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Abstract—We develop data retrieval algorithms for crowd-
sensing applications that reduce the underlying network band-
width consumption or any additive cost metric by exploiting
logical dependencies among data items, while maintaining the
level of service to the client applications. Crowdsensing applica-
tions refer to those where local measurements are performed by
humans or devices in their possession for subsequent aggregation
and sharing purposes. In this paper, we focus on resource-
limited crowdsensing, such as disaster response and recovery
scenarios. The key challenge in those scenarios is to cope with
resource constraints. Unlike the traditional application design,
where measurements are sent to a central aggregator, in resource
limited scenarios, data will typically reside at the source until
requested to prevent needless transmission. Many applications
exhibit dependencies among data items. For example, parts of a
city might tend to get flooded together because of a correlated low
elevation, and some roads might become useless for evacuation if
a bridge they lead to fails. Such dependencies can be encoded as
logic expressions that obviate retrieval of some data items based
on values of others. Our algorithm takes logical data dependencies
into consideration such that application queries are answered at
the central aggregation node, while network bandwidth usage is
minimized. The algorithms consider multiple concurrent queries
and accommodate retrieval latency constraints. Simulation re-
sults show that our algorithm outperforms several baselines by
significant margins, maintaining the level of service perceived by
applications in the presence of resource-constraints.

Keywords—crowd sensing; logical dependency; resource limita-
tion; cost optimization

I. INTRODUCTION

This paper advances the state of the art in crowdsensing in
resource-starved environments. Applications, such as disaster
response, stability and support operations, or humanitarian
assistance missions often do not have the infrastructure and
bandwidth to collect large amounts of data about the current
state on the ground due to severe resource constraints (e.g.,
due to depletion, destruction, or acts of war). More data might
be collected by the sources than what the infrastructure would
allow them to communicate. To enhance situation awareness,
a key question becomes to reduce the amount of resources
needed to answer queries about current state. We specifically
consider queries issued at a central command center that
serves as an aggregation point for collected data. Some of the
pertinent data needed to answer a query might have already
been collected. The question lies in collecting the remaining
data at minimum cost.

The novelty of this work lies in exploiting data dependen-
cies and mission specifics to minimize the cost of answering

command center queries. In the scenarios mentioned above,
applications don’t make random requests. They typically have
very specific information objectives derived from well-defined
protocols and doctrine. A disaster recovery team might follow
well-defined protocols for carrying out their rescue objectives.
These protocols call for specific information objectives that
allow first responders to systematically perform their tasks.
For example, in recovering from an earthquake, a disease
control team might want to find out where the worst afflicted
neighborhoods are, what structures can be used as shelters
that are closest from these afflicted neighborhoods, whether
they are currently occupied or not, and how to get there to
carry out disease prevention procedures. To find an occupied,
accessible shelter, one might use the following boolean expres-
sion: (shelterOccupied) ∧ (path1IsGood ∨ path2isGood ∨
path3isGood), where the shelter’s occupancy can be estimated
using pictures taken from cameras installed in the shelter, and
the road conditions by retrieving and examining aerial images
taken by a different team. Hence, given a specific protocol and
terrain knowledge, application requests can be automatically
converted into series of boolean expressions comprised of
logically inter-dependent tests on data from multiple sources.

We therefore argue that crowdsensing systems can be
designed to exploit application knowledge and logic depen-
dencies among data items to potentially reduce the underlying
network bandwidth consumption. The paper shows that when
one knows application logic and data dependencies, it is
possible to plan the retrieval of objects in such a way that
the cost of answering queries is significantly reduced. The
practice is close to what an optimizing compiler might do when
evaluating complex logical expressions. Namely, if possible, it
will evaluate first the variables that might short-cut much of
the rest of the logic expression. For example, a predicate that
evaluates to true, ORed with a large expression, is sufficient
to yield a positive answer, obviating the need for evaluating
the rest of the expression. The contribution of this paper
lies in applying this insight to the domain of crowdsensing,
thereby significantly reducing resource demand attributed to
data retrieval.

The approach is further enhanced by exploiting additional
information about the likely values of variables that have not
yet been retrieved. In the above example, if the disease preven-
tion team, by looking at the population distribution data, can
tell that the particular shelter is unlikely to be occupied, then
they don’t need to bother asking for aerial images covering
the candidate paths—they can focus their attention on the next
shelter. A datastore is maintained that keeps historical data and
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various application-specific information, which can be used
for making educated guesses about cost of object retrieval
and likelihood that specific tests on data would evaluate to
true or false. Evaluation shows that our approach is effective
at reducing resource consumption while meeting application
information needs.

The remainder of this paper is organized as follows. After
discussing related work in Section II, we give overall problem
description and system design in Section III, and then present
our detailed analyses and algorithms in Section IV. Evaluation
is presented in Section V. Finally Section VI concludes.

II. RELATED WORK

Crowdsensing and socialsensing have become an important
channel of data inputs, given rise by the fast growing popularity
of various mobile and wearable devices and their ubiquitous
connectivities. For example, BikeNet [1] is a sensor network
for bikers to share data and map regions. CarTel [2] is a mobile
sensing system for automobiles, where data can be collected,
processed, and visualized. Coric et al. [3] design a crowdsens-
ing system that helps to identify legal parking spaces. MaWi
[4] is an indoor localization system with improved accuracy by
relying on crowdsensing for spot survey. Hu et al. [5] design
and implement the SmartRoad system that takes advantage
of vehicular crowdsensing data to automatically detect and
recognize traffic lights and stop signs. Given the richness of
crowdsensing systems, to help cleanup and therefore better
utilize crowdsensing data, various fact-finding techniques [6]–
[8] have been proposed. The crowdsensing system design
reported in this paper complements these prior studies by
exploiting logic relations among data items when operating
under resource limitations.

