
Centaur: Dynamic Message Dissemination over Online Social Networks
Shen Li ∗, Lu Su†, Yerzhan Suleimenov∗, Hengchang Liu‡, Tarek Abdelzaher∗, Guihai Chen§∗ University of Illinois at Urbana-Champaign, USA 61801 † State University of New York at Buffalo, USA 14260

‡ University of Science and Technology of China, China 215123 § Shanghai Jiaotong University, China 200240
{shenli3, suleime1, zaher}@illinois.edu, lusu@baffulo.edu, hcliu@ustc.edu.cn, gchen@cs.sjtu.edu.cn

Abstract—We present the design, implementation, and eval-
uation of Centaur, an application-level user-assisted message
dissemination solution for Online Social Networks (OSN). Char-
acteristics of OSNs make their message dissemination distinct
from scenarios like multicast streaming and P2P file sharing.
First, updates issued by each user are sporadic and the “on-
line” follower set is highly dynamic. Hence, it is unnecessarily
expensive to maintain always-alive multicast topologies. Second,
the key advantage of OSNs over traditional media is realtime
update, which would be greatly shadowed if it takes long to
construct well-shaped dissemination structures. Therefore, in
contrast to the multitude of prior multicast solutions, Centaur
constructs location-aware dissemination trees locally for each
incoming message. We implement a prototype with Cirrus and
evaluate it with Twitter data. Experiment results show that
Centaur achieves 98% delivery ratio and few seconds of delay
with only around one tenth server traffic compared to centralized
solutions used in many current OSNs.

Index Terms—online social networks; message dissemination;
approximate algorithms; data centers; fault tolerance.

I. INTRODUCTION

Online Social Networks (OSNs) connect people by deliv-
ering one user’s updates to all of her followers and friends.
With this basic service model, different application scenarios
have been proposed, ranging from capturing the trends of
the world to detecting earthquakes [1, 2]. With the growth of
OSN population, it becomes increasingly difficult to maintain
the message delivering service with low latency and high
reliability [3]. For example, Lady Gaga, a popular and active
user on Twitter, has more than 41 million followers on Twitter.
Even if only 1% of them are online, each of her new tweets
would still need to be delivered to hundreds of thousands of
online users in realtime [4]. Lady Gaga is only one user.
According to the data crawled from Twitter, aggregately,
servers need to send out more than 700 thousand messages
every second on average, consuming huge amount of network
bandwidth. To mitigate this problem, we propose to amortize
the communication overhead to a large number of online users
using server-constructed per-message dissemination trees.

Three OSN characteristics distinguish its message dissemi-
nation from earlier systems, such as multicast video streaming
and P2P file sharing. First, most users spend only a very short
period of time on OSNs each day. For example, statistics
show that, on average, each user spends about 405 minutes
on Facebook every month [4]. This behavior results in a
highly dynamic online user set, where one user is considered
“online” if she is using the OSN software, or browsing the
OSN web page. Therefore, user “sessions” are more fleeting
than typical media multicast. Second, updates issued by any
individual user are very sporadic. For instance, at the time
of writing, Lady Gaga has posted around 2700 tweets since
she registered in March 2008. On average, she tweets less
than twice per day. Each tweet is a much shorter update
than a typical file or video download. Thus, it would be

unnecessarily expensive to dynamically maintain an always-
alive dissemination structure over the online receiver set.
Third, the key advantage of OSNs over traditional media is
realtime update, which would be undermined if it takes a long
time to converge on a well-shaped dissemination structure.
(More comparisons are discussed in Section II.) Accordingly,
the contribution of this paper lies in efficient server-side
construction of per-message dissemination trees.

Server-side construction of per-message tree makes sense
for several reasons. Given the dynamic and sporadic fea-
tures of OSN users, a user is not likely to receive multiple
updates from the same followee within one online session.
Therefore, different messages are expected to be delivered to
very different online receiver sets. In this case, every update
calls for a new dissemination tree. As OSN servers already
have global knowledge of every online user, and are always
the source of message dissemination, they are naturally the
right entities to carry out the tree construction algorithm.
In seeking practicality, the dissemination tree construction
algorithm needs to address the following four challenges:

• Minimize the message delivery latency: Realtime updat-
ing, as a key advantage of OSNs over traditional media,
has to be considered and maintained when constructing
the dissemination tree.

