
32	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

COVER FEATURE EMBEDDED DEEP LEARNING

Shuochao Yao and Yiran Zhao, University of Illinois Urbana-Champaign (UIUC)

Aston Zhang, Amazon AI

Shaohan Hu, IBM Thomas J. Watson Research Center

Huajie Shao and Chao Zhang, UIUC

Lu Su, State University of New York, Buffalo

Tarek Abdelzaher, UIUC

How can the advantages of deep learning be brought to

the emerging world of embedded IoT devices? The authors

discuss several core challenges in embedded and mobile

deep learning, as well as recent solutions demonstrating

the feasibility of building IoT applications that are powered

by effective, efficient, and reliable deep learning models.

The proliferation of internetworked mobile and
embedded devices leads to visions of the Inter-
net of Things (IoT), giving rise to a sensor-rich
world where physical things in our everyday

environment are increasingly enriched with computing,
sensing, and communication capabilities. Such capabil-
ities promise to revolutionize the interactions between
humans and physical objects.

Indeed, significant research efforts have been spent
toward building smarter and more user-friendly appli-
cations on mobile and embedded devices and sensors.
At the same time, recent advances in deep learning have
greatly changed the way that computing devices process
human-centric content such as images, video, speech,
and audio. Applying deep neural networks to IoT devices
could thus bring about a generation of applications

Deep Learning for the
Internet of Things

	 M AY 2 0 1 8 � 33

capable of performing complex sens-
ing and recognition tasks to support
a new realm of interactions between
humans and their physical surround-
ings. This article discusses four key
research questions toward the realiza-
tion of such novel interactions between
humans and (deep-) learning-enabled
physical things, namely: What deep
neural network structures can effec-
tively process and fuse sensory input
data for diverse IoT applications? How
to reduce the resource consumption
of deep learning models such that
they can be efficiently deployed on
resource-constrained IoT devices? How
to compute confidence measurements
in the correctness of deep learning pre-
dictions for IoT applications? Finally,
how to minimize the need for labeled
data in learning?

To elaborate on the above chal-
lenges, first, observe that IoT appli-
cations often depend on collabora-
tion among multiple sensors, which
requires designing novel neural net-
work structures for multisensor data
fusion. These structures should be
able to model complex interactions
among multiple sensory inputs over
time and effectively encode features
of sensory inputs that are pertinent to
desired recognition and other tasks.
We review a general deep learning
framework for this purpose, called
DeepSense,1 that provides a unified yet
customizable solution for the learn-
ing needs of various IoT applications.
It demonstrates that certain combi-
nations of deep neural network topol-
ogies are particularly well-suited for
learning from sensor data.

Second, IoT devices are usually low-
end systems with limited computa-
tional, energy, and memory resources.
One key impediment in deploying
deep neural networks on IoT devices

therefore lies in the high resource
demand of trained deep neural net-
work models. While existing neu-
ral network compression algorithms
can effectively reduce the number
of model parameters, not all of these
models lead to matrix representa-
tions that can be efficiently imple-
mented on commodity IoT devices.
Recent work describes a particularly
effective deep learning compression
algorithm, called DeepIoT,2 that can
directly compress the structures of
commonly used deep neural net-
works. The compressed model can be
deployed on commodity devices. A
large proportion of execution time,
energy, and memory can be reduced
with little effect on the final predic-
tion accuracy.

Third, reliability assurances are
important in cyber-physical and IoT
applications. The need for offering
such assurances calls for well-calibrated
estimation of uncertainty associated
with learning results. We present
simple methods for generating well-
calibrated uncertainty estimates for
the predictions computed in deep neu-
ral networks, called RDeepSense.3 It
achieves accurate and well-calibrated
estimations by changing the objective
function to faithfully reflect predic-
tion correctness.

 Finally, labeling data for learn-
ing purposes is time-consuming. One
must teach sensing devices to recog-
nize objects and concepts without the
benefit of (many) examples, where
ground truth values for such objects
and concepts are given. Unsupervised
and semisupervised solutions are
needed to solve the challenge of learn-
ing with limited labeled (and mostly
unlabeled) samples, while approach-
ing the performance of learning from
fully labeled data.

