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Abstract— Driven by the development of machine learning
and the development of wireless techniques, lots of research
efforts have been spent on the human activity recognition (HAR).
Although various deep learning algorithms can achieve high
accuracy for recognizing human activities, existing works lack of
a theoretical performance upper bound which is the best accuracy
that is only limited by the influencing factors in wireless networks
such as indoor physical environments and settings of wireless
sensing devices regardless of any HAR algorithm. Without the un-
derstanding of performance upper bound, mistakenly configuring
the influencing factors can reduce the HAR accuracy drastically
no matter what deep learning algorithms are utilized. In this
paper, we propose the HAR performance upper bound which is
the minimum classification error probability that doesn’t depend
on any HAR algorithms and can be considered as a function of
influencing factors in wireless sensing networks for CSI based
human activity recognition. Since the performance upper bound
can capture the impacts of influencing factors on HAR accuracy,
we further analyze the influences of those factors with varying
situations such as through the wall HAR and different human
activities by MATLAB simulations.

I. INTRODUCTION
In recent years, the development of wireless infrastructure

has enabled various indoor human sensing techniques. Human
respiration sensing is implemented with commercial WiFi
device according to the Fresnel diffraction model [1]. Indoor
human movement tracking is achieved by MUSIC doppler shift
algorithm in [2] where the differences in intervals of adjacent
measurements are considered to be introduced by human
movements. Among all the indoor sensing techniques, channel
state information (CSI) based indoor sensing techniques are
commonly applied such as crowd counting [3], human activity
recognition [4] and indoor localization [5] since CSI can be
extracted by commercial WiFi devices conveniently without
the burden and limitations of device-based approaches. The
capability of CSI based human activity recognition technique
is even able to classify the minor movements of human fingers
such as keystroke keyboard recognition [6]. Machine learning
based wireless sensing techniques are also utilized for human
activity recognition [7] and person identification [8] with high
accuracy.

Deep learning based CSI wireless sensing techniques seem
to have an unlimited potential. However, there are still two
major problems lacking of solutions. First, there is no study
about the best accuracy which is the performance upper bound
only limited by the influencing factors in wireless networks.
The factors such as the physical environments, types of hu-
man activities, the settings and artifacts of wireless sensing
devices can restrict the accuracy of wireless based human
activities recognition. If the HAR performance upper bound
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is restricted to a low accuracy, no matter what algorithms are
applied for improving the accuracy cannot exceed that upper
bound. Only configuring the influencing factors in wireless
networks can improve the HAR performance. However, as
the second problem, the impacts of influencing factors on
HAR performance of the existing wireless sensing system
cannot be predicted. The impacts of influencing factors are
always evaluated by experiments, which makes the adjustment
of wireless sensing system time consuming and ineffective.
Therefore, it is important to figure out the upper bound of
human activity recognition and the impacts of the influencing
factors on the performance of human activity recognition.

In this paper, we propose a CSI based human activity
recognition upper bound that doesn’t depend on any deep
learning algorithms and can be considered as an expression
of influencing factors in wireless networks to characterize
the impacts of influencing factors. To relate the upper bound
to influencing factors, firstly, we propose a wireless sensing
model in Section II. The wireless sensing model describes
the entire indoor wireless sensing procedures with commercial
WiFi routers. The CSI measurements taken by the WiFi routers
can be considered as the combination of static part caused by
indoor environment and the changing part caused by the motion
of human body. CSI measurements are arranged as a high
dimensional matrix according to the time, receivers, sub-carrier
frequencies and antennas. Second, with the aforementioned
CSI sensing model, we derived the minimum error probability
which is upper bound for human activities classification. To
avoid the specific deep learning algorithm and achieve the best
classification accuracy, we utilize the ”best point” assumption
which is a CSI measurement that has the minimum influence
from the complex normal noise. The best point has the random
location among the different collected data sets due to the
randomness of noise. Only the ”best point” with minimum
influences of noise is used to classify the human activities
without the negative influences of other ”noisy” CSI measure-
ments. Obviously, always knowing the CSI measurement with
least noise influence is impractical. But that is the reason that
our proposed theoretical upper bound can achieve the highest
accuracy compared with any existing classification algorithm.
Finally, we establish a MATLAB simulation environment with
specified activities to analyze the influences of different influ-
encing factors in wireless sensing network. We find out that the
most efficient way to improve the human activity recognition
is adding more distributed receivers.