Resource-limited scenarios (e.g., disaster monitoring, alert,
and response) have been studied in the community. For ex-
ample, Breadcrumb [9] is an automatic and reliable sensor
network for the firefighting situations. In the SensorFly [10]
project, low cost mobile sensing devices are utilized to build
an indoor emergency response system. PhotoNet [11] provides
a post-disaster picture collection and delivery service for
situation awareness purpose. Our crowdsensing system design
can be used to operate on the above mentioned systems in
improving communication efficiency under limited resources.

The goal of improving communication efficiency and
data/information quality is shared with many existing studies.
For example, time-series prediction techniques are used to
reduce communication burden without compromising user-
specified accuracy requirements in wireless sensor net-
works [12]. Regression models are used to estimate pre-
dictability and redundancy relationships among sensors for
efficient sensor retrievals [13]. MediaScope [14] is a crowd-
sensing system with various algorithms designed to help with
timely retrievals of remote media contents (e.g. photos on
participants’ phones) upon requests of multiple types (nearest-
neighbor, spanners, etc). Gu et al. [15] design inference-based
algorithms for data extrapolation for disaster response appli-
cations. Minerva [16] and Information Funnel [17] explore
data prioritization techniques based on redundancy or similar-
ity measures for information maximization. Data aggregation
techniques are also studied to reduce network transmission and
improve classification tasks’ accuracies [18]–[20]. Gregorczyk
et al. [21] discuss their experiences on in-network aggregation

for crowdsensing deployments. Tham et al. [22] propose the
Quality of Contributed Service as a new metric for crowdsens-
ing systems. Different from the above work, our system design
exploits logic relations among data items, and can perform cost
optimization under deadline constraints.

In the theory community, the optimization of boolean pred-
icate evaluation has been thoroughly studied. Greiner et al. [23]
analyze and give theoretical results for the various subspaces
of the general PAOTR (probabilistic and-or tree resolution)
problem. Luby et al. [24] propose a set of tools for analyzing
the probability an and-or tree evaluates to true. Casanova et
al. [25] give various heuristic-based algorithms for the general
NP-hard PAOTR problem and show performance comparisons.
While heavily benefiting from the above theoretical studies,
our work also extends beyond them as we apply to practical
sensing scenarios where we also need to handle concurrent
requests, deadline constraints, and existing partial retrieval sets
when computing the optimal evaluation plans.

Most closely related to our work, Carlog [26] and ACE [27]
also explore similar query request optimization techniques. In
particular, Carlog explores latency optimization for vehicular
sensing applications, and ACE aims at energy efficiency for
continuous mobile sensing applications. However, ACE does
not consider multi-request cases, and even though Carlog
does, it limits requests to be of the conjunction form only.
Furthermore, neither model the deadlines of query requests.
Our data retrieval algorithm assumes no boolean expression
form limitation, and can be used for optimizing cost under
specified request deadline constraints.

III. SYSTEM OVERVIEW

We consider crowdsensing applications (such as disaster
response and recovery), where information at data sources
is not immediately accessible to the collection point due to
resource constraints. Retrieval of data from sources needs to
be carried out very carefully such that the least amount of
resource is used. Decisions based on received data need to
be made at different time-scales depending on their criticality.
Hence, in addition to resource bottlenecks, we have different
application deadlines on information acquisition.

The goal is to fetch data from sources in a way that
minimizes system resource consumption while meeting request
deadlines. In general, a decision-maker might have several in-
formation needs, each translating into a query. Hence, multiple
queries could be issued at the same time. We assume that each
query is translated into a set of objects that must be retrieved.
A retrieved object can be subjected to a test that evaluates a
predicate. For example, an image of a building can be inspected
to determine if the building is occupied. Given application
logic and data dependencies, it is desired to determine which
objects to retrieve in order to answer all queries with minimum
resource consumption while meeting their deadlines.

In the rest of the paper, we describe cost as the bandwidth
needed for retrieving a data item (i.e., the size in bytes of the
retrieved data). However, our actual algorithm is not restricted
to this cost definition—it can operate on any cost metric
definition that is additive. For example, in a scenario where
energy is the most important resource, we can easily define
cost to be a node’s energy consumption. We assume that
the concurrent retrieval latency of multiple data object is the
maximum single retrieval latency among all the single objects.
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Fig. 1: System Design

Our resource-limited crowdsensing system design is de-
picted in Fig. 1. As seen, as application requests arrive,
our crowdsensing engine uses the knowledge-base to convert
the requests into boolean logic expressions. It then queries
the datastore for the likelihood that different predicates in
those expressions would evaluate to true or false, to guide
object retrieval accordingly for best odds of shortcutting logic
expressions. It also fetches the estimated retrieval latencies
between the collection point and the remote data sources. The
data retrieval engine takes these estimates as input, computes
a minimum cost retrieval plan, and performs the actual data
retrieval. As data comes in, requests are updated, and the
datastore is enriched with the latest data. Note that, in general,
some data pertinent to a query might already be available. If
so, part of the expression is immediately evaluated. The above
applies to the remaining part, if any. Hence, without loss of
generality, we focus on retrievals of missing data only.

IV. ANALYSES AND ALGORITHMS

In this section, we first talk about what analyses and
building-block operations need to be done for each individual
crowdsensing application request, and then discuss how the
crowdsensing system carries out data retrievals when serving
multiple requests concurrently under our targeted resource-
constrained settings.

A. Single-Request Analyses
Given a single request q (please refer to Table I for

all notations), we would like to compute the best (cost-
minimizing) next source nE(q) for retrieving data from and
the corresponding expected bandwidth cost cE(q) assuming
sequential retrieval for all the rest of the involved data sources.
We focus our discussion on bandwidth only, as the same
methods can be used for the expected retrieval latency. Notice
that this is generally not true because latencies for concurrent
retrievals are not additive. But since all expected values that we
discuss in this section are under the assumption of sequential
retrievals, this is true.

