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ABSTRACT

In the age of big data, information for the same entity can
be obtained from different sources, which is inevitably con-
flicting. Therefore, aggregation methods are needed to iden-
tify the trustworthy information from such conflicting data.
Truth discovery, which improves the aggregation results by
estimating source trustworthiness and discovering truths si-
multaneously, has become an emerging field. Most truth
discovery methods assume that sources make their claims
independently, which may not be true in practice. As a
matter of fact, influences among sources are ubiquitous and
the claims made by one source may be influenced by oth-
ers. Although there is some work that considers source cor-
relation, those methods are designed to handle categorical
claims, which is not general enough to represent the com-
plicated real world applications. To tackle these challenges
in truth discovery, we propose an unsupervised probabilistic
model named IATD. The model takes source correlations as
prior for influence derivation. To model influences among
sources, we introduce “claim trustworthiness”, which fuses
the trustworthiness of the source which provides the claim
and the trustworthiness of its influencers. Besides, the pro-
posed model can handle different data types using different
distributions in the probabilistic model. Experiments on
real-world datasets show that IATD model can improve the
aggregation performance compared with the state-of-the-art
truth discovery approaches. The properties of IATD model
are further illustrated using simulated datasets.
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1. INTRODUCTION

The past decades have witnessed an explosion of data col-
lected from a variety of channels, such as web-scale search
engines, crowd-sourcing platforms, and social media plat-
forms. Integrating data from disparate sources can lead to
novel insights in scientific, industrial, and governmental do-
mains. However, claims about the same entity may conflict
each other due to recording errors, noise, machine failures,
malicious attacks, etc. Therefore, to get the most trust-
worthy information (i.e. the true facts), the aggregation of
multi-source data needs to be applied so that the noise from
individual sources can be mitigated.

Intuitively, the most straightforward aggregation approach
is majority voting, which treats the claims from the majority
of the sources as the truth. However, the major drawback
of majority voting is that all sources are treated as equally
reliable. Consequently, when there exists a large amount of
low-quality sources, majority voting may lead to unsatisfac-
tory performance. To tackle this problem, truth discovery,
which aims to estimate the true facts from conflicting data
sources by considering source trustworthiness, has received
lots of attention [1-3,6-10,12,14,15,18,21,22]. Many truth
discovery approaches are developed based on two intuitive
principles: (1) If a source provides many true claims, the
trustworthiness of the source is high. (2) If a claim is sup-
ported by many trustworthy sources, this claim is likely to
be true. Based on such principles, truth discovery meth-
ods tightly combine truth computation and source trust-
worthiness estimation to provide more accurate aggregation
results.

To simplify the design, many existing truth discovery meth-
ods make an assumption that data sources provide their
claims independently. However, in real life, explicit and im-
plicit influences among sources are ubiquitous, which makes
this assumption invalid. For example, on social media plat-
forms, a person can be easily influenced by others when
he/she makes a claim towards an entity or an event. There-
fore, the claim may come from not only his/her own knowl-
edge but also the knowledge of his/her friends. In such cases,
the provided claims are no longer independent. When esti-
mating the true facts, we need to consider the trustworthi-
ness of the source itself and its related sources. If the in-
fluences among sources are ignored and the provided claims
are treated as independent onmes, it is likely that the esti-
mation of source trustworthiness is inaccurate, and thus the
performance of truth discovery is degraded. Therefore, it is
crucial to take these inter-source influences into considera-
tion to more accurately estimate source trustworthiness for



truth discovery tasks. There is some truth discovery work
that considers source correlations [2,19]. However, these
methods are limited in the data types that can be applied to.
Specifically, they all treat claims as categorical, which can-
not represent the complicated real-world applications. As
shown in [6,7,25], numerical data and heterogeneous data
are also common in truth discovery problems, and treating
them as categorical data is inappropriate.

To tackle these challenges, we propose a novel approach
named Influence-Aware Truth Discovery (IATD), an un-
supervised full Bayesian model which can utilize the pre-
known source correlations as the prior. Different from ex-
isting truth discovery work, IATD introduces the concept of
“claim trustworthiness”, which fuses the trustworthiness of
the source which provides the claim and the trustworthiness
of its influencers by an ensemble parameter. Such a design
enables us to precisely model the degree of inter-source influ-
ences as well as their relations towards source trustworthi-
ness estimation. Using different distributions, we manage to
utilize the fused “claim trustworthiness” for the generation
of claims which are of different data types.

The advantages of the proposed IATD model are as fol-
lows. Firstly, by considering the ubiquitous source corre-
lations, such as social ties and network relationships, the
proposed model outperforms the state-of-the-art truth dis-
covery approaches. Secondly, the model can explicitly esti-
mate the trustworthiness for every claim, which is obtained
by considering inter-source influences and claim generation
in an interpretable way. Last but not least, the proposed
TATD model can handle both numerical and categorical data
types, and thus can be applied to a large variety of real-world
scenarios.