The rest of the paper is organized as following. First, in
Section II, the wireless sensing model is presented. We provide
the real channel between a transmitting antenna and a receiving
antenna and describe the impact of WiFi routers when taking
CSI measurements. Then in Section III, we derive the minimum
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error probability for human activity recognition performance.
In Section IV, we use the simulation to analyze the influencing
factors’ impacts on the human activity recognition performance
with various situations. Finally, Section V concludes this paper.

II. WIRELESS SENSING MODEL

For the indoor wireless sensing, the channel state information
is contributed by two main components. The first part is
introduced by the signals that are reflected off the obstacles
in the indoor environment such as walls and furniture. In
a certain indoor environment without human activities, the
channel between the receiver and transmitter can be considered
as constant. Different indoor environments introduce various
constant CSI values. The second main component is caused
by the human activities, which is dynamic due to the human
motions. The transmitted signals arrive at the receiver via
several propagation paths. For a certain sub-carrier frequency
fm, the wireless channel between a transmitter receiver pair’s
(TRP) transmitting antenna and a receiving antenna can be
described as the summation of different signal propagation
paths [9]:

h( fm, t) =
∑

le∈LEnv

αle ( fm, t)e− j2π fmτle+

∑
le∈LS ca

αls ( fm, t)e− j2π fm(1+
Vpath (t)

c )τls (t)
(1)

where LEnv, LS ca are total numbers of signal propagation paths
caused by environment and human movements respectively.
le, ls denote the paths caused by indoor environment and human
activities. Vpath denotes the speed of path length change caused
by human motion. c is the speed of light in free space. αle , αls

denote the attenuation coefficients of indoor environment obsta-
cles and human body respectively. In addition, those attenuation
coefficients are affected by the frequencies and time according
to the Mie scattering. The signals that encounter clothes of
human actually are scattered towards different direction instead
of reflection. At different time, signals are scattered at different
positions of human body, which also influence the attenuation
coefficients. τle , τls (t) are time delays for environment paths
and human movement paths. Time delays of environment paths
are constant since the path length of environment paths are
constant. On the contrary, lengths of paths that are caused by
human activities vary with human movement, which leads to
changing time delay τls (t) as a function of time t. The received
signal can be described as following:

y(t) = e− jψT x−Rxth(t) ⊗ x(t) + η (2)

where e− jψT x−Rxt denotes the phase shift caused by center fre-
quency offset (CFO) ψT x−Rx. CFO is the mismatch between
the carrier frequency of transmitter and the carrier frequency
of receiver. For different transmitter receiver pairs, the CFO
values are different. η denotes the noise and is considered to
have Complex Normal (CN) distribution. x(t) is the transmitted
signal. The transmitted signal is convolved with the channel in
this transmitter receiver pair. Theoretically, the CSI values can
be calculated as following equation:

ĥ( fm, t) = IFFT [
Y( f )
X( f )

] (3)

where Y( f ), X( f ) denote the transmitted signal and received
signal after fourier transformation. IFFT denotes the inverse
fast fourier transformation.

Once the wireless sensing system finishes taking CSI mea-
surements, how to arrange the collected data is the next
important procedure. CSI measurements are influenced by the
sampling time, positions of receivers, sub-carrier frequency
and different antennas. We propose a high dimensional data
structure. Firstly, CSI measurements are arranged by the order
of sampled time:

R = [Rt1 ,Rt2 , ...,Rtn] (4)
where R denotes the collected data structure, Rtn denotes the
measurements taken at time tn. In each Rtn , CSI measurements
are separated according to the different receivers.