Please note that we default to sequential retrieval because
of our original objective of minimizing costs—more parallel
retrievals lead to higher probability of unnecessarily retrieving
data objects that could otherwise be avoided due to short-
circuiting. Only when a query might miss its deadline if

Q all requests nE(q) the src leads to min cE(q)
q a request nE(q,R) nE(q) given R
R srcs to retrieve lE(q) E[latency] of q

rk kth src in R lE(q,R) lE(q) given R
nj data source j cE(q) E[cost] of q
sj true prob. of nj cE(q,R) cE(q) given R
cj cost of nj q|• apply data of src • to q
M retrieved srcs ql request of least laxity
pi test i bi short-circuit prob. of pi

TABLE I: Notation Table

we stick to sequential retrieval do we schedule concurrent
retrievals in order to decrease the total query resolution time.

We need to not only be able to compute the next best
source and the expected cost when given just the request, but
be able to do so when also facing a set R of (zero or more)
sources that have already been selected for the next round of
data retrieval. Formally, for a request q, let P be its set of tests,
where each test pqi corresponds to a particular data source nj ,
and thus has associated with it a retrieval bandwidth cost cnj

and success (evaluating to true) probability snj
. Given a set

R of data sources that are already selected for retrieval for the
next round, we want to compute for request q the next best
source nE(q,R) to retrieve data from and q’s corresponding
expected cost cE(q,R). The reason why we need to do this
will be more clear, if not already so, when we talk about the
actual data retrieval algorithm for multiple concurrent requests
in Sec. IV-B.

If set R is empty, then the problem becomes the standard
PAOTR problem, already known to be NP-hard. It is quite
obvious that it is still so with an non-empty R. Casanova
et al. [25] give a greedy algorithm for computing q’s best
data retrieval plan without such a set R present. We denote
it as cE(q,∅) = cE(q), and briefly introduce how this greedy
algorithm works. For a test pi with cost ci and success
probability si, we define the test’s short-circuit probability
to be the probability that performing it will cause its parent
conjunction or disjunction to be resolved without needing to
perform its sibling tests. Then pi’s short-circuit probability to
cost ratio is bi = (1 − si)/ci in a conjunction, or bi = si/ci
in a disjunction. As each boolean expression can be converted
into its disjunctive normal form (i.e., a disjunction of one or
more conjunctions of one or more tests), for a conjunction we
order its tests according to their (descending) b values. With
this order j1, j2, . . . , jm, the expected cost of the conjunction
can then be computed as

cconj = cj1 + sj1(cj2 + sj2(cj3 + . . .+ sjm−1
cjm) . . .),

which, together with its derived success probability
∏

si,
yields the current conjunction’s short-circuit probability to cost

ratio
∏

si
cconj

for its parent disjunction, which can then be used

to select the best conjunction to process first, the same way
how the best test for a conjunction is selected.

After each test pt is selected, the next best test pt+1 to be
selected can depend on the evaluation result of pt. So, both

possibilities p
(T )
t+1 (upon pt == true) and p

(F )
t+1 (upon pt ==

false) are considered. The final retrieval plan computed is
therefore a binary decision tree, where the evaluation result
of each test performed dictates which source to retrieve data
from and test to perform next. For ease of presentation, we
use nE(q) and cE(q) to denote the algorithms for computing
a request q’s next best source to retrieve data from (i.e., the
root node of the binary decision tree) and the corresponding
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expected bandwidth cost. Please note that data sources’ costs
and the corresponding tests’ success probabilities are the inputs
to the mentioned algorithms. We, however, assume their static
availabilities throughout our discussions, and thus omit them
as being part of the input.

Note that due to the binary decision tree nature of the
algorithm nE(q), it has exponential run time in request q’s
number of tests. This is not a problem in practice where a
request contains say 5 to 10 tests. If, however, cases need to
be handled where inputs are quite large (for example, a request
consists of hundreds or thousands of tests in it), a simplified
(and computationally more efficient) version of algorithm
nE(q) can be used, which simply ranks all the conjunctions
first and then proceeds with data retrievals according to the
conjunction order and then the data source order within the
same conjunction. This effectively reduces the computation
complexity from exponential growth to O(|q| lg |q|), and only
slightly underperforms the original version in terms of ratio to
optimal retrieval plan [25].

Algorithm 1 cE(q,R) - Request’s Minimum Expected Band-
width Cost Given A Predetermined Retrieval Set
Input: Request q, predetermined retrieval set R
Output: The minimum expected bandwidth cost of q given R

1: if q is already resolved then return 0
2: else
3: if R == ∅ then
4: return cE(q)
5: else
6: rl ← last element of R
7: R ← R \ {rl}
8: q|r(T )

l

, q|r(F )
l

← request q with rl = true, false values

applied, respectively
9: return srlcE(q|r(T )

l

,R) + (1− srl)cE(q|r(F )
l

,R)
10: end if
11: end if

In our case, with the predetermined retrieval set R present,
we can compute request q’s expected cost in a recursive
fashion. The base case would be when set R is empty,
where the algorithm cE(q) mentioned above can compute q’s
cost directly. The recursive case goes as follows. For a set
R = {r1, r2, . . . , rl} with l elements, we remove from it its
last element rl, apply rl’s two possible values true/false to
the request and get two sub-requests q|r(T )

l

and q|r(F )
l

. Then

the expected cost of q given R can be computed recursively
as follows,
cE(q,R) = srlcE(q|r(T )

l

,R\{rl})+(1−srl)cE(q|r(F )
l

,R\{rl}),
where srl is the success probability of the test rl. The pseudo
code is depicted in Algorithm 1.