We elaborate on these core problems
and their emerging solutions to help
lay a foundation for building IoT sys-
tems enriched with effective, efficient,
and reliable deep learning models.

ON DEEP LEARNING MODELS
FOR SENSOR DATA
A key research challenge toward the
realization of learning-enabled IoT
systems lies in the design of deep neu-
ral network structures that can effec-
tively estimate outputs of interest
from noisy time-series multisensor
measurements.1

Despite the large variety of embed-
ded and mobile computing tasks in IoT
contexts, one can generally categorize
them into two common subtypes: esti-
mation tasks and classification tasks,
depending on whether prediction
results are continuous or categorical,
respectively. The question therefore
becomes whether or not a general neu-
ral network architecture exists that
can effectively learn the structure of
models needed for estimation and
classification tasks from sensor data.
Such a general deep learning neural
network architecture would, in princi-
ple, overcome disadvantages of today’s
approaches that are based on analyti-
cal model simplifications or the use of
hand-crafted engineered features.

Traditionally, for estimation-oriented
problems such as tracking and localiza-
tion, sensor inputs are processed based
on the physical models of the phenom-
ena involved. Sensors generate mea-
surements of physical quantities such
as acceleration and angular velocity.
From these measurements, other phys-
ical quantities are derived (such as dis-
placement through double integration
of acceleration over time). However,
measurements of commodity sensors
are noisy. The noise in measurements

34	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

is nonlinear and might be correlated
over time, which makes it hard to
model. It is therefore challenging to
separate signal from noise, leading to
estimation errors and bias.

For classification-oriented prob-
lems, such as activity and context
recognition, a typical approach is to
compute appropriate features derived
from raw sensor data. These hand-
crafted features are then fed into
a classifier for training. Designing
good hand-crafted features can be
time-consuming; it requires exten-
sive experiments to generalize well to
diverse settings such as different sen-
sor noise patterns and heterogeneous
user behaviors.

A general deep learning frame-
work can effectively address both of
the aforementioned challenges by

automatically adapting the learned
neural network to complex correlated
noise patterns while, at the same time,
converging on the extraction of max-
imally robust signal features that are
most suited for the task at hand. A
recent framework, called DeepSense,
demonstrates a case for feasibility of
such a general solution.

As shown in Figure 1, DeepSense
integrates convolutional neural net-
works (CNNs) and recurrent neural
networks (RNNs). Sensory inputs are
aligned and divided into time inter-
vals for processing time-series data.
For each interval, DeepSense first
applies an individual CNN to each sen-
sor, encoding relevant local features
within the sensor’s data stream. Then,
a (global) CNN is applied on the respec-
tive outputs to model interactions

among multiple sensors for effective
sensor fusion. Next, an RNN is applied
to extract temporal patterns. At last,
either an affine transformation or a
softmax output is used, depending on
whether we want to model an estima-
tion or a classification task.

This architecture solves the gen-
eral problem of learning multisensor
fusion tasks for purposes of estimation
or classification from time-series data.
For estimation-oriented problems,
DeepSense learns the physical system
and noise models to yield outputs from
noisy sensor data directly. The neu-
ral network acts as an approximate
transfer function. For classification-
oriented problems, the neural network
acts as an automatic feature extractor
encoding local, global, and temporal
information.

GRU

GRU

............

............

............

............

K sensor inputs

Individual convolutional layer 1

Individual convolutional layer 2

Individual convolutional layer 3

Flatten and concatenation

GRU

GRU......

......

T time intervals with width τ
Output layer

τ

Recurrent layer 1

Recurrent layer 2

Single/multiple outputs

Type-speci�c output layer

......

............

............

............

............

K sensor inputs

τ

......