Rtn = [Rx1(n),Rx2(n), ...,RxNR (n)]T (5)
where RxNr (n) denotes the measurements taken at Nr − th
receiver. At each receiver, the measurements are arranged by
the sub-carrier frequencies and different antennas:

Rx(n) =


CS I1

f1
(n) CS I2

f1
(n) ... CS II

f1
(n)

CS I1
f2

(n) CS I2
f2

(n) ... CS II
f2

(n)
... ... ...

CS I1
fM

(n) CS I2
fM

(n) ... CS II
fM

(n)

 (6)

where the CS Ii
fm

(n) denotes the complex CSI value with sub-
carrier frequency fm taken at i− th antenna. The final collected
data structure is a high dimensional matrix R[N,NR,M, I],
where N denotes number of sampling time instant, NR denotes
the number of receiver, M denotes the number of sub-carrier
frequency and I denotes the number of antennas in a receiver.
To simplify the expression of collected data structure, we use k
to represent index of CSI measurements and the total number
of CSI measurements K = N · NR · M · I.

III. MINIMUM CLASSIFICATION ERROR PROBABILITY

In this section, we theoretically derived the minimum error
probability for binary human activity recognition in wireless
networks. This error probability expression can characterize
the impacts of the influencing factors such as human activities,
indoor environment and wireless sensing networks deployment
since it can capture the key effects caused by the influencing
factors on human activity recognition without the influences of
different HAR deep learning algorithms.

It is noteworthy that the minimum error probability is not
the achievable value for the human activities classification.
Furthermore, performance upper bound cannot be based on
any specific classification algorithm such as machine learning
algorithms. The classification performance upper bound should
be derived theoretically but not experimentally. Therefore,
we propose an important assumption of ”Best Point”. Before
explaining the assumption of ”Best Point”, there are several
terms need to explain:
• Ground truth data structure: The ground truth data struc-

ture actually is the collected data structure R, however
every CSI value in ground truth data structure is the
measurement without complex normal noise. An important
assumption is that we know all the parameters in the
wireless sensing networks such as CFO, time delays
and Vpath. And we set transmitted signal as unit pulse
δ(t). Therefore, the ground truth data set exactly contains
CSI values caused by human activity. For binary human
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activity classification, G1(k),G2(k) denote the k − th CSI
value in ground truth data structure of activity 1 and
activity 2. Ground truth pair distance denotes the euclidean
distance between G1(k) and G2(k) in complex plane, which
can be described as:

√
G1(k) −G2(k) = |∆Gk |

• Testing data set: Testing data set contains the CSI mea-
surements that are caused by a human activity and com-
plex normal noise. The CSI measurements are complex
values. We try to fully utilize the properties of CSI
measurements instead of only using amplitude of CSI.
CSI values in testing data set are arranged as the collected
data structure. The best point among the testing data set
is denoted as T (best)

• Best Point: The best point is the CSI measurement in
testing data set that has the minimum ratio of noise
amplitude Z to the ground truth pair distance of the best
point |∆Gbest |.

In our defined model above, the classification error only
comes from the randomness of addictive complex normal noise.
To seek for the minimum classification error, we also propose
an assumption that we always know which CSI value among
the testing data set is the best point. The ”Best Point” is not a
fixed or pre-selected point among the collected data structure,
since there is not a position in the testing data set always
having the minimum noise to distance ratio. The position of
the Best Point is random when wireless sensing networks take
CSI measurements for the same human activity several times.
Therefore the assumption that we always know the Best Point
is impossible in practical. Compared with using the CSI value
with the minimum amplitude of noise, using the CSI value with
the minimum noise to distance ratio has a better performance.
The reason is that a CSI value in testing data set can have a
minimum noise amplitude and also the minimum ground truth
pair distance, which is still not the best choice for classification.

By utilizing that Best Point assumption, we are always using
the most accurate CSI value to classify the human activity and
this assumption avoids the negative influence of other more
”noisy” CSI measurements. Therefore, it is efficient to utilize
the euclidean distance in complex plane to classify human
activities with ”Best Point”. It is emphasized that we always
know the ground truth data of human activity 1 G1 and activity
2 G2 for a certain pair of human activities,.