Again, due to the structure of the binary decision tree, the
computational complexity of Algorithm 1 grows exponentially
with the cardinality of the set R. When fast decision makings
on large inputs are needed, applications can opt to the static
version of Algorithm 1 which only explores the most probable
value of rl, avoiding the exponential explosion. As the static
algorithm travels a single path from root to leaf on the binary
decision tree, the computational complexity is linear in |R|.
Therefore the total complexity is O(|R|+ |q| lg |q|)

Regarding how to compute, for request q, the best source
nE(q,R) to retrieve data from next given the set R, we let

Algorithm 2 nE(q,R) - Request’s Best Next Source for
Retrieval Data from Given A Predetermined Retrieval Set
Input: Request q, predetermined retrieval set R
Output: q’s best next data source for retrieval given R

1: if q is already resolved then return ∅

2: else
3: if R == ∅ then
4: return nE(q)
5: else
6: VR ← the vector of most probable outcomes of tests

corresponding to R
7: q|VR ← request q after applying all values from VR
8: return nE(q|VR)
9: end if

10: end if

each member rl ∈ R assume its most probable outcome
determined by its success probability srl , and apply this set of
most probable values to q and get the resulting request q′. After
that we can compute the best source as nE(q,R) = nE(q

′).
The pseudo code is depicted in Algorithm 2. Similar to the
notation cE(q,R) and nE(q,R), which denote the algorithms
for computing request q’s best data source and expected cost
given predetermined retrieval set R, we use lE(q,R) to refer
to the algorithm for computing q’s expected retrieval latency
given a retrieval set R.

The computational complexity of Algorithm 2 is dominated
by the sorting operation in nE(·), resulting in O(|q| lg |q|).

B. Data Retrievals for Multiple Concurrent Requests
Having established several building block algorithms, we

are now ready to talk about the data retrieval algorithm
for serving multiple concurrent requests. We first describe
the various component stages, and then give the complete
algorithm at the end.

At each round, the data retrieval engine needs to determine,
from the set of all relevant data sources, a subset to retrieve
data from. It proceeds by first selecting the one that leads to
the minimum total expected cost. This is done by taking the
Cartesian product of the set of all data sources and set of all
requests, and for each source-request pair (ni, qj), computing
the expected cost cE(qj , {ni}). Then, the best source nr is
selected as the data source n that minimizes the sum of its
own cost cn plus the collective sum of the expected costs of
all the requests, assuming the predetermined set of sources
being the current retrieval set with n inserted, mathematically
(and more clearly) as follows,

nr = argmin
n

⎛
⎝cn +

∑
j

cE (qj ,R∪ {n})
⎞
⎠ .

After nr is selected, it is added to the retrieval set for this
round R = R∪ {nr}.

The data retrieval engine then checks the expected laxity
(laxity = deadline − expected retrieval latency) of all requests.
If the minimum expected laxity is negative, then it means the
corresponding request ql is expected to miss its deadline if
we proceed with retrieval using the current R as is. Since all
sources in R are to be retrieved in parallel, having more of
ql’s relevant data sources in R for parallel retrieval might then
shorten its expected retrieval latency and in turn make its laxity
positive again. Under this intuition, we then pick ql’s best next
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source nE(q,R) to add to R and carry out this laxity checks
again with the updated R. This process terminates when no
request is expected to miss its deadline given the latest set R.
It might also happen that at some point some request ql cannot
be saved from having to miss its deadline, for example when
the retrieval latency of set R already exceeds ql’s deadline,
therefore adding more sources to R won’t help in terms of
saving ql. Under such circumstances we have two options,
either backtrack in R to try to save ql, or accept that ql might
miss its deadline and disregard it for this current round of
planning. In this paper we take the latter approach, and leave
the former for our future efforts.

As we have taken care of bandwidth and deadlines at
this point, it might seem like we are ready to carry out
the retrieval of R for this round; our data retrieval engine,
however, actually goes one step further here in preventing
unnecessary request delays, as we explain next. We say two
sources n1 and n2 are related if they co-appear in at least
one request q. It then follows that the retrieval of n1 will
affect how n2 is to be chosen in the future, because n1’s
data upon retrieval will be applied to the request q, causing
cE(q, {n2}) �= cE(q|n1

, {n2}). It is easy to see that this effect
is transitive: If we build a graph of all the sources where each
pair of sources share an edge iff they are related, then sources
of the same connected component can affect each other in this
fashion, either in the next round or after multiple rounds in
the future. A pair of sources that are disconnected, however,
will never affect each other. We then say two sets of sources
are disconnected if no edge exist between them.

Algorithm 3 Multi-Request Serving

Input: The set M of retrieved data from previous round, the set Q
of all unresolved requests, current time T
Output: The set R of sources to retrieve data from for this round

1: Use values inM to update all requests in Q, remove all resolved
requests from Q

2: Initialize R ← ∅

3: repeat
4: nmin ← argmin

n

(
cn +

∑
j cE(qj , {n})

)
the source that

minimizes the total expected retrieval cost
5: R ← R∪ {nmin}
6: L ← {q ∈ Q|q.deadline − lE(q,R) − T < 0} the set of

requests that are expected to miss their deadline after this round
of retrieval

7: repeat
8: qurgent ← argmin

q∈L
(q.deadline− lE(q,R)− T )

9: nqurgent ← nE(qurgent,R)
10: if nqurgent == NULL then
11: L ← L \ {qurgent}
12: Q ← Q \ {qurgent}
13: else
14: R ← R∪ {nqurgent}
15: end if
16: until L == ∅