Flatten and concatenation

Merge convolutional layer 1

Merge convolutional layer 2

Merge convolutional layer 3

K �attened
features

K �attened
features

x (c)
..t

x (6)
..t

x (5)
..t

x (4)
..t

x (3)
..t

x (k,3)
..t

x (k,2)
..t

x (k,1)
..t

x (k)
..t

FIGURE 1. Main architecture of the DeepSense framework.

	 M AY 2 0 1 8 � 35

As a unified model, DeepSense can
be easily customized for a specific IoT
application. The application designer
needs only to decide on the number of
sensory inputs, input/output dimen-
sions, and the training objective func-
tion. The detailed mathematical for-
mulation of DeepSense can be found in
a related article.1

Encouraging results were reported
on applying DeepSense in two repre-
sentative sensing tasks: heterogeneous
human activity recognition (HHAR)
and user identification with biometric
motion analysis (UserID). HHAR is a
motion-sensor-based activity recog-
nition task. It is tested on new users
who have not appeared in the training
set. In contrast, UserID uses motion
sensors for user identification from
activities such as walking, biking, and
climbing stairs.

To understand the contributions of
different architectural components,
variants of the DeepSense model were
introduced by removing some design
component(s) from the general archi-
tecture. DS-singleGRU simplifies the
RNN by replacing its two-layer stacked
GRU architecture with a single-layer
GRU of a larger dimension, while
keeping the number of parameters
the same. DS-noIndvConv skips the
convolutional subnets for individual
sensors, keeping a single CNN that
merges data from all sensors in each
time window. Finally, DS-noMerge-
Conv skips the global convolutional
subnet that merges sensor data.
Instead, it f lattens the output of each
individual convolutional subnet and
concatenates them into a single vec-
tor as the input to the RNN.

These models (together with the
overall DeepSense model) were com-
pared to various custom-designed
or hand-crafted baselines for each

application, including HAR-RF,4 HAR-
SVM,4 HRA-RBM, and HRA-MultiRBM5
for activity recognition, and GaitID6
and IDNet7 for used identification.

Accuracy results in performing
HHAR and UserID tasks are illus-
trated in Figures 2 and 3, respectively.
The DeepSense based algorithms
(including DeepSense and its three
variants) outperform other baseline
algorithms by a large margin (that
is, at least 10 percent for HHAR and
at least 20 percent for UserID). The
results offer anecdotal evidence that
a general deep learning architecture

can beat hand-crafted solutions
designed for the individual applica-
tion spaces. Although current work is
by no means a consummate proof of
generalizability, this property (if true)
would be very important, because a
main appeal of applying deep learn-
ing in IoT contexts lies in obviating
the need for per-application custom-
ization of theoretical derivations and
hand-crafted features. More research
is needed to substantiate or refute the
early evidence and to understand the
limits of generalizability of learning
models across IoT systems.

Accuracy Macro F1 Micro F1
0.5

0.6

0.7

0.8

0.9

1

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
HAR−MultiRBM
HAR−RF
HAR−SVM
HAR−RBM

FIGURE 2. Performance metrics of heterogeneous human activity recognition (HHAR)
task with the DeepSense framework.

Accuracy Macro F1 Micro F1
0.4

0.5

0.6

0.7

0.8

0.9

1

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

FIGURE 3. Performance metrics of UserID task with the DeepSense framework.

36	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

COMPRESSING NEURAL
NETWORK STRUCTURES
Resource constraints of IoT devices
remain an important impediment
toward deploying deep learning mod-
els. A key question is therefore whether
it is possible to compress deep neu-
ral networks, such as those described
in the previous section, to a point

where they fit comfortably on low-end
embedded devices, enabling real-time
“intelligent” interactions with their
environment. Can a unified approach
compress commonly used deep learn-
ing structures, including fully con-
nected, convolutional, and recurrent
neural networks, as well as their com-
binations? To what degree does the

resulting compression reduce energy,
execution time, and memory needs in
practice?2

An illustration of such a compres-
sion framework, called DeepIoT,2 is
shown in Figure 4. DeepIoT borrows
the idea of dropping hidden elements
from a widely used deep learning regu-
larization method called dropout. The
dropout operation gives each hidden
element a dropout probability. During
the dropout process, hidden elements
can be pruned according to their drop-
out probabilities. A “thinned” network
structure can thus be generated. The
challenge is to set these dropout proba-
bilities in an informed manner to gen-
erate the optimal slim network struc-
ture that preserves the accuracy of
sensing applications while maximally
reducing their resource consumption.
An important purpose of DeepIoT is
thus to find the optimal dropout prob-
ability for each hidden element in the
neural network.