The complex normal noise can be described as η = a + jb,
where a, b ∼ N(0, σ2). The amplitude Z =

√
a2 + b2 of complex

normal noise has the Rayleigh distribution:

f (z, σ) =
z
σ2 e−z2/2σ2

(7)

The minimum noise amplitude to ground truth pair distance
ratio is defined as random variable C as:

C = argmink(
Zk

|G1(k) −G2(k)| ) (8)

The size of the test data set is K = N · M · I · R. For
the simplicity of expression, we utilize index k to denote the
position of CSI measurement in ground truth and testing data
set. To obtain the probability density function of C, we define
random variable Z̃k as the ratio of noise amplitude to ground
truth pair distance for k − th CSI measurement in testing data
set.

Z̃k = Zk/|∆Gk | (9)

where Zk is the noise amplitude of k − th CSI measurement in
testing data set. Z̃1, Z̃2, ...Z̃k are independent random variables
that have Rayleigh distribution with different variance and
mean. To derive the probability density function of C, we first
need to calculate the cumulative probability distribution of C,
which is denoted as FC(c):

FC(c) = P(min(Z̃1, Z̃2, ...Z̃K) ≤ c)
= 1 − P(Z̃1 > c, Z̃2 > c, ..., Z̃K > c)

= 1 −
K∏
k

[1 − FZ̃k
(c)]

(10)

After calculating the cumulative density function, the prob-
ability density function fC(c) can be calculated as a derivative
of FC(c):

fC(c) = [1 −
K∏
k

[1 − FZ̃k
(c)]]′

=

K∑
k=1

[ fZ̃k
(c)

K̂∏
k̂

(1 − FZ̃k̂
(c))]

(11)

where k̂ , k and K̂ = K − 1. The probability density
function of fZ̃k

(zk) and cumulative density function FZ̃k
(zk) can

be calculated as a transformation of PDF and CDF of Rayleigh
distribution respectively:

fZ̃k
(z̃k) = |∆Gk | fZ(|∆Gk | · z̃k) =

∥∆Gk∥2 · z̃k

σ2 e−
(|∆Gk |·z̃k )2

2σ2 (12)

FZ̃k
(z̃k) = FZ(|∆Gk | · z̃k) = 1 − e−(|∆Gk |·z̃k)2/2σ2

(13)

Although we have derived the PDF of C which is minimum
ratio of noise amplitude to ground truth euclidean distance, the
direction of the noise amplitude is still unknown. The complex
normal noise can be described as η = z · e jϑ. The term e jϑ

is the unit circle in the complex plane. The direction ϑ of
noise amplitude is the included angle between amplitude Z and
positive real axis, which is calculated anti-clockwise. ϑ can be
any point from 0 to 2π. Then, we calculate the PDF of random
variable ϑ that describes direction of amplitude of complex
normal noise in complex plane. We start from calculating the
joint PDF fX,Y (X,Y) of complex normal noise as following
equations:

fX,Y (x, y) = fX(x) · fY (y)

=
1

√
2πσ2

e
−x2

2σ2 · 1
√

2πσ2
e
−y2

2σ2

=
1

2πσ2 e
−(x2+y2)

2σ2

(14)

where x, y denote coordinates in real and imaginary axis
respectively.

In the polar coordinates, r = h1(x, y) =
√

x2 + y2, and ϑ =
h2(x, y) = tan−1( y

x ). On the contrary, x = g1(r, ϑ) = rcosϑ and
y = g2(r, ϑ) = rsinϑ. By calculating the jacobian determinant:

J(x, y) =

∣∣∣∣∣∣∣
∂h1(x,y)
∂x

∂h1(x,y)
∂y

∂h2(x,y)
∂x

∂h2(x,y)
∂y

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

∣∣∣∣∣∣∣ = 1
r

(15)