• Bound the overhead on user side: The number of children
of a node in the dissemination tree indicates the number
of message copies the node needs to send out. This
number should be small enough, so that the cost of
assisting message dissemination is negligible for users.

• Achieve high message delivery rate: User nodes are
unreliable. They may fail (e.g., crash or leave) at any
point in time, resulting in message loss to all descendants
in the dissemination tree. Thus, the solution needs to deal
with failures properly and achieve high delivery ratio.

• Reduce the overhead on the server side: Given that
popular OSNs own a huge user base [4] and receive a
large number of updates every second [5], the algorithm
has to be computationally efficient to allow the server to
compute one new tree for each new update.

Centaur addresses all four challenges by actively pushing
updates to users and carefully designing a server-side per-
message dissemination tree construction algorithm, which we
call Randomized Location Aware Message Dissemination
algorithm (LAMDR). By considering the location information,
LAMDR is able to prioritize geographically short connections
over long connections. Low user overhead and high message
delivery rate are thus achieved by setting an upper bound
on node degree and tree height and taking advantage of
redundancy. The tree construction algorithm has a guaranteed
approximation ratio, and runs in O(n logn) time, where n
is the number of online followers of the message publisher.

978-1-4799-3572-7/14/$31.00 ©2014 IEEE

Technically, users may choose to opt in or out by configuring
their profiles. For example, a mobile phone user with limited
3G data plan is likely to decline. Centaur focus on reduc-
ing server-side overhead for OSN message delivery, leaving
privacy and security for future work.

Centaur consists of two parts: (1) Centaur servers that keep
track of the online user set, and run the tree construction
algorithm, and (2) Centaur web pages that allow users to
receive messages from Centaur servers or other users, and
disseminate these received messages according to the given
tree structure. Please note, Centaur handles only message
disseminations, and does not modify the persistent data stor-
age systems. Offline users still get historical data from OSN
servers upon their next logins. Our experimental results show
that, with Centaur, the server is able to save more than one
order of magnitude on communication, and each user spends
only a few KB bandwidth during peak time. At the same time,
it takes only a few seconds to disseminate any message, with
a delivery rate over 98%.

The remainder of this paper is organized as follows. We
survey the related work in Section II. Section III describes
the system model and problem formulation. Then we show
system design details in Section IV, and Section V. Imple-
mentation and evaluation are presented in Section VI and
Section VII, respectively. Finally, Section VIII concludes the
paper.

II. RELATED WORK

In this section we describe the differences between OSN
message dissemination and three earlier scenarios, namely,
multicast streaming, publish/subscribe systems, and other P2P
systems [6–14]. In each comparison, we also explain the
reason why existing solutions are not applicable to OSNs.

Overlay network multicast has been discussed for years in
applications such as media video streaming, teleconferences,
file sharing, etc. Brosh et al. [7] design a multicast tree
construction algorithm which directly maps load to delay
penalty. Recently, literatures [8, 15] discuss and analyze
hybrid cloud-P2P content distribution systems for applications
like YouTube. As the streaming video or teleconference usu-
ally lasts relatively long, maintaining an always-alive structure
is reasonable and useful. However, in the OSN scenario,
every user is a publisher (channel), owns a unique receiver
set, and sporadically issues new updates. Hence, the cost of
maintaining an always-alive multicast topology far exceeds
the gain of disseminating a few sporadic updates.

Another related topic is publish/subscribe (Pub/Sub) sys-
tems. Much of the effort has been spent on elaborately
organizing brokers or event servers. Brokers are usually third-
party servers that connect publishers and subscribers. Corona
[9] employs a set of intermediate brokers to keep track of
users’ interest and aggregates polls towards target web pages.
SIENA [10] makes use of a set of dedicated servers to form
an event notification network, which is transparent to end
users. In their design, end users only publish or receive
data, but do not act as data relays. Publiy+ [11] is a hybrid
solution that combines (Pub/Sub) brokers with user formed
P2P networks. Their design offloads the overhead of dis-
seminating huge volumes of data from brokers to subscriber

themselves. Nevertheless, in OSNs, dedicated broker servers
do not exist. According to our evaluation results, OSNs do
not need dedicated brokers either, since performance can be
greatly improved by intelligently making use of user side
resources.