Experiments on real-world datasets demonstrate that the
proposed IATD model can improve the performance of the
truth estimation compared with other state-of-the-art truth
discovery approaches. Further, to comprehensively show the
insights of the proposed IATD model, we conduct experi-
ments on simulated datasets, where source correlation and
contexts can be controlled. Using these simulations, we il-
lustrate the behavior of the proposed IATD model under
various conditions.

Contributions: It is worthwhile to highlight the major con-
tributions of this paper:

e We recognize the importance of modeling source rela-
tions as prior knowledge in truth discovery tasks. We
also consider to handle different data types in modeling
truth discovery with source correlations.

e We propose a probabilistic model that incorporates
source correlations to simultaneously learn trustwor-
thiness for each source and each claim, as well as the
true claims for all entities.

e We experimentally show that the proposed IATD model
outperforms existing truth discovery methods on real
world datasets. We further demonstrate the character-
istics of the proposed model on the simulated datasets.

This paper is organized as follows: In Section 2, we for-
mally define the problem of “influence-aware truth discov-
ery”. Then we describe the proposed IATD model and pro-
vide a method for parameter estimation of IATD in detail
in Section 3. We conduct a series of experiments and case
studies on both synthetic and real-world data in Section 4.

Section 5 is a survey of related work, and we conclude the
paper in Section 6.

2. PROBLEM DEFINITION

Before describing our proposed model, we start by intro-
ducing some terminologies, followed by the formal problem
definition.

DEFINITION 1. An entity is an item of interest. The set
of M entities is denoted as V = {v}{’.

DEFINITION 2. A source is the place where information
about entities is collected. The set of sources is denoted as

S = {s}V.

DEFINITION 3. A claim is defined as a piece of informa-
tion provided by a source towards an entity, and the set of
claims is denoted as C. We use C., to denote the set of
claims for entity v, and cs,, denotes the claim from source
s on entity v.

DEFINITION 4. A truth is the most trustworthy piece of

information for an entity. The set of truths is denoted as
T = {t}".

DEFINITION 5. An influence set As,. is a set of sources
that may influence source s, when s makes a claim on entity
.

DEFINITION 6. (PROBLEM DEFINITION)
Given a set of sources S = {s}1, a set of entities V = {v}1’,

. N.M X
a set of claims C,27,_; and a set of influencers for every
=1,0=

claim AiV:’]szl, the goal of our proposed model is to learn

the estimated truths for entities T = {t}1 as well as the
trustworthiness for the sources.

NoTE: In this paper, we only consider the single truth sce-
nario, i.e., for each entity, there is only one truth.

3. METHODOLOGY

In this section, we describe the IATD model in details. We
first provide a high-level overview of the proposed model.
This is followed by a detailed mathematical specification.
Finally, we provide a comprehensive description of the model
fitting procedure based on Expectation Maximization.

3.1 Overview

The TATD model specifies a two-stage generative pro-
cess of claims. The first stage specifies the generation of
sources’ individual trustworthiness as well as the influence-
aware trustworthiness fusion given the influencer set for each
claim. The second stage specifies the generation of hetero-
geneous claims, given the “claim trustworthiness” of each
claim. Here, we describe the intuition behind the modeling
before detailing the IATD model.

Trustworthiness Generation: According to our investi-
gation of the real world data, we find that source’s final
decisions are usually based on the combination of its own
trustworthiness and its trusted sources’ trustworthiness. A
source may make its claims based on its own trustworthi-
ness, but may be influenced by the sources it trusts at the
same time. In our model, we introduce the “claim trustwor-
thiness”, which fuses the trustworthiness of current source



Table 1: Notations

Notations | Meaning
N the number of sources in the dataset
M the number of entities in the dataset
A global influence smoothing parameter
Os individual source deviation for source s
by entity-specific bias variable for entity v
g, g™ pre-tuned global deviation bias for categor-
ical and numerical data respectively
Yo the number of possible discrete values for
entity v with categorical claims
Cs,. the set of claims given by source s
C.y the set of claims on entity v
Csv the claim given by source s on entity v
te estimated truth of entity v
€s,v the deviation value of the claim given by
source s on entity v
As v the set of sources which may influence s,
when making claim cs o
Qe Le parameters for Inverse-Gamma prior of
source deviation
i, 08 parameters for Gaussian prior of entity-
specific difficulty variable
e, 08 parameters for Gaussian prior of the true
value of numerical entities

and the trustworthiness of potential influencers linearly by
an ensemble parameter. This can better explain the phe-
nomenon when the credibility of multiple claims from a sin-
gle source is inconsistent sometime. Moreover, in our model,
if a source makes true claims for some entities, the trustwor-
thiness of this source and its influencers will be increased.
On the contrary, if a source makes false claims for some
entities, this source and its influencers will all suffer a de-
crease in their trustworthiness. In this paper, in order to fit
both categorical and numerical data, we evaluate the source
trustworthiness using a variable o, which models the claim
deviation tendency of a source. The value of o is inversely
proportional to the trustworthiness degree of a single source.