The joint PDF fR,ϑ(r, ϑ) can be calculated using joint PDF of
random variables X,Y:
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(a) φ ∈ [0, 0.5π] ∪ [1.5π, 2π] (b) φ ∈ [0.5π, 1.5π]
Fig. 1: Potential relative positions of G1(best) and G2(best)

fR,ϑ(r, ϑ) =
fX,Y (g1(r, ϑ), g2(r, ϑ))

|J(X,Y)| =
1

2π
· r
σ2 e

−r2

2σ2 (16)

where joint PDF fR,ϑ(r, ϑ) = fR(r) fϑ(ϑ). Radius r =
√

x2 + y2 is
actually the amplitude of complex normal noise Z. As shown in
equations above, r has Rayleigh distribution. Then PDF fϑ(ϑ) =
1

2π . It is noteworthy that the complex normal noise is defined
as circularly symmetric complex normal, which means that the
distribution of noise has zero mean and zero relation matrix.
Then the complex random variable η = a + jb has the same
distribution with ηe jβ for all real β.

To classify the best point T (best) in the testing data set, we
compare the euclidean distances from T (best) to its correspond-
ing ground truth values G1(best) and G2(best). We assign the
testing data to the human activity that has a shorter distance
in complex plane. As shown in Fig. 1 we assume that the
T (best) belongs to the G1(best). However, due to the influence
of complex normal noise, T (best) can be any position on the
circle that has the center of G1(best) and the radius of C|∆Gbest |.
The relative positions of G1(best) and G2(best) are arbitrary.
To simplify the calculation, we define the included angle φ
between the line T (best)G1(best) and line T (best)G2(best).
And the included angle φ is calculated anti-clockwise so that
the range of φ is [0, 2π]. Then, we actually use cėφ to represent
the complex normal noise. As a matter of fact, the included
angle φ is not equal to the angle ϑ that describes the angle
between direction of noise and real axis. Due to the circularly
symmetric, the distribution of z·eϑ is the same with distribution
of z · eφ, which means that φ also has the uniform distribution
on [0, 2π].

Then, the error comes form the situation that the euclidean
distance from T (best) to G2(best) is shorter than the euclidean
distance from T (best) to G1(best). By using the cosine theorem,
error probability can be calculated as following equations when
φ ∈ [0, 0.5π] ∪ [1.5π, 2π] as shown in Fig.1 (a):

P(Error) = P(∥Tbest −G1−best∥2F ≥ ∥Tbest −G2−best∥2F)
= P([C · |∆Gbest |]2 ≥ [C · |∆Gbest |]2 + |∆Gbest |2−

2C|∆Gbest |2cosφ)
= P(C · cosφ ≥ 0.5)

(17)

When φ ∈ [0.5π, 1.5π] as shown in Fig.1 (b), the error
probability can be calculated as following equations:

P(Error) = P(∥Tbest −G1−best∥2F ≥ ∥Tbest −G2−best∥2F)
= P(C · cos(π − φ) ≥ 0.5)

(18)

where C, φ are independent random variables. To calculate
the error probability, let us define random variable S 1 = cosφ.

To calculate the PDF of S 1 fS (s), we need to find the range
of As1 := {φ : cosφ ≤ s1}, We need to take inverse cosine on
both sides and take the monotony of cosφ in to consideration.
For the range φ ∈ [0, π], the cosφ is monotonically decreasing.
For the range φ ∈ [π, 2π], cosφ is monotonically increasing.
After taking inverse cosine, the inequality can be derived as
following:

cos−1s1 ≤ φ ≤ 0.5π; i fφ ∈ [0, 0.5π]
1.5π ≤ φ ≤ 2π − cos−1s1; i fφ ∈ [1.5π, 2π]

(19)

To calculate the probability density function of s1, we start
from calculating the cumulative probability density first:

FS 1 (s1) = P(S 1 ≤ s1) = P(cosφ ≤ s1)
= Fφ(2π − cos−1 s1) − Fφ(1.5π) + Fφ(0.5π) − Fφ(cos−1 s1)

(20)

Then, we take derivatives of CDF FS 1 (s1)

fS 1 (s1) =F′φ(2π − cos−1 s1) − F′φ(cos−1 s1) − fφ(1.5π) + fφ(0.5π)

=
1
π

(
1√

1 − s2
1

) (21)

