain)

Method AUC-ROC AUC-PR Macro-F1 Micro-F1 Accuracy

PSVM 0.4945 ±0.0068 0.2249 ±0.0042 0.1352 ±0.0388 0.2584 ±0.0464 0.3877 ±0.1107

DNN 0.5024 ±0.0025 0.5128 ±0.0144 0.1129 ±0.0282 0.2372 ±0.1023 0.3962 ±0.1193

RNN 0.6236 ±0.0424 0.3352 ±0.0358 0.2464 ±0.0360 0.3417 ±0.0908 0.4487 ±0.1174

RNNAttl 0.6256 ±0.0297 0.3254 ±0.0279 0.2557 ±0.0328 0.3483 ±0.0938 0.4521 ±0.1100

RNNAttc 0.6279 ±0.0549 0.3434 ±0.0376 0.2465 ±0.0314 0.3328 ±0.0870 0.4501 ±0.1087

CNN 0.8421 ±0.0186 0.5844 ±0.0300 0.5775 ±0.0336 0.6493 ±0.0326 0.6595 ±0.0347

CRNN 0.8453 ±0.0229 0.5945 ±0.0297 0.5761 ±0.0345 0.6483 ±0.0383 0.6592 ±0.0456

CRNNAttl 0.8461 ±0.0115 0.6097 ±0.0206 0.5954 ±0.0362 0.6585 ±0.0437 0.6659 ±0.0473

CRNNAttc 0.8505 ±0.0140 0.6120 ±0.0273 0.6004 ±0.0319 0.6622 ±0.0509 0.6632 ±0.0541

ChannelAtt 0.8720 ±0.0203 0.6834 ±0.0278 0.6107 ±0.0324 0.6907 ±0.0545 0.7169 ±0.0624

HybridAttl 0.8885 ±0.0142 0.7009 ±0.0223 0.6689 ±0.0314 0.7264 ±0.0491 0.7317 ±0.0512

HybridAttf 0.8966 ±0.0214 0.7082±0.0283 0.6818 ±0.0304 0.7368 ±0.0591 0.7424 ±0.0594
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Fig. 3 ROC and PR curves of the proposed method and the baselines in different feature domains on the UCD dataset. a and b plots the ROC curves
in the frequency and time domains, respectively. c and d plots the PR curves in the frequency and time domains, respectively

networks based on multi-view convolutional representa-
tion, the HybridAtt achieves better results in both feature
domains, in comparison with different feature learning
methods, demonstrating the effectiveness of HybridAtt in
PSG-based sleep stage classification.

Conclusions
In this paper, we present a unified hybrid self-attention
deep learning framework, namely HybridAtt, to classify
sleep stages from multivariate PSG records. HybridAtt
is designed to capture dual correlations among channels
and timestamps based on multi-view convolutional fea-
ture representations. Experiments on a benchmark PSG
dataset show that HybridAtt is able to efficiently fuse
multivariate information from PSG data and hence con-
sistently beats the baselines in both the time and the
frequency feature domains. In future work, we will extend
HybridAtt to other biomedical applications with similar
data structure, and propose advanced attention mecha-
nism that can jointly learn two-dimensional contribution
scores in one step, instead of adopting the multi-step
attention strategy.
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