Truth Generation: In IATD, we discuss two typical types
of entities, i.e. categorical and numerical. For entities with
categorical claims, the true values are modeled as random
variables following uniform distributions, as we assume there
is a single true value for each entity and the false values
should be uniformly distributed. For entities with numeri-
cal claims, we model the true values as a random variable
following Gaussian distributions. These distributions are
commonly used to model categorical and numerical data,
respectively.

Claim Generation: Once we get the claim trustworthiness
and truth for each claim, we can utilize these variables to
model the generation process for claims. For both types of
claims, we assume that the claim from a source is associ-
ated with: (1) the claim deviation, and (2) the difficulty
of the entity. For entities with categorical claims, we con-
sider the posterior of a claim to be true, given the estimated
truth. If the claim deviation is high, the probability of the
claim being true should be small, and vice versa. For enti-
ties with numerical claims, we model the generation of claim
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Figure 1: Plate notation for the proposed IATD Model. In
the graph, blue circles denote the hyper-parameters, white
circle denote the latent variables, and gray circles stand for
the claims. ¢(® stands for categorical claims, while ¢™
stands for numerical claims.

using a Gaussian distribution, whose mean is the truth, and
the variance parameter is the claim deviation. This indi-
cates that high trustworthiness claims have smaller devia-
tions from the truth. Moreover, for different entities, the
difficulty of obtaining true claims may differ. Therefore, we
introduce the entity-specific difficulty parameter to model
this phenomenon.

Fig. 1 shows the graphical structure of the model, and
Table 1 lists the descriptions of the variables. The generative
process is shown as follows:

e For the s-th source (s =1,2,---,N)

— Draw o2 ~ T (ae, Be).
e For the v-th entity (v=1,2,---, M)

— For an entity with categorical claims v, draw a
true fact t, ~ U(7).

— For an entity with numerical claims v, draw a true
fact t, ~ N (e, 7).

e For each claim cs

— For an entity with categorical claims v, draw a
claim cs. ~ logistic(—es o + by + g'9).

— For an entity with numerical claims v, draw a
claim ¢ ~ N (ty, (€50 + by + g{™)?).

3.2 Model Specification

In this section, we provide a detailed description of the
proposed model. We first specify the generation of sources’
individual trustworthiness and “influence-aware trustworthi-
ness fusion”. Then we describe the generation of different
claims separately based on claim trustworthiness.



3.2.1 Trustworthiness Modeling

The source and claim trustworthiness are modeled via de-
viation variables o as follows. For each source s, we draw o2
from an Inverse-Gamma distribution with hyper-parameters
(e, Be), where a. and fB. are shape and rate parameters re-
spectively. Therefore,

T exp(—fe0s?). (1)

Mathematically, o2 is the variance variable for Gaussian
distribution and the value of o2 is inversely proportional to
the trustworthiness of a source. When parameter a. > 1 the
Inverse-Gamma distribution concentrates mostly around its
mode ’fj_l . This generally means that the deviation of
most sources should be around a certain value and there are
a few with much higher or lower deviation in our assumption.

Given the definition of individual deviation for every source,
we can further model the phenomenon that a source s gets
influenced by others when generating claims for entity v. To
model the claim deviation, we introduce an auxiliary vari-
able €, which denotes the deviation of source s when it
offers a claim on entity v (i.e. claim deviation). This vari-
able reflects both the deviation of the source itself and the
deviation of sources it relates. Let os and o; denote the
source deviation of s and j, and As ., be the set of sources
that may influence s when s makes a claim on entity v. We
can model the trustworthiness fusion as follows:

02 ~ T (e, Be) o (02)

1. If we can infer that a user is influenced by others, then
€s,v is defined as:

A

[As,o]

Y oo+ (1N o, (2)

JEAsv

€s,0 =

2. If there is no evidence that the source is influenced (i.e.
Asp = @), then

€s,v = Os. 3)

Note that the value of the auxiliary variable € can be cal-
culated directly given two deviation variables o, and o;.
Therefore, it does not lead to the increase the number of
parameters.

Further, as the difficulties of obtaining the value of en-
tities may be different, we introduce an entity-specific bias
variable b, to make some adjustments. b, is drawn from a
Gaussian distribution:

bv ~ N(:U/bv 05)7 (4)

where pp and o} are the parameters of the Gaussian distri-
bution.