For the second situation where the classification error occurs,
we define S 2 = cos(π − φ). In order to find out the PDF of
S 2, we need to find the range of As2 := {φ : cos(π − φ) ≤
s2}. Similarly, we have to consider monotone increasing and
monotone decreasing when taking inverse cosine. The range
of φ is described as following:

π + cos−1s2 ≤ φ ≤ 1.5π; i fφ ∈ [π, 1.5π]
0.5π ≤ φ ≤ π − cos−1s2; i fφ ∈ [0.5π, π]

(22)

the cumulative density function FS 2 (s2) can be calculated as
following:

FS 2 (s2) = P(S 2 ≤ s2) = P(cos(π − φ) ≤ s2)
= Fφ(π − cos−1 s2) + Fφ(1.5π) − Fφ(0.5π) − Fφ(π + cos−1 s2)

(23)

Then we take derivative of CDF FS 2 (s2) to calculate the PDF
fS 2 (s2):

fS 2 (s2) =F′φ(π − cos−1 s2) + F′φ(1.5π) − F′φ(0.5π) − F′φ(π + cos−1 s2)

=
1
π

(
1√

1 − s2
2

)

(24)

After calculating the PDF of cos(π−φ) and the PDF of cosφ,
we found that they have the same distribution. No matter which
situation the classification error occurs as shown in Fig.1 (a) or
Fig.1 (b), the joint PDF FC,φ(c, φ) does not change. So we can
safely calculate the error probability with one situation where
we define random variable S = cosφ. To calculate the error
probability, let W = g(c, s) = C · S and we define auxiliary
random variable Q = h(c, s) = S . The universal classification
error boundary is W ≥ 0.5. We need to calculate PDF of W by
using jacobian determinant:

J(c, s) =

∣∣∣∣∣∣ ∂g(c,s)
∂c

∂g(c,s)
∂s

∂h(c,s)
∂c

∂h(c,s)
∂s

∣∣∣∣∣∣ =
∣∣∣∣∣ s c

0 1

∣∣∣∣∣ = s (25)

The joint PDF fW,Q(w, q) can be derived from the joint PDF
fC,S (c, s) by utilizing the jacobian determinant:

fW,Q(w, q) =
fC,S (w/q, q)
|J(c, s)| =

fC,S (w/q, q)
|q| (26)

To obtain the PDF of W, we integrate r.v Q marginally as
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(a) fW (w) versus sampling rate (b) fW (w) versus average |∆G|
Fig. 2: PDF of W with different parameters

following equations:

fW (w) =
∫ +∞

−∞
fW,S (w, q)dq

=

∫ +∞

−∞

1
q

fC,S (
w
q
, q)dq

=

∫ 1

0

1
q

K∑
k=1

[ fZ̃k
(
w
q

)
K̂∏
k̂

(1 − FZ̃k̂
(
w
q

))]
1
π

(
1√

1 − q2
)dq

(27)

The error probability of human activity recognition can be
calculated as following equations:

P(Error) =
∫ ∞

1
2

fW (w)dw

=

∫ ∞

1
2

∫ +1

0

1
q

K∑
k=1

[ fZ̃k
(
w
q

)
K̂∏
k̂

(1 − FZ̃k̂
(
w
q

))]
1
π

(
1√

1 − q2
)dqdw

(28)

IV. NUMERICAL RESULTS AND ANALYSIS

In this section, we try to discuss different classification
performances caused by the various input factors such as dif-
ferent activities, signal to noise ratio, CSI sampling rate, carrier
frequency, number of receivers and through the wall sensing
situation. The classification is performed by our proposed
minimum error probability algorithm. The influencing factors
in wireless network which reduce the minimum classification
error probability could also improve the classification accuracy
in reality for human activity recognition.