To obtain the optimal dropout
probabilities for nodes in the neural
network, DeepIoT exploits the net-
work parameters themselves. From
the perspective of model compres-
sion, an element that is more redun-
dant should have a higher probabil-
ity of being dropped. A contribution
of DeepIoT lies in exploiting a novel
compressor neural network to solve
this problem. It takes model param-
eters of each layer as input, learns
parameter redundancies, and gener-
ates the dropout probabilities accord-
ingly. The compressor neural network
is optimized jointly with the original
neural network to be compressed in
an iterative manner that tries to min-
imize the loss function of the original
IoT application.

Evaluation shows that the Deep-
IoT compression algorithm is able to

Dropout layer2

Dropout layer1

Param
eter2

Param
eter1

Fully-connected2

Fully-connected1

Fully-connected3

RNN

RNN

Compressor neural network

Original neural network

DeepIoT

p(2)

W(2)

W(2)

p(1)

FIGURE 4. Overall DeepIoT system framework. Orange boxes represent dropout opera-
tions. Green boxes represent parameters of the original neural network.

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

Proportion of memory consumption by the model

Ac
cu

ra
cy

 (%
)

DeepIoT

DyNS−Ext

DyNS

SparseSep0 0.01 0.02 0.03 0.04 0.05 0.06
60

70

80

90

100

FIGURE 5. The tradeoff between testing accuracy and memory consumption by models.

	 M AY 2 0 1 8 � 37

greatly reduce the network size, exe-
cution time, and energy consump-
tion without hurting the prediction
accuracy.2 We continue to use UserID
as the running application examples,
and compare compression efficacy
to that of several baselines; namely,
DyNS,8 SparseSep,9 and DyNS-Ext.
DyNS is a magnitude-based net-
work pruning algorithm that prunes
weights in convolutional kernels and
fully connected layers based on their
magnitude. SparseSep simplifies the
fully connected layer by the sparse
coding technique, and compresses
the convolutional layer with matrix
factorization. DyNS-Ext extends the
magnitude-based method used in
DyNS to recurrent layers. Just like
DeepIoT, DyNS-Ext can be applied
to all commonly used deep network
modules, including fully connected
layers, convolutional layers, and
recurrent layers. All models use
32-bit f loats without quantization.
Experiments are conducted on the
Intel Edison platform.

The detailed tradeoff between
testing accuracy and memory con-
sumption of the resulting models is
illustrated in Figure 5. We compress
the original DeepSense neural net-
work with different compression
ratios and observe the final testing
accuracy. DeepIoT achieves the best
tradeoff.

The tradeoff between execution
time and testing accuracy is shown
in Figure 6. Similarly, the tradeoff
between energy consumption and
testing accuracy is shown in Figure 7.
DeepIoT offers the best reduction in
execution time (approximately 80.8
percent) as well as the best reduc-
tion in energy consumption (approxi-
mately 83.3 percent) without apparent
loss in accuracy.

The ability of compression algo-
rithms to significantly reduce net-
work size without affecting accuracy
suggests that the underlying models
of IoT applications are inherently low-
dimensional, thus allowing for signif-
icant simplifications of learned neural
network structures. This is good news
in terms of feasibility of implementa-
tion on resource-limited hardware,
such as the Edison board used on the
above evaluation.

ESTIMATING UNCERTAINTY
The next problem concerns the reliabil-
ity of deep learning models. In particu-
lar, how to offer principled uncertainty
estimates that can faithfully reflect
the correctness of model predictions?
Principled uncertainty estimation is
critical when deep learning is used to
support IoT applications that require
quantified reliability assurances.