3.2.2  Claim Modeling

Given the claim trustworthiness €, and entity-specific
bias b,, we now describe the posterior probability of ob-
served claims on entity v from the source s, i.e., cs,v, given
the latent true fact t,. The intuition is straightforward:
the sources of low deviation often provide more trustworthy
claims. Since the claim generation process for categorical
and numerical claims are different, we handle them using
different formulations.

Categorical Claim Modeling: For categorical claims, we
model the probability of a claim cs, being true using a
Bernoulli distribution. Intuitively, the probability that source

s offers a true claim to entity v relies on: (1) the claim de-
viation, and (2) the difficulty of obtaining the true value of
the entity. Specifically, the probability is defined as:

p(cs,v = xltv =T, €s,v, bv) = h(_es,'u + b'u + g(C))a (5)

where h(-) is a logistic function, and ¢(°) is a pre-tuned global
bias for entities with categorical claims. We can see that if
the claim deviation €, is small, the probability of cs,,, being
a true claim is large, and vise versa.

We assume the probability that source s offers an incor-
rect claim to entity v is from a Uniform distribution, so the
probability that source s offers an incorrect claim to entity
v is modeled as:

1_h _65,v+bv+ (L>
p(Csw # Tty = T, €5,0,b0) = ( o 7). (6)

Combining Eq. (5) and Eq. (6), we can get the probability
that source s makes the claim c, ,, given the claim devia-
tion €, the truth estimation ¢,, and the entity-specific bias
variable b,:

p(Cs,v|tv = T,€s,v, bv)
= h(—es,u + by + g(C))(S(CS’U’z’U)
N 1— h(_es,v + bv + g(c)) 1-6(cs,vstw)
Yo —1 ’

(7)

where J(+, ) is the Kronecker delta function.
Numerical Claim Modeling: For entities with numerical
claims, we draw a true claim from a Gaussian distribution

toy NN(Utv O'tQ), (8)

where p: controls the prior estimate of the truth and af
captures the prior deviation. The probability of source s
offering a correct claim to entity v is modeled as a Gaussian
distribution with the mean of the estimated truth t,, and
the deviation of (e, + by + g("))2, ie.,

p(cs,v‘tv =T,€s,v, bv) ~ N(tv7 (65,1) + bv + g<n))2)

(Coro — 1)? )2>7 ©)

2(€s,0 + by + g™

o (€s,0 + by —i—g(m)*1 exp ( —

where g™ is a pre-tuned global bias for entities with nu-
merical claims.

The truth of entity v, the claim deviation € ., and the v’s
bias variable b, jointly capture the precision of the claim.
When claim deviation €s,, and/or bias variable b, get smaller,
the claim ¢, should be closer to the truth, and vise versa.

3.3 Discussion

Here we describe the influence derivation, which can have
effects on the final performance.

Let cs,, which is provided by source s towards entity v, be
the claim we are currently working on. Influence derivation
is to determine the set of sources that potentially influence
s when s provides claim c; .. For brevity, we only introduce
a general and straightforward way for influence derivation.
Let As, be the source set who may influence s, when it
makes claim cs,,. If there is a directed relation from s to j
and they make the same false claim on entity v, we treat s



to be influenced by j, when s provides its claim cs ,, i.e.,
Js—j,

JE A5, = (10)

Cs,v = Cju,
Cs,v # tv,

where £, is the estimated truth for entity v.

Note that more sophisticated influence detection meth-
ods can be deployed here. For simplicity, we choose this
approach.

3.4 Model Fitting

The fitting process is to estimate the value of hidden
source deviation o, and the true fact ¢ of each entity, given
the set of claims and source correlations. The negative log-
likelihood of observations, latent variables, and parameters
given the hyper-parameters can be written as:

‘C = log(p(c7 t7 €, b‘aﬁa ﬁm O'E, ,th, o—tQ))

N

—ZP(U§|ae7ﬂe Zpt ‘Nhat
s=1
N M

— Z Zp(csﬁvks,m tv, bv)

s=1v=1

Zp b |Mb7Ub

(11)

For entities with numerical claims, Eq. (11) is formulated

as:
N M (c ¢ )2 "
r s, v — Lo 1 bv o n
i ;;<2(bv+es,v+g<">)2+ %80 +eavtg )>
N M
(bo — p)?
+z( (1+ ae) log o + oo )+Z o
M
(to — )
+U§::1 202

(12)

For entities with categorical claims, Eq. (11) is formulated
as:

N M

L x ZZ

s=1v=1

— (1= 8o b)) - log<1—h(—es,v+bv+g<c>))>

+Z( 14 ae)logos + Beos >+Z 20

< —6(cssto) - log(h(—esw +bo + ')

b
(13)

To fit such models with latent variables, we refer to EM
algorithm. In E-Step, the algorithm takes the expectation
of complete data likelihood with respect to the posterior of
latent variable t, and in M-Step it maximizes the expectation
of complete data likelihood from E-Step to update model
parameters o, 0j, and b,.