Before embarking the analysis of influences of different
factors in wireless sensing networks, we first introduce our
MATLAB simulation setup. The binary human activity classifi-
cation is performed by our proposed minimum error probability
algorithm. Since the common activities such as walking and
sitting down have been already classified in many previous
papers and our proposed minimum error probability algorithm
can achieve extremely high accuracy when applied for clas-
sifying those activities which are not similar to each other,
we try to classify some activities which are very similar. The
first activity is defined as stretching arm in front of the body
and sliding one arm downward vertically as shown in Fig.3
(a). The second activity is similarly sliding the arm downward
but with an different angle as shown in the Fig.3 (b). In our
simulation, the human body is defined as a combination of 14
key points [10], which corresponds to 14 paths according to
equation (1). There are 11 static paths and 3 changing paths
which are caused by motions of hand, forearm and upper arm
in our defined activity. Attenuation coefficients are calculated
by the mie scattering equation, since we consider the effect
that Wi-Fi signals encounter human body as scattering rather

(a) Side view of defined activity (b) Difference angle α
Fig. 3: Defined human activities

than reflection. By mie scattering equation, the attenuation
coefficients depend on signal’s frequency, scattering angle and
refractive index of human skin which is 1.41. The size of
room is defined as 5 meters width, 4 meters length and 3
meters height. The two defined activities happen in the same
position. One transmitter and multiple receivers are deployed
in the simulation. For each transmitter receiver pair, it contains
7 static paths which include 6 paths caused by wall reflection
and 1 line-of-sight path. The strength of signal reflected off the
wall is calculated by Fresnel’s equation where the real parts
of refractive index of concrete wall and air are 2.55 and 1
respectively.

We first calculate the minimum error probability versus
different signal to noise ratio (SNR) when the CSI sampling
rate are 500Samples/second, 1000S/s and 1500S/s respectively
with one transmitter and one receiver. As shown in Fig. 4
(a), minimum error probability of 500S/s is less than 90%
with low SNR, which means that whatever HAR deep learning
algorithms are applied cannot exceed that performance upper
bound. But the increase of CSI sampling rate can improve
the HAR performance even with a low SNR. The decrease of
noise power would reduce the classification error probability. In
the meantime, the increase of CSI sampling rate can improve
the classification performance according to our derivation in
section III. The reason is that the minimum noise to distance
ratio C have more probability on smaller values when we
have more CSI samples, which makes the random variable
W have same trend as shown in Fig.2 (a). The increase of
CSI sampling rate is limited by the receiver’s capability which
is about 2500S/s. In Fig. 4 (a), the increase of 500S/s CSI
sampling rate can reduce the classification error probability by
approximately multiplying 0.1.

Secondly, we adjust difference angle α between two activ-
ities. As shown in Fig. 4 (b), the classification probability
decreases when the difference angle increases. In the other
words, human activities are easier to classify when they are
more different from each other. According to the equation (17),
only the PDF of the minimum ratio C varies with the differ-
ent factors in wireless sensing networks. Then it influences
W and minimum error probability of binary human activity
recognition. The euclidean distance |∆G| between ground truth
data set of human activity 1 and activity 2 is what directly
determines the minimum error probability. Since the |∆Gk | has
many different elements, we calculate the average value of all
ground truth pairs’ distances to represent the |∆G| status in
different situations. When difference angle α gets larger, the
average value of |∆G| become larger. Then the random variable
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(a) Increasing the CSI sampling rate (b) Enlarge the difference angle (c) Adding more distributed receivers
Fig. 4: Transmitter, receivers and human are located in the same room

Fig. 5: Through the wall human activity classification

W has more probability on the smaller value as shown in Fig.2
(b), which leads to the smaller error probability.

The classification performances of different center frequen-
cies are influenced by the phase difference between G1(k) and
G2(k) in complex plane. When the phase difference is π, the
|∆Gk | has the biggest value. When phase difference is 0, |∆Gk |
has the minimum value. According to the equation (1), there are
environment time delay τle , doppler frequency shift (1+Vpath/c)
and the human movements time delay τls influencing the phase
of CSI besides the center frequency fm. Since the phase of CSI
value has the periodicity of 2π, the higher center frequency
may amplify the phase difference between G1 and G2 over
multiple 2π and lead to the smaller phase difference compared
with lower center frequency. To conclude, different carrier
frequencies don’t make activities more distinguishable.