Recent work focused on two related
challenges:

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

20 40 60 80 100 120 140 160
Execution time (ms)

DeepIoT

DyNS−Ext

DyNS

SparseSep

FIGURE 6. The tradeoff between testing accuracy and execution time.

Ac
cu

ra
cy

 (%
)

0 50 100 150
20

40

60

80

100

Inference energy (mJ)

DeepIoT

DyNS−Ext

DyNS

SparseSep

FIGURE 7. The tradeoff between testing accuracy and energy consumption.

38	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

›› how to develop methods that
provide accurate uncertainty
estimates in prediction results
obtained from deep learning
models, and

›› how to develop resource-
efficient solutions for the uncer-
tainty estimation problem, such
that they can be implemented on
resource-limited IoT devices.

In this section, we introduce a
simple, well-calibrated, and efficient
uncertainty estimation algorithm for
a multilayer perceptron (MLP) called
RDeepSense.3 RDeepSense enables
uncertainty estimation with theo-
retically proven error bounds for IoT
applications.

There are only two steps in com-
puting uncertainty for an arbitrary
fully connected neural network. First,
insert dropout operations to each
fully connected layer. Second, adopt
a proper scoring rule as the loss func-
tion and emit a distribution estimate
instead of a point estimate at the out-
put layer.

Intuitively speaking, the drop-
out operations convert a traditional
(deterministic) neural network with
parameters into a random Bayesian
neural network model with random

variables, which equates a neural net-
work to a statistical model. Proper
scoring rules (based on the loss func-
tion) then measure the accuracy of
probabilistic predictions.

The loss function has a large effect
on the final results. Taking a regres-
sion problem as an example, using the
mean square error as the loss function
tends to underestimate the uncertain-
ties. This is so because the training
process is focused on predicting an
accurate mean value without concern-
ing itself with the variance. At the same
time, using negative log-likelihood as
the loss function tends to overesti-
mate the uncertainties. The reason
is that, during the early phase of
training a neural network with log-
likelihood loss, it is relatively hard
to generate an accurate estimate of
the mean. Increasing the value of
estimated variance can consistently
decrease the negative log-likelihood
loss with a high probability. There-
fore, the predicted uncertainty tends
to favor a larger variance that overes-
timates the true uncertainty.

RDeepSense applies a tunable func-
tion, based on a weighted sum of neg-
ative log-likelihood and mean square
error, as the loss function. The under-
estimation effect of mean square error

and the overestimation effect of nega-
tive log-likelihood are thus balanced
by tuning the weighted sum. RDeep-
Sense was shown to generate well-
calibrated uncertainty estimates.

Regarding resource efficiency, since
RDeepSense emits a distribution esti-
mate instead of a point estimate at the
output layer, it can do the uncertainty
estimation in a single run. Compared
with sampling-based and ensemble-
based methods that require running
a model k times for k samples, RDeep-
Sense results in much reduced execu-
tion time and energy consumption.

We evaluate the accuracy of uncer-
tainty estimation of RDeepSense and
related baselines on the NYCommute
task. NYCommute predicts commute
times in New York City based on a data
set of taxi-cab pick-up/drop-off times
and locations.

We compare RDeepSense to three
baseline algorithms. They are called
MCDrop,10 SSP,11 and Gaussian Pro-
cess (GP). All deep-learning-based
algorithms use a four-layer fully con-
nected neural network with 500 hid-
den dimensions. MCDrop is based on
a Monte Carlo dropout. Compared
with RDeepSense, the main difference
is that MCDrop is not optimized by a
proper scoring rule. MCDrop requires
running the neural network multiple
times to generate samples for uncer-
tainty estimation. We use MCDrop-k
to represent MCDrop with k samples.
SSP trains the neural network with
proper scoring methods. Compared
with RDeepSense, the main difference
is that SSP uses the ensemble method
instead of the dropout operation in
each layer. SSP requires training mul-
tiple neural networks for the ensem-
ble. We use SSP-k to represent SSP with
an ensemble of k individual neural net-
works. GP is a Gaussian-process-based

TABLE 1. Mean absolute error (MAE) and negative log-
likelihood (NLL) for the NYCommute task.