3.4.1 E-Step

For entities with categorical claims, the major compu-
tational bottleneck in E-Step is that the posteriors of la-
tent variables are not available in a closed form. Hence, we
take recourse to Monte Carlo methods, which perform Gibbs
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sampling to randomly sample variables from their posterior
distributions. Specifically, we sample ¢, as:

p(ty = T|€s v, bu,g(c))

Ny

= x) Hp(CSWH'U = T, €s,0, bv7g(c>)'

s=1

14
o< p(ty (9

Eq. (14) can be calculated directly using Eq. (7).

For entities with numerical claims, we can get the closed-
form expression of t, by solving gfv = 0 using Eq. (12),
which is:

_ /‘tUt + ZNu Cs,w(€s + by + g(n))72
+ Zszl(fs + bv —+ g("))—?

Given the value of latent variables, we can derive the ex-
pression of complete data likelihood.

3.4.2 M-Step

In M-Step, we need to find the parameters that maximize
the likelihood computed in the E-Step. As the deviation
variables o and o; are above zero, the optimization problem
should be formulated as:

to (15)

min L
05,05,b

(16)
s.t.os > 0,05 > 0.

Intuitively, we can solve that optimization objective by adapt-
ing Gradient approaches directly. However, to decrease the
computation cost, we propose to solve the following opti-
mization problem on each claim separately, which approxi-
mates the problem in Eq. (16):
min L,
SAREA )]
s.t.os > 0,05 > 0.

Here, for entities with numerical claims, L5 , is formulated
as:

(Cs v tv)2 (n)
LS ) : 1 b'u s,v
v X 2(bv+65,v+g("))2+og( +eswt+g)
1 _
+ m<2(1+a5)10g0'3+660'5 2) (18)
1 (by — )’ L (te — )’
RN B S O
IC.ol 203 |Cwl 207

For entities with categorical claims, L, is formulated as:

Es sV xX — 6(65 vy ) log(h(fes,v + b'u + ,g(C)))
- (1 - 5(Cs,v’tv)) : 10%(1 - h(_es,v + by + Q(C)))

+ \C’l | (2(1 + ae)logos + B50;2)
1 (by — pp)?
P et T
|IC.v] 207

(19)

It is difficult to derive the optimal closed-form solution for
those variables. Therefore, we use Projection Gradient (PG)
method for model fitting. PG is an extension of gradient
descent method, and is commonly used for solving linearly
constrained problems. In Eq. (17), the optimization problem
projects o (or o;) onto (0,00). In our implementation, o



(or o;) is mapped as following:

H®={%4

Given the projection function P, the update of o is defined
by:

if o >107°
ifo <107

a['s,v

do®

o+ P(o®)

), (20)

0Ls

80;1")

k+1 k
a§-+)<—P(a§)—nk

) (21)

where P(-) denotes the projection from R™ onto R™.
For b,, as there is no constraint, we can simply deploy
gradient descent for parameter update.

O0Ls v
)

To speed up the PG, one crucial part is the tuning of
step length 7. It keeps changing in each iteration. There
are a variety of strategies for searching 7, and we use the

algorithm in [11] (as shown in Algorithm 1). The parameters
of Algorithm 1 are tuned as [11].

bF  p) (22)

Algorithm 1 Projection Gradient Method
Input: 5 € (0,1) and ¢ € (0,1).
Output: The optimal value for o.
for k = 1,2,... do
k+1 k 9(L)
Calculate ¢tV « P(c® — Mk 577 )-
where n, = 8%, and t is the first non-negative integer
for which
L(e®) = £(e* 1) <¢VL(EeF ) (L(e®) — L)),
end for

The detailed gradients of the objective with respect to the
variables can be found in Appendix section.

Algorithm for Model Fitting: The overall model fitting
procedure is described in Algorithm 2. We first calculate or
sample an estimated truth ¢, to entity v given fixed claim
trustworthiness €, and entity-specific bias variable b,. Af-
ter getting t,, we update o5, o;, and b, accordingly. The
algorithm iterates between these two steps until the values
of parameters and latent variables become stable.

4. EXPERIMENTS

In this section, we present and analyze the experimental
results on both real-world and simulated data. The results
show that the proposed IATD method outperforms state-of-
the-art truth discovery approaches. We first state the overall
experiment settings in Section 4.1. Then we demonstrate
and analyze the results on real-world and simulated data
respectively.