17: Q ← {q ∈ Q|q is disconnected from R}
18: until Q == ∅

19: return R

Now coming back to our multi-request data retrieval prob-
lem, if all sources in a request qd are disconnected from the
set R, then there is no benefit for us not to start retrieving data
from some source relevant to qd at this current round, because

we will not be saving total network bandwidth usage, and
are just delaying the processing of this request, adding to the
danger of it missing its deadline. Therefore, our data retrieval
algorithm behaves as follows. At the beginning of each round
(at which point R == ∅), a set Q is initialized to contain
all requests. As R is populated, elements of Q are removed
from Q only if necessary s.t. R and Q remain disconnected.
The previously mentioned cost-minimizing and deadline-miss-
prevention operations are actually always carried out on the set
Q, until Q becomes empty, at which point, the data retrieval
engine is actually ready to retrieve data from all sources in R
in parallel. Upon receiving the data, the engine updates all the
requests, and continues onto the next round of planning. The
above detailed discussions are also collected and depicted in
Algorithm 3.

Assuming there are n sources and m requests. Then the
outer loop repeats at most m times. In each iteration, the
computation on line 4 costs O(n2) time when the static version
of algorithm cE(q,R) is in use, dominating the computational
cost from line 4 to 6. The inner loop repeats n times in the
worst case. Line 8 costs O(mn) time to enumerate all requests
and compute their latencies, which is the most expensive
operation in each inner iteration. Therefore, the computational
complexity of Algorithm 3 isO(m(n2+n(mn))) = O(m2n2).
In practice, this algorithm is highly parallelizable, more specif-
ically the operations on Line 4, 6, and 8. Thus in case of
extremely large inputs (e.g. hundreds of concurrent requests
with thousands of relevant data sources), parallel computing
techniques (e.g. GPGPU) can be utilized to boost performance.
For more realistic input sizes the computing time is far smaller
than the network transmission delay time for our targeted
scenarios.

V. EVALUATION

In this section we evaluate our proposed data retrieval
algorithm (which we will mark as greedy for ease of presen-
tation) for resource-limited crowdsensing through simulations.
First, we examine our algorithm’s performance against several
baseline methods under various settings. Then we specify
a concrete application scenario and present our results and
findings.

We compare our algorithm to the following four baseline
methods in the evaluation.

• Random (rnd) — The elements of the retrieval set for
each round are randomly selected from the set of all
relevant data sources of the remaining requests. Here we
experiment with selecting 1, 2, 4, 8, . . . , 128 sources at a
time.

• Lowest Cost Source First (lc) — All requests’ relevant
data sources are put together and sorted according to their
costs in ascending order. The retrieval set is then popu-
lated using the lowest cost sources. We also experiment
with selecting 1, 2, 4, 8, . . . , 128 sources at a time.

• Most Urgent Request First (uq) — All requests are sorted
according to their expected laxities in ascending order.
The retrieval set is then populated by randomly selecting
sources from the most urgent (least laxity) request. We
also experiment with selecting 1, 2, 4, 8, . . . , 128 sources
at a time. Note that if the most urgent request’s relevant
sources have been exhausted, we move to the next urgent
request in line.
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(a) Retrieval cost ratios
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(b) Deadline meet rates
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Fig. 2: Retrieval cost ratios and deadline meet rates of our algorithm vs baseline methods

• Most Urgent Request’s Lowest Cost Source First (uqlc) —
The same as the uq approach, except that when selecting
sources from the urgent request, the lowest cost source is
selected first, as opposed to random selection.

A. Algorithm Behaviors
We examine our algorithm’s behaviors under the following

experiment settings. All requests are randomly generated.
We experiment with different numbers of tests per request
({4, 8, 12, 16, 20}, indicating how many remote data sources
are generally involved in a single crowdsensing applica-
tion request), different numbers of conjunctions per request
({1, 3, 5, 7}, which could possibly correspond to the number
of different options that a sensing application can take), and
different numbers of concurrent requests that the crowdsensing
system is serving ({5, 10, 15, 20, 25}, the number of sensing
applications are being served all at the same time). All tests’
success probabilities are uniformly randomly generated. Be-
sides the uniform distribution on (0, 100%), we also experi-
ment with ranges (0, 10%) ∪ (90%, 100%) and (40%, 60%),
which represent situations where tests’ success probabilities
are generally less and more ambiguous in indicating how
likely they are to evaluate to either true or false than
the (0, 100%) case. Regarding sources’ retrieval costs, we
experiment with uniformly on [1, 10], and 2p where the power
p is uniformly randomly generated on [1, 10]. Compared to the
former, the latter represents a highly heterogeneous network
where data collected by different sources can have orders of
magnitude of differences in bandwidth costs. We set a source’s
retrieval latency to be proportional to its bandwidth cost plus a
transmission setup latency, and for the actual request deadlines,
we experiment with the following different settings: For a
request, we take the sum of all its sources’ individual retrieval
latencies, and multiply it by 0.5, 1, 2, 4, or 8 to use as the
request’s deadline, representing different levels of “tightness”
of the request deadlines.

We first take a look at how our algorithm’s performance
compares to the baseline methods in general. We set the total
number of data sources in the field to be 100, whose bandwidth
costs are uniformly distributed on [1, 10] and success proba-
bilities (0, 100%). We set the number of concurrent requests
to be 20. Each request involves 8 individual tests grouped in
3 different conjunctions, and has its deadline set to be twice
the sum of its relevant sources’ individual retrieval latencies.
Each set of experiments is repeated 20 times, for which we
report the means and standard deviations of both the retrieval
cost ratio, computed as

total bandwidth cost of actually retrieved data

total bandwidth cost of all sources involved in all requests
,

and the deadline meet rate—the percentage of requests whose
resolutions are within their deadlines. Therefore, ideally we

want low retrieval cost ratios and high deadline meet rates.
Results are shown in Fig. 2, of which Fig. 2a shows the
retrieval cost ratios and Fig. 2b the deadline meet rates. In each
plot, the heights of the bars represent the mean values, and the
error windows indicate the standard deviations. Results of our
algorithm are captured by the leftmost bar, whereas each of the
four baseline methods is represented by a cluster of adjacent
bars with the same greyscale level, from left to right: uqlc,
uq, lc, and rnd. Within the same baseline method cluster, the
different bars stand for different concurrent retrieval levels:
from left to right in the order 1, 2, 4, 8, . . . , 128. For the sake
of easier comparisons, the same results are also presented in a
different manner without the standard deviation error windows,
as illustrated in Fig. 2c and 2d.