Deep learning algorithm MAE NLL

RDeepSense 5.64 7.7

SSP-1 8.15 4.86

SSP-3 7.90 4.67

SSP-5 7.51 4.84

SSP-10 7.03 4.81

MCDrop-3 5.69 19,995.6

MCDrop-5 5.64 1,335.73

MCDrop-10 5.61 640.35

MCDrop-20 5.61 640.35

Gaussian Process 11.84 7.46

	 M AY 2 0 1 8 � 39

algorithm. It is used to illustrate the
quality of uncertainty estimation gen-
erated by a statistical model. In test-
ing, we compute the z% confidence
interval based on the predicted mean
and variance of each algorithm. We
then measure the fraction of the test-
ing data that falls into this confidence
interval. For a well-calibrated uncer-
tainty estimation, the fraction of test-
ing data that falls into the confidence
interval should be similar to z%.

The comparison result is shown
in Table 1. MCDrop-k shows low MAE
and high NLL, while SSP-k shows
high MAE and low NLL. MCDrop-k
tries to minimize the mean square
error, while SSP-k tries to minimize
the negative log-likelihood. There-
fore, MCDrop-k focuses more on the
mean of predictive distribution, and
SSP-k focuses more on the overall like-
lihood. RDeepSense combines two
objective functions, mean square error
and negative log-likelihood, to find a
balance between these two.

The calibration curves are illus-
trated in Figures 8 and 9. Both
MCDrop-k and SSP-k fail to generate
high-quality uncertainty estimates,
either underestimating or overesti-
mating the uncertainty. However,
RDeepSense provides uncertainty esti-
mates with good quality, outperform-
ing GP by a significant margin. The
results offer a path toward accurate
estimation of uncertainty in outputs
of deep learning models.

MINIMIZING LABELED DATA
A general disadvantage of deep learn-
ing methods lies in the need for large
amounts of labeled data. To learn well
from empirical measurements, the
neural network must be given a suf-
ficient number of labeled examples
from which network parameters are

to be estimated. Since the number of
parameters is large, so is the required
number of labeled examples. This
need for labeling offers a significant
practical impediment to the use of
deep learning in IoT contexts, where
labeling cannot be easily done.

Recently, generative adversarial
networks (GAN) has been proposed
as a promising deep learning tech-
nique for unsupervised and semisu-
pervised learning.12 The GAN training

strategy is to define a game between
two competing networks. The gener-
ator network maps a source of noise
to the input space. The discriminator
network receives either a generated
sample or a true data sample and must
distinguish between the two. The gen-
erator is trained to fool the discrimi-
nator. Here, we define the input prob-
abilistic space as the joint probabilistic
distribution of input sensory data and
classification label. The GAN training

Ac
cu

ra
cy

 (%
)

Execution Time (ms)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal

MCDrop−1

MCDrop−3

MCDrop−5

MCDrop−10

GP

RDeepSense

FIGURE 8. The calibration curves of RDeepSense, GP, and MCDrop-k.

Ac
cu

ra
cy

 (%
)

Execution Time (ms)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Optimal

SSP−1

SSP−3

SSP−5

SSP−10

GP

RDeepSense

FIGURE 9. The calibration curves of RDeepSense, GP, and SSP-k.

40	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

strategy leverages the unlabeled data
to increase the capacity of generator
and discriminator networks, which
explicitly improve the discriminating
ability of classifier in return.

Evaluation shows that the semisu-
pervised strategy, called SenseGAN,
greatly reduces the requirements
of labeled data. We continue to use
HHAR with DeepSense framework1
as the running application example,
where we take p% of the overall data-
set as labeled data.

As shown in Table 2, the semisu-
pervised training can preserve the
classification accuracy with only 10
percent of labeled data by leveraging
90 percent of unlabeled data. How-
ever, extensive studies are still needed
to explore the possibility of training
with fewer number of labeled as well
as unlabeled data in IoT context.