4.1 Experiment Settings

Baseline Methods: To evaluate the effectiveness of the
proposed model, we compare it with the following baseline
methods:

e Voting: The truth estimates are obtained by the value
which has the highest number of occurrences in the
claim set.
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Algorithm 2 Learning IATD

Input: Entity set V = {v}}, source set S = {s}{, claim
set CSNZ’IKIUZI, and influence set Ai\':’]f’[vzl.
Output: Source trustworthiness o and truth estimations
t.
while not converged do
for all entity v in entity set V do
// E-Step
if v is an entity with categorical value then
Sample ¢, from the posterior Eq. (14).
else
Calculate t, using Eq. (15).
end if
// M-Step
Calculate €, according to Eq. (2) and (3).
for all source s that have claim on v do
Update o, according to Eq. (20).
for all source i in set A;, do
Update o; according to Eq. (21).
end for
Update b, according to Eq. (22).
end for
end for
end while

e GTM [25]: GTM is a full Bayesian approach designed
for truth discovery on numerical data.’

e Invest [14]: In this method, sources distribute their
reliability scores uniformly on the claims they provide,
and then collect their credibility from the confidence
of those claims.

e Pooled Invest [14]: This method is a variant of Invest.
The difference is that the confidence of claims is lin-
early scaled for Pooled Invest.

e 2-Estimate [3]: 2-Estimate is an approach based on
the assumption that “there is a single true value for
each entity”. Therefore, 2-Estimate models the com-
plementary votes.

e 3-Estimate [3]: 3-Estimate extends 2-Estimate by con-
sidering the difficulty of obtaining the true claim for
an entity.

o TruthFinder [23]: TruthFinder is a Bayesian-based ap-
proach, which computes the probability of a claim be-
ing true given the sources. Claim similarity is modeled
as an implication function.

e AccuSim [2]: AccuSim is a Bayesian approach that is
similar to TruthFinder. However, it considers com-
plementary votes for claims, which is similar to 2-
Estimate. AccuSim also considers claim similarity.

e CRH [7]: CRH is an optimization framework which
handles different data types jointly. The goal of the
optimization problem is to minimize the weighted loss
of the aggregation results.

INoTE: This approach is used on numerical data only, as it
is incompatible with categorical data.



Table 2: Statistics of the Real-world Datasets

Flight Dataset Stock Dataset

# of Claims 2,790,734 11,748,734
# of Entities 204,422 326,423
# of Truths 16,572 29,198

e JATD-ni: This is a variant for the proposed IATD,
which does not take inter-source influence information
into consideration.

The parameters of baseline methods are set according to
their authors’ suggestions.

Evaluation Metrics: To evaluate the performance of truth
discovery methods, two classical metrics are employed for
different types of data. For both metrics, a lower value in-
dicates a better performance.

e [Error Rate: This metric is used for performance eval-
uation on categorical data. It is defined as the per-
centage of false values using an approach according to
the ground truth.

e MNAD: This metric is used for performance evaluation
on numerical data. MAD (Mean Absolute Deviation,)
is a quantity on how close truth estimates are to the
ground truth. As numerical data may have different
scales, we normalize MAD using the standard variance
of each data type. MNAD can be formulated as:

LM
MNAD = —
Mvzzlstd(

where truth, stands for the ground truth for entity v,
and the other notations are listed in Table 1.
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4.2 Experiments on Real-World Data

Datasets: In order to evaluate the performance of the
proposed model, we use two real-world datasets for experi-
ments:

e Flight Dataset: This dataset [8] consists of 37 sources,
which is collected from multiple websites. There are six
different attributes in this dataset including: scheduled
departure/arrival time, actual departure/arrival time,
and actual departure/arrival gate. The former four at-
tributes are numerical, while the last two attributes
are categorical.

e Stock Dataset: This dataset [8] consists of 55 sources,
which is collected from web search results. Specifi-
cally, Volume, Shares outstanding, and Market cap are
treated as numerical data, while the other attributes
are treated as categorical. The statistics of these datasets
are shown in Table 2.

The task for our experiment is to estimate the true value for
each entity in these two datasets.

In our experiment, for entities with categorical claims, we
set ae = 4.5,8, = 20,u = 0,07 = 1 and ¢/® = 3 for
the Flight dataset, and a. = 10,8. = 10,us = 0,07 =
10 and ¢‘© = 10 for the Stock dataset. For entities with
numerical claims, we set a. = 4.5, 8. = 100, up = 0,0% =
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Table 3: Performance on Real-World Datasets

Flight Dataset Stock Dataset

Method Error Rate MNAD  Error Rate MNAD
IATD 0.0674 2.7160 0.0689 2.6734
TATD-ni 0.0795 2.7179 0.0789 2.6734
CRH 0.0823 4.8613 0.0700 2.6445
GTM N/A 7.6703 N/A 2.8081
Voting 0.0859 N/A 0.0817 N/A
Invest 0.0919 6.4153 0.0983 2.8081
Pooled Invest 0.0925 5.8562 0.0990 2.7940
2-Estimate 0.0885 7.4347 0.0726 2.8509
3-Estimate 0.0881 7.1983 0.0818 2.7749
TruthFinder 0.0950 8.1351 0.1194 2.7140
AccuSim 0.0881 7.3204 0.0726 2.8503

1 and ¢ = 0 for the Flight dataset, and a. = 0.05, 8. =
0.10, iy = 0,02 = 10 and g™ = 0 for the Stock dataset. p;
and o2 are parameters related to the conditions of different
datasets. In the preprocessing step, we shift the mean val-
ues of numerical data to 0. Hence, pu; is set to be 0 for both
datasets. We set o2 = 1 for the Flight dataset and o7 = 100
for the Stock dataset.