As can be seen, our data retrieval algorithm achieves a
low retrieval cost ratio of about 40%, while maintaining a
99.8% average deadline meet rate. In comparison, among all
the baseline strategies, the lowest retrieval cost ratio with 99+%
deadline meet rate is achieved by lc with 4 concurrent retrievals
at each round. Its retrieval cost ratio is about 52%, quite a
bit higher than the 40% of our algorithm. For the rest of the
baseline methods, in order to achieve 90+% deadline meet rate,
the retrieval cost ratios have to be 60% or even greater.

After getting a general sense of how our algorithm and
all the baseline strategies perform against each other, we
would next like to investigate how various aspects affect the
data retrieval algorithm’s behaviors. Thus for each of the
next sets of experiments, we tune one of the system and
problem parameters while fixing all the rest to their default
values as set in the previous experiment, and look at how
our algorithm stacks up against the baseline methods. Note
that for clarity of presentation, we pick, from each baseline
strategies, a representative concurrent retrieval level. After
examining results from all baseline strategies, we notice that
with a concurrent retrieval level of 4, usually at least one of
the four baseline methods can achieve 100% deadline meet rate
without incurring additional retrieval costs. Therefore, we pick
the concurrent retrieval level of 4 to be the representative of
each of the baseline strategies. Each experiment is repeated 20
times. In order to better show the trend of changes reflected
from the results, we omit showing standard deviations, and
focus on the average results, similar to Fig. 2c and 2d.

First we look at how the number of tests in a request affects
the data retrieval algorithm’s performance. This in practice
could indicate the general complexity of the requesting
crowdsensing applications. For example, an application
request from a user who just wants to find out if she could
go get gas from either of the two gas stations near her home
could be gasStationAIsOpen ∨ gasStationBIsOpen,
which is rather simple; another application request from a
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(b) Deadline meet rates

Fig. 3: Varying Number of Tests
per Request
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Fig. 4: Varying Number of
Conjunctions per Request
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Fig. 5: Varying Number of
Concurrent Requests
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(b) Deadline meet rates

Fig. 6: Varying Request
Deadlines

disaster response team that needs to find out how to reach
their destination given three candidate routes could look
like (roadAIsGood ∧ roadBIsGood) ∨ (roadAIsGood ∧
roadCIsGood ∧ roadDIsGood) ∨ (roadEIsGood ∧
roadFIsGood), which is a bit more complex than the
previous gas station example.

Results are shown in Fig. 3. As seen, our algorithm always
achieves the lowest retrieval cost ratios with perfect/near-
perfect deadline meet rate. We can observe that as the number
of tests per request increases, the retrieval cost ratios of all
approaches decrease. This is because more tests per request
means generally more tests per conjunction (the number of
conjunctions per request is fixed in this experiment). Having
more tests included in a request increases the deadline of
the request, but then there are more chances for tests within
the same conjunction to be short-circuited by a sibling of
theirs. Therefore, the total retrieval cost for resolving a request
might not increase with the additional tests. So, we observe
an downward trend of the retrieval cost ratio and an upward
trend of deadline meet rate, as we increase the number of tests
in requests. Among the baseline methods, the rnd (random)
approach generally gives the worst results, which is expected.
The lc (least cost sources first) approach leads to the second
best retrieval cost ratio, which is understandable as minimizing
cost is its sole objective. It is interesting to see that lc also leads
to perfect deadline meet rate, considering the method itself
does not concern requests’ deadlines at all. One explanation
we can think of is that since it always picks the lowest-cost
sources, which generally also leads to small retrieval latencies,
lc can therefore retrieve more data and fast, which helps it with
request serving abilities.

Besides the number of tests, we also look at how the
number of conjunctions within a request affects data retrieval
algorithm’s behavior. This in practice could correspond to the
number of different options an application request can be satis-
fied. Taking the previous disaster-response-team-finding-routes
example, the three conjunctions in the request correspond to 3
alternative routes that can be taken (of course different routes
could possibly share common road segments among them).
We experiment with 1, 3, 5, and 7 conjunctions per request,
and show results in Fig. 4. Nothing interesting going on in
Fig. 4b for deadline meet rates, we focus our attention to the

retrieval cost ratios in Fig. 4a. Besides the obvious fact that
our algorithm achieves the best retrieval cost ratios, we do
see an interesting common trend among all approaches—the
retrieval cost ratios generally decrease with a growing number
of conjunctions per request except for when there is only one
conjunction present in a request. This makes sense because
the more conjunctions there are within a request (which has
a fixed number of tests), the more the request itself looks
like a disjunction, which means the more likely it is for a
single test’s evaluating to true to short-circuit all other tests
and completely resolve the request. When there is only one
conjunction, however, the request itself is then just, well, a
conjunction, which means a single test’s evaluating to false
would completely resolve the request, and hence the low
retrieval cost ratio.