We introduced challenges
and emerging solutions
that suggest feasibility of

building effective, efficient, and reli-
able IoT systems enriched with deep
learning techniques. More studies are
needed to further verify the applicabil-
ity of results. Can one build a unified
deep learning framework for largely
heterogeneous sensory inputs, such
as audio signals, Wi-Fi signals, and
motion inputs? What are the impact
of neural network compression on

system performance, such as execu-
tion time and energy consumption?
Can one extend uncertainty mea-
surements to other deep learning
models besides MLPs? How does one
learn in highly dynamic environ-
ments where it is impossible to collect
a large number of data samples? More
investigation is needed to address
these questions.

ACKNOWLEDGMENTS
Research reported in this paper was
sponsored in part by NSF under grants
CNS 16-18627 and CNS 13-20209 and in
part by the Army Research Laboratory
under Cooperative Agreements W911NF-
09-2-0053 and W911NF-17-2-0196. The
views and conclusions contained in this
document are those of the authors and
should not be interpreted as represent-
ing the official policies, either expressed
or implied, of the Army Research Labo-
ratory, NSF, or the U.S. Government. The
U.S. Government is authorized to repro-
duce and distribute reprints for Govern-
ment purposes notwithstanding any
copyright notation here on.

REFERENCES
1.	 S. Yao et al., “DeepSense: A Uni-

fied Deep Learning Framework for
Time-Series Mobile Sensing Data
Processing,” Proc. 26th Int’l Conf.
World Wide Web, 2017, pp. 351–360.

2.	 S. Yao et al., “DeepIoT: Compressing
Deep Neural Network Structures for

Sensing Systems with a Compressor-
Critic Framework,” Proc. 15th ACM
Conf. Embedded Network Sensor Sys-
tem, 2017; https://arxiv.org/abs
/1706.01215.

3.	 S. Yao et al., “RDeepSense: Reliable
Deep Mobile Computing Models with
Uncertainty Estimations,” Proc. ACM
on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 1, no. 4,
2018, p. 173.

4.	 A. Stisen et al., “Smart Devices are
Different: Assessing and Mitigating
Mobile Sensing Heterogeneities for
Activity Recognition,” Proc. 13th
ACM Conf. Embedded Network Sensor
System (SenSys 15), 2015, pp. 127–140.

5.	 V. Radu et al., “Towards Multimodal
Deep Learning for Activity Recogni-
tion on Mobile Devices,” Proc. ACM
Int’l Joint Conf. Pervasive and Ubiqui-
tous Computing: Adjunct (UbiComp
16), 2016, pp. 185–188.

6.	 H.M. Thang et al., “Gait Identifica-
tion Using Accelerometer on Mobile
Phone,” Proc. Int’l Conf. Control,
Automation and Information Sciences
(ICCAIS 12), 2012, https://doi
.org/10.1109/ICCAIS.2012.6466615.

7.	 M. Gadaleta and M. Rossi, “Idnet:
Smartphone-Based Gait Recognition
with Convolutional Neural Net-
works,” 2016; https://arxiv.org/abs
/1606.03238.

8.	 Y. Guo, A. Yao, and Y. Chen,
“Dynamic Network Surgery for
Efficient DNNs,” Proc. 30th Int’l Conf.
Neural Information Processing System
(NIPS 16), 2016, pp. 1387–1395.

9.	 S. Bhattacharya and N.D. Lane “Spar-
sification and Separation of Deep
Learning Layers for Constrained
Resource Inference on Wearables,”
Proc. 14th ACM Conf. Embedded Net-
work Sensor Systems (SenSys 16), 2016,
pp. 176–189.

10.	 Y. Gal and Z. Ghahramani, “Dropout

TABLE 2. Semisupervised training of HHAR
with DeepSense framework.

p% 10% 5% 3% 2% 1%

Sense-GAN 94.8% 92.5% 91.4% 90.4% 88.3%

DeepSense 92.0% 89.3% 85.3% 83.6% 79.1%

	 M AY 2 0 1 8 � 41

as a Bayesian Approximation:
Representing Model Uncertainty in
Deep Learning,” Proc. 33rd Int’l Conf.
Machine Learning (ICML 16), 2016,
pp. 1050–1059.