Then, the influences of number of receivers and the positions
of receivers are shown in Fig. 4 (c). When 2 receivers are used,
they are located at both sides of human but not the same side.
When 3 receivers are used, the position of human is at the
center of the square whose four points are 3 receivers and
1 transmitters. By adding one more distributed receiver, the
error probability decreases by approximately multiplying 0.01.
The reason is that the CSI measurements taken by one TRP
cannot fully describe the human activity. With more TRPs,
doppler frequency shifts and time delays in CSI measurements
are able to make the human activities more distinguishable,
which means the average euclidean distance |∆G| gets larger.

Lastly, we simulate the through the wall situation where
the transmitter and receivers are deployed behind walls. The
classification performances are shown in Fig. 5. In through
the wall situation, the classification performances are worse
than the performances of indoor environment. The decreases
of classification performances are due to the absence of paths

that are directly reflected off the human body. It is noteworthy
that the classification results of 60 GHz are worse than the
2.4GHz due to the high loss when the signal propagates
through the wall. Adding 1 more distributed receiver could still
approximately decrease the error probability by multiplying
0.01. 1500S/s CSI samples decrease the error probability by
approximately multiplying 0.15 compared with 1000S/s in the
situation of 2 distributed receivers. To summarize, adding more
distributed receivers is the most efficient way to improve the
human activity recognition for both indoor and through the wall
situations. The CSI sampling rate can be increased up to about
2500S/s, but the number of receivers are not limited.

V. CONCLUSION
In this paper, we made three key contributions. First, we

proposed a sensing model to describe the procedures of CSI
based indoor human activity recognition, which includes the
impact of environment, influence of human activity and the
impact of wireless infrastructures. Second, we derived the
human activity classification performance upper bound as the
function of all influencing factors in wireless sensing networks.
Lastly, we analyzed the numerical results that are obtained from
simulation and figured out the influences of factors in wireless
networks.

References
[1] Fusang Zhang et al, ”From Fresnel Diffraction Model to Fine-grained

Human Respiration Sensing with Commodity Wi-Fi Devices,” Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, v.2 n.1, p.1-23, March 2018 [doi 10.1145/3191785]

[2] Xiang Li et al ”IndoTrack: Device-Free Indoor Human Tracking with
Commodity Wi-Fi,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, v.1 n.3, p.1-22, September 2017
[doi 10.1145/3130940]

[3] W. Xi et al, ”Electronic frog eye: Counting crowd using WiFi,” in 2014.
DOI: 10.1109/INFOCOM.2014.6847958.

[4] W. Wang et al, ”Device-Free Human Activity Recognition Using Com-
mercial WiFi Devices,” IEEE Journal on Selected Areas in Communica-
tions, vol. 35, (5), pp. 1118-1131, 2017.

[5] M. Kotaru et al, ”SpotFi: Decimeter Level Localization Using WiFi,”
ACM SIGCOMM Computer Communication Review, vol. 45, (5), pp.
269-282, 2015. DOI: 10.1145/2829988.2787487.

[6] K. Ali et al, ”Recognizing Keystrokes Using WiFi Devices,” IEEE Journal
on Selected Areas in Communications, vol. 35, (5), pp. 1175-1190, 2017.

[7] Jiang, Wenjun et al, ”Towards Environment Independent Device Free
Human Activity Recognition,” 289-304. 10.1145/3241539.3241548.

[8] Y. Zeng, P. H. Pathak and P. Mohapatra, ”WiWho: WiFi-
based person identification in smart spaces,” in 2016. DOI:
10.1109/IPSN.2016.7460727.

[9] K. J. R. Liu , Ahmed K. Sadek , Weifeng Su , Andres Kwasinski,
”Cooperative Communications and Networking”, Cambridge University
Press, New York, NY, 2009

[10] Mingmin Zhao et al, 2018, ”RF-based 3D skeletons,” In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’18). ACM, New York, NY, USA, 267-281.
DOI: https://doi.org/10.1145/3230543.3230579

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 27,2020 at 03:18:17 UTC from IEEE Xplore.  Restrictions apply. 