Correlation Extraction: The Flight dataset and Stock dataset
do not have explicit correlations. However, investigations in
previous work indicate that there are implicit correlations
among sources [8]. Therefore, we adopt a correlation extrac-
tion method based on source similarities. In this method,
if two sources make many similar false claims, they are re-
garded to be correlated, which is one of the most important
intuitions for correlation extraction. We extract the source
correlations according to the claim history and calculate the
Jaccard distance between each pair of sources. The similar-
ity is defined as:

_winw;| |Wi 0 W]

sl ) = oW, T W W] — [We A

where W is the set of entities on which source s makes
wrong claims based on Voting. Then, we can use a thresh-
old to determine the existence of correlations between two
sources. The threshold is set to be 0.2 for the Flight dataset
0.08 for the Stock dataset. That is to say, on the Flight
dataset, if sim(i,j) > 0.2, these sources are regarded as cor-
related. Otherwise, they are treated as independent. On the
Stock dataset, if sim(i,j) > 0.08, these sources are regarded
as correlated. Otherwise, they are treated as independent.

Overall Performance: The results of all the methods in
terms of Error Rate and MNAD are shown in Table 3. From
the table, we can see that the proposed IATD generally out-
performs the baseline methods.

The reason that the proposed IATD approach can work
comparable or better than other truth discovery approaches
is due to the fact that influences are more precisely mod-
eled. If we visualize the Jaccard distances between sources
(Fig. 3), we can find that many sources are correlated. There-
fore, the chance that these correlated sources influences each
other when making claims is high. In contrast to baseline
methods, the proposed IATD model takes these inter-source
influences into consideration, which enables us to get more



precise and interpretable estimates of source trustworthi-
ness. Thus we can achieve a better performance in truth
estimation.
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Figure 2: Performance w.r.t. influence ratio A\ on the two
real-world datasets.

Impact of Global Influence Factor \: Global influence
factor M is used to adjust how much a source gets influenced
by its related sources when it provides a specific claim. In
order to better demonstrate the effect of A\, we show the
variation of Error rate and MNAD with different values of
influence parameter A in Fig. 2. From Fig. 2, we can observe
that the proposed IATD model performs differently with
respect to the values of A on the two datasets. The different
trends imply that the datasets may have different correlation
patterns (which is also suggested by Fig. 3). Based on the
results from Fig. 2, a relatively large A (close to 1) generally
gives better results. This indicates that if two sources are
correlated, they may influence each other strongly. These
experiments illustrate that to enhance the performance of
truth discovery, inter-source influences need to be utilized

properly.

4.3 Experiments on Synthetic Data

In order to demonstrate the advantages of our proposed
model comprehensively, we conduct experiments on simu-
lated dataset.

Simulation Settings: Each synthetic dataset contains 10000
entities, where 7000 entities are numerical and 3000 enti-
ties are categorical. Different levels of noise are added to
the ground truth to simulate sources with different levels of
trustworthiness. In this section, we set the trustworthiness
of a source to be consistent when it generates numerical and
categorical claims. Specifically, we generate 10 high-quality
sources (02 = 1) and 10 low-quality sources (¢ = 10). For
a specific source s, when simulating numerical claims, we
sample the noise from a Gaussian distribution. The mean
of this Gaussian distribution is zero and the deviation is set
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Figure 3: Visualization of source correlations on the Flight

and Stock dataset. Squares of darker color indicate strong
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Figure 4: Comparison of performance on the two scenarios.
Red line and blue line demonstrate the performance of IATD
and TATD-ni respectively.

based on the level of source trustworthiness. When sim-
ulating categorical claims, we first sample a factor z from
the same Gaussian distribution, and then compare it with a
confidence threshold 4. If |z| > 0, we assign a random false
choice to the claim; otherwise, the correct choice is assigned
to the claim.

Two scenarios are considered in this experiment. For both
scenarios, we test the proposed method with three levels of
dependency. That is, we randomly allocate [20%, 50%, 80%]
of all the sources as independent sources, with others as in-
fluenced sources. For the influenced sources, we consider two
scenarios with different ratios of influenced claims. For Sce-
nario 1, the influenced sources provide 20% of their claims
independently. For Scenario 2, the influenced sources pro-
vide 80% of their claims independently. Such settings are
based on the Pareto Law®. The task for this section is to
estimate the true value for each entity in the dataset.