We next look at how the number of concurrent requests
(which can be a measure of the load on the crowdsensing
system) affects performance of various methods. Results are
shown in Fig. 5. As seen, the increase in the number of
concurrent requests has a pronounced effect on (increasing)
the retrieval cost ratios and (decreasing) the deadline meet
rates on all baseline methods, which is quite expected. We
also observe that our algorithm still always achieves the lowest
retrieval cost ratio, and, unlike many of the baseline methods,
is able to maintain its perfect deadline meet rate in spite of
the increase in the request quantities.

Next we look at how different request deadline settings
affect the behaviors of our algorithm and the various baseline
methods. Different deadlines obviously express different levels
of urgency of the application requests. For example, a medical
team wanting to find ways to get to a collapse site to save
lives obviously would issue their route finding request with a
tight deadline; a family looking for the nearest under-occupied
shelter after losing their home to a hurricane probably doesn’t
need their request fulfilled with the same level of urgency.

We set a request’s deadline to be a multiple of the sum of
its sources’ individual retrieval latencies. We experiment with
multipliers 0.5, 1, 2, 4, and 8. Results are shown in Fig. 6.
First of all, none of the baseline approaches concern requests’
absolute deadline values, which is why in Fig. 6a we do not see
a clear trend of change among baseline approaches. Looking
at Fig. 6b, it’s quite clear that the multiplier setting of 0.5 and
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Fig. 7: Varying Test Success Probability
Ranges

������� 	�
���
��
��

��

��

��

��

���

�
��
��
��
��

�
��
�
�

��
��

�
�
�

������
� �!
� 
�!
���

(a) Retrieval cost ratios

������� 	�
���
��
��

��

��

��

��

���

�
��
��
��
�

�
��
�
�
��
�

	

�

������
� �!
� 
�!
���

(b) Deadline meet rates

Fig. 8: Varying Levels of Sources’ Retrieval
Costs
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Fig. 9: Varying Levels of Conjunction
Differences

1 represent quite strict deadlines—even our algorithm results
in significant deadline misses. Under a multiplier setting of
2, most approaches start to no longer struggle with avoiding
deadline misses. As deadlines become more and more relaxed,
we observe a trend of decrease in terms of the retrieval
cost ratio of our algorithm. This is because the more relaxed
requests’ deadlines are, the less likely our algorithm is forced
to include sources in each round for parallel data retrieval
just to avoid deadline misses for some requests, which might
otherwise be unnecessary and suboptimal.

As our algorithm exploits the logic relations among the
tests within requests, it would be interesting to see how
tests’ success probabilities affect the performance of our data
retrieval algorithm. These probabilities represent a measure of
how good of a prior knowledge we already have regarding the
crowdsensing environment. Intuitively, if the probabilities of
all the tests evaluating to true (or false) are around 50%,
our algorithm will make more wrong guesses when it tries
to retrieve data from sources in hoping they can help short-
circuit other sources. On the other hand, if the probabilities are
very close to 100% (or 0), indicating that a test is extremely
likely to evaluate to true (or false), then our algorithm will
be correctly picking the right sources to retrieve data from
for short-circuiting other sources more often. We experiment
with uniformly generating success probabilities for all the tests
within three different ranges, namely the quite ambiguous
(40%, 60%), the general (0, 100%), and the quite indicative
(less ambiguous) (0, 10%) ∪ (90%, 100%). Results are shown
in Fig. 7. As baseline methods do not take into consideration
these probabilities, we only look at our algorithm. As seen,
our algorithm’s retrieval cost ratio gradually improves as tests’
success probabilities become less ambiguous, coinciding with
our intuition.

One other interesting aspect to look at is the level of
retrieval cost heterogeneity among different data sources. In
other words, in a more homogeneous setting, sensors/sources
tend to be of similar types with each other, generating data
of closer natures and comparable retrieval bandwidth costs.
In a highly heterogeneous setting, however, we can imagine

sources being of drastically different natures. For example, for
a network composed of carbon monoxide sensors, cameras,
human reporters, and microphones, data generated by different
sources could have retrieval costs differing from each other
over multiple orders of magnitude. In order to capture this
difference, we experiment with two different ways of setting
sources’ retrieval costs, one being uniformly on [1, 10], and the
other 2p where p is uniformly randomly generated on [1, 10].
We include all concurrent retrieval levels for all baselines,
and use the bar-with-error representation similar to Fig. 2.
Results are shown in Fig. 8. As seen, when retrieval costs
differ vastly from sources, all approaches’ retrieval cost ratio
standard deviations increase. From looking at Fig. 8a alone,
it might seem like the single-source-per-round uqlc scheme
and lc scheme slightly outperform our algorithm in terms of
retrieval cost ratio, but it can be seen from Fig. 8b that these
two schemes lead to about 20% deadline miss rates, whereas
for our algorithm only about 2.5% requests experience deadline
misses. Even though our algorithm still gives the best perfor-
mance, we do observe that the highly heterogeneous setting
causes larger degree of deviations, compared to when sources
are less different from each other. We are currently working
on improving our algorithm to better handle crowdsensing
scenarios where data sources’ costs are substantially different
from each other.

One last interesting aspect that we look at is the similarity
between conjunctions, or how similar an application’s different
options are. Looking again at the previous route finding exam-
ple, in an urban area where roads are highly interconnected,
all alternative routes might share a lot of common road
segments among each other; whereas for a more rural setting,
the different possible routes might share few common road
segments because roads are quite sparsely connected in the
first place.