11.	 B. Lakshminarayanan, A. Pritzel,
and C. Blundell, “Simple and Scalable
Predictive Uncertainty Estima-
tion Using Deep Ensembles,” 2016;
https://arxiv.org/abs/1612.01474.

12.	 I. Goodfellow et al., “Generative
Adversarial Nets,” 2014; https://
arxiv.org/abs/1406.2661.

ABOUT THE AUTHORS
SHUOCHAO YAO is a PhD student in the Department of

Computer Science at the University of Illinois Urbana-Cham-

paign (UIUC). His research interests include deep learning on

Internet of Things (IoT), cyber-physical systems, and crowd

and social sensing. Yao received a BS in information engi-

neering from Shanghai Jiao Tong University. Contact him at

syao9@illinois.edu.

YIRAN ZHAO is a PhD student in the Department of Computer

Science at UIUC. His research interests include cyber-phys-

ical systems, machine learning, and IoT applications. Zhao

received a BS in information engineering from Shanghai Jiao

Tong University. Contact him at zhao97@illinois.edu.

ASTON ZHANG is an applied scientist at Amazon AI. His

research focuses is on deep learning. Zhang received a PhD

in computer science from UIUC. He previously interned with

Google Research, Microsoft Research, Yahoo Labs, UBS, and

proprietary trading, and has served in program committees

for WWW, KDD, SIGIR, and WSDM. He is a coauthor and coin-

structor of the deep learning tutorial with Apache MXNet/

Gluon. Contact him at lzhang74@illinois.edu.

SHAOHAN HU is a research staff member at IBM Thomas

J. Watson Research Center. His research interests include

cyber-physical systems, mobile ubiquitous computing, crowd

and social sensing, big data analytics, cloud computing, and

quantum computing. Hu received a PhD in computer science

from UIUC. Contact him at shaohan.hu@ibm.com.

HUAJIE SHAO is a PhD student in the Department of Com-

puter Science at UIUC. His research interests include data

analysis in social networks, applied machine learning, sensor

networks, and distributed data centers. Shao received an MS

from Zhejiang University. Contact him at hshao5@illinois.edu.

CHAO ZHANG is a PhD student in the Department of Com-

puter Science at UIUC. His research interests include social

media analysis, spatiotemporal data mining, text mining, graph

mining, and urban computing. Zhang received an MS from

Zhejiang University. Contact him at czhang82@illinois.edu.

LU SU is an assistant professor in the Department of Computer

Science and Engineering at State University of New York Buf-

falo. He has also worked at IBM T. J. Watson Research Cen-

ter and National Center for Supercomputing Applications. Su

received a PhD in computer science from UIUC. Su’s research

interests include the general areas of mobile and crowd sens-

ing systems, Internet of Things, and cyber-physical systems.

He is the recipient of an NSF Career Award, University at Buf-

falo Young Investigator Award, ICCPS 17 Best Paper Award,

and the ICDCS 17 Best Student Paper Award. He is a member

of ACM and IEEE. Contact him at lusu@buffalo.edu.

TAREK ABDELZAHER is a professor and Willett Faculty

Scholar in the Department of Computer Science at UIUC.

His research interests include understanding and influencing

performance and temporal properties of networked embed-

ded, social and software systems in the face of increasing

complexity, distribution, and degree of interaction with an

external physical environment. Abdelzaher received a PhD

in quality of service adaptation in real-time systems from the

University of Michigan. He has authored or coauthored more

than 200 refereed publications in real-time computing, dis-

tributed systems, sensor networks, and control. He is a mem-

ber of IEEE and ACM. Contact him at zaher@illinois.edu.

• Conference schedules
• Noti� cations

• Networking
• And more

CONFERENCES
in the Palm of Your Hand

Contact Conference Publishing Services at cps@computer.org