Results and Discussions: We choose IATD-ni as the base-
line method for this part to demonstrate the effectiveness of
utilizing inter-source influences in truth discovery. The re-

2For many events, roughly 80% of the effects come from 20%
of the causes.



sults on the synthetic datasets are shown in Fig. 4. From the
figures we can see that IATD method works consistently bet-
ter than IATD-ni regardless the ratios of influences among
sources and claims. Comparing the two scenarios, the results
provided by TATD method are similar, while TATD-ni suf-
fers a bigger performance degradation when there are more
influenced claims. This again proves the importance of uti-
lizing influences in truth discovery tasks, and demonstrates
that the proposed method successfully models the source
correlations and influences.

S. RELATED WORK

We investigate the related work from two aspects: truth
discovery and information trustworthiness analysis.

Truth Discovery: Many existing truth discovery approaches
are proposed to solve the problem of multi-source data ag-
gregation based on source reliability estimation. Those ap-
proaches assume that if a source provides many trustworthy
claims, this source is reliable, and if a claim is supported by
many reliable sources, this claim is more trustworthy. Typ-
ically, they iteratively calculate source reliability and claim
trustworthiness. Most of these approaches [2, 3,7, 23, 25]
make the assumption that sources make their claims inde-
pendently. The detailed descriptions of these approaches
can be found in Section 4.1.

There is some truth discovery work [2,16,17,19] that takes
source correlation into consideration. In [2,16], source corre-
lations are inferred based on the intuition that “if two sources
provide the same false values, it is very likely that one copies
from the other”. However, these models do not precisely
demonstrate how potential correlation can impact the esti-
mation of sources’ trustworthiness, and cannot directly han-
dle data of numerical type. In [17] Qi et. al. propose a
probabilistic model, which reveals the latent group struc-
ture among dependent sources. Different from our method,
this approach assigns source weights at the group level in-
stead of individual level. In the field of social sensing, Wang
et. al. [19] propose Apollo to determine the correctness of re-
ported observations in social media, considering both source
reliabilities and correlations. However, their problem set-
tings are different from ours. Apollo can only be used for
binary claims (e.g. an event exists or not), and cannot be
directly used in general truth discovery contexts.

The following truth discovery methods take different prob-
lem settings from ours. In [24], the authors adopt a semi-
supervised graph learning approach to improve the accuracy
of truth estimation. In [6,22], confidence-aware methods are
proposed for data with the long-tail phenomenon. In [12],
the authors propose a fine-grained truth discovery model
that utilizes the text information of claims and entities. The
methods in [10, 27] extend truth discovery approaches to
streaming data. There is also work [16,20, 26] proposed for
the scenario that there is more than one truth for each en-
tity. Since their problem settings are different ours, these
methods are not compared in the experiments.

Information Trustworthiness Analysis: Our work is also
related to the field of information trustworthiness analy-
sis. Considerable efforts have been made for evaluating
the reputation or trustworthiness of websites, users, and
sources [4,5,13]. Unlike truth discovery methods, informa-
tion trustworthiness analysis approaches are usually based
on link analysis or based on explicit features extracted from
the data.
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6. CONCLUSIONS

As an emerging topic, truth discovery has shown a great
potential in a wide range of applications thanks to its ability
to estimate the truths and source trustworthiness simultane-
ously. Many existing truth discovery methods assume that
sources make claims independently, which may be violated in
real world, as source correlations are ubiquitous. For those
methods who do consider source correlations, they limit the
claims to be categorical type. To better fit the real world
applications, in this paper, we propose a probabilistic model
that can handle both challenges. By taking the source corre-
lations as prior knowledge for influence derivation, the pro-
posed influence-aware truth discovery model can estimate
the trustworthiness of a source more accurately. Moreover,
claims of both numerical and categorical types are modeled
in a unified manner. Experimental results on two real world
datasets prove the effectiveness of the proposed IATD model.
Furthermore, experimental results on the simulated datasets
illustrate the nice properties of the proposed IATD model
under different scenarios.
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APPENDIX
A. DETAILED DERIVATIONS IN M-STEP

The detailed expressions of the partial derivatives for en-
tities with categorical and numerical values are as follows:
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Entities with Categorical Values: For entities with cate-
gorical values, if the source is influenced, the partial deriva-
tives of o5 and o; and b, are calculated using:
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If the source makes the claim independently, the partial
derivatives of o5 and b, are:
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Entities with Numerical Values: For entities with numer-
ical values, if the source is influenced, the partial derivatives
of 05, 0; and b, are defined as:
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If the source makes the claim independently, the partial
derivatives of os and b, are:
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