We set the number of conjunctions per query to 6 and the
number of test per query to 6 as well. With 10 concurrent
queries, we let, in each request, adjacent conjunctions differ
by 1, 2, 3, 4, or 5 tests, and examine the data retrieval al-
gorithm’s performance using the different approaches. Results
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(a) For the medical team (b) For the communication team (c) For the evacuation team

Fig. 10: Candidate Routes Map Illustrations (All candidate routes are shown, with the shortest routes highlighted.)

are shown in Fig. 9. As seen, our algorithm still outperforms
all baseline methods, achieving perfect/near-perfect deadline
meet rates, and reducing the network bandwidth cost by half
compared to the second best competing method (lc). Looking
at the trend of changes, we can see similarities to Fig. 3.
As conjunctions share less common tests with each other, the
number of different tests involved increases. We therefore see
from Fig. 9b a general trend of rising deadline meet rates for
all approaches, similar to what we have observed in Fig. 3b.
However, rather than decreasing retrieval cost ratios as seen
from Fig. 3a, we observe either roughly unchanged cost ratios
from all baseline approaches, or an ever so slightly increase
in cost ratios from our algorithm, as shown in Fig. 9a. From
the route-finding perspective, as candidate routes become more
different from each other, it becomes less likely for the bad
condition of a single road segment to rule out multiple routes.
As all baseline methods disregard the logic relations within a
request, the benefit of having more tests roughly cancels out
the damage of not being able to resolve multiple conjunctions
with a single source. For our method, which does exploit the
logic relations, the damage is likely slightly overshadowing the
benefit, and hence the increasing retrieval cost ratios.

B. An Application Scenario
Now we adopt a concrete post-disaster application sce-

nario and evaluate our algorithm’s performance as compared
to baseline methods. In particular, we assume the Urbana-
Champaign, Illinois area has just been hit by an earthquake.
The first responder team has made an initial damage report
and deployed an emergency sensor network for further damage
assessments and information passings. Various recovery teams
have just arrived nearby and would like to go to different parts
of the region to carry out their different recovery work (e.g.,
restore power-grid, search and rescue from collapsed building
sites, etc.). We consider the following particular situations that
three teams are facing:

1) The Department of History building suffered from severe
damage due to its lack of maintenance, causing quite a
few serious injuries. A medical team needs to rush send
the injured personnels to McKinley Health Center.

2) The communication team has just arrived from the Uni-
versity Airport. They are currently at the southwest corner
of the area, and would like to get to the Department of
Computer Science Siebel Center to set up an emergency
communication center.

3) The evacuation team has learnt that the University High
School has not been fully evacuated. They plan to move
the remaining kids to the South Quad open area.

One big problem is that some roads within the region
are damaged, preventing recovery teams’ vehicles to pass,
thus they need to find out fast what paths to take to get to
their respective destinations—if there is no viable paths for
any particular team, they will have to call in nearby military
helicopters for assistance. They can make guesses regarding
the damage of roads using the reports generated by the first
responder team, but to actually determine if a road is in a
reasonable condition for vehicles to pass, a picture needs to
be acquired from the camera sensor deployed along the road on
the emergency network. The network is of low bandwidth and
is shared by various teams and agencies, thus, it is desirable
that the recovery teams use as little resource as possible when
figuring out their paths.

Using Google map navigation service, each of the three
teams has determined their candidate routes according to their
respective source-destination pairs, as illustrated in Fig. 10. In
particular, below are the exact routes.1 For the medical team,
from the Department of History to McKinley Health Center:

• 6th→Penn→Lincoln, or
• Chalmers→5th→Green→Lincoln, or
• 6th→Penn→4th→Florida→Lincoln,

For the communication team, from Kirby to Siebel Center:

• Florida→Lincoln→Springfield→Goodwin, or
• Neil→Springfield→Goodwin, or
• Neil→University→Goodwin,

For the evacuation team, from High School to South Quad:

• Springfield→Lincoln→Nevada→Goodwin→Gregory, or
• Springfield→Goodwin→Gregory.

Every route consists of several road segments, and each
road is covered by a camera sensor connected to the emergency
network. A request for each team is formed, where different
conjunctions represent the different candidate routes, and each
test within a single conjunction corresponds to a single road
along the path being in OK condition for vehicles to pass.
Due to the urgent nature of the post-disaster situation, we
set the request deadline level to 1. The emergency network’s
topology is generated randomly, from which each camera
sensor’s individual retrieval latency is estimated and fed to
the data retrieval engine. All retrievals are then handled by
a network simulator running using the topology. Of all the
baseline approaches, lc (lowest cost source first) achieves the
best performance, so we compare our algorithm just to the
lc approach. For the actual road conditions and exact camera

1Different font-faces indicate: non-italic—road is good; italic—road is
down; bold—retrieved by greedy; underlined—retrieved by lc.
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data retrieval details, please refer to Footnote 1. The retrieval
cost ratio and deadline meet rate results are shown in Tab. II.
The information of which approaches choose which roads’
conditions to retrieve data for is also illustrated in Fig. 11.
As seen, though no deadline misses are observed from either
strategy, our data retrieval algorithm is able to finish all route-
finding tasks using less than half of the number of road-side
cameras that the competing lc approach uses, consuming only
half the retrieval bandwidth cost.

greedy lc
Number of Road Conditions Retrieved 4 9

Retrieval Cost Ratio 28.95% 56.58%
Deadline Meet Rate 100% 100%

TABLE II: Multiple-Route-Finding Application Result
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Fig. 11: Multiple-Route-Finding: All candidate routes of all teams
are highlighted, different road segments whose conditions are

retrieved by either approach (greedy and lc) are marked
accordingly.

VI. CONCLUSIONS

In this paper we develop data retrieval algorithms for
crowd-sensing applications under resource constraints. Our
algorithms reduce the underlying network bandwidth con-
sumption by exploiting logical dependencies among data items,
while offering a comparable level of service to application
requests. The algorithms consider multiple concurrent queries
and accommodate retrieval latency constraints. Simulation
results show that our algorithms outperform several baselines
by significant margins, while maintaining the level of service
perceived by applications in the presence of resource con-
straints.
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