Location-aware solutions have been discussed for many
years in both unstructured and structured P2P systems. Liu
et al. [12] try to improve the performance of unstructured
P2P systems with location-aware topology matching. Peers
cut off low productive connections and prefer physically
closer neighbors. Qiu et al. [13] propose a Peer-exchange
Routing Optimization Protocol (PROP). In this protocol, two
peers exchange all or part of their neighbors to switch from
geographically longer links to shorter ones. In Literature [14],
the authors also utilize biased neighbor selection, such that,
each peer chooses the majority, but not all, of their neighbors
within the same ISP. However, without a centralized server
that has a global view, it takes time for each peer to discover
enough information, which impairs the realtime properties of
OSNs. Besides, as we argued before, it does not make sense to
maintain an always-alive topology due to highly sporadic user
updates. The cost of maintaining the topology will be much
larger than the gain of disseminating the messages. Instead,
we explore the viability of constructing a new topology for
every new message.

By taking sporadic, dynamic, and realtime properties into
consideration, we design Centaur, a server-side per-message
tree construction and dissemination solution for OSNs, which
preserves the aforementioned three important properties, and
at the same time significantly reduces the server side com-
munication overhead.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the system model section, we describe notations and as-
sumptions. Objectives and problem abstraction are discussed
in the problem formulation section.

A. System Model
For user i, let Fi denote his or her follower set. Assume U t

is the online user set at time t, the server only needs to notify
online followers when receiving updates from the followee.
For offline followers, they will be notified next time when they
login to the OSN application. Set Fi changes relatively slowly
and mostly incrementally, while set U t is highly dynamic, as
each user might stay online for only a few minutes to check
updates [4]. Let Mj

i denote the jth message published by
user i at time t. Given the sporadic nature of user updates,
user i publishes at most one message in each time slot. Let
Rj

i denote the receiver set of Mj
i , which is the intersection

of Fi and U t (i.e, Rj
i = Fi ∩ U t). Given that U t is highly

dynamic, Rj+1
i and Rj

i may be completely different sets.
Hence, a different dissemination tree is required for each new
message.

In most of current implementations, OSN servers are
responsible for notifying every online follower. However,
handling all the workload on server side leads to considerable
service rejection rate and response latency [3]. We propose to
utilize user side resources to assist message dissemination and
improve the service performance. In order to take latency into

consideration, we need an estimation of message forwarding
delay between users. Given the large number of users, it is
too costly to keep track of the RTT between every two users
in realtime. Instead, we use geographic distance between two
users to approximate the Round Trip Time (RTT) [16, 17].
This geographic information is available as the server knows
each user’s IP address, which can in turn be translated into
location information [18].

B. Problem Formulation
Let V = {v0, v1, ..., vn} denote the node (receivers) set,

and r denote the root node. Let vi.x and vi.y denote the
x and y coordinates of vertex vi, which are derived by
applying Mercator projection [19] to users’ GPS locations.
All nodes form a complete graph, where the length of edge
(vi, vj) is the Euclidean distance between the two nodes. In
the dissemination tree, let di denote the number of children
of vi. We further define two types of tree height for the
dissemination tree: hop height and distance height. For vi,
hop height (hi) is the number of edges along the path from
r to vi, while distance height (Hi) is the length of the path.

When developing message dissemination algorithms for
OSNs, we are concerned with following requirements:

• The message delivery delay should be minimized, which
can be achieved by minimizing maxi{Hi}.

• The overhead added to each participating user should
be negligibly low. In order to meet this objective, we
can set an upper bound on di when constructing the
dissemination tree.

• The message delivery rate should be high enough. One
user node is able to receive a message if all of its
ascendants on the dissemination tree behave properly.
Assume users are equally probable to fail, then, nodes
with smaller hop heights are more likely to receive the
message as they have fewer ascendants.

Taking above concerns into account, we formally formulate
the problem as follows: given the set V of n nodes, the root
node r, the upper bound on the number of children d, and
hop height upper bound h, the algorithm needs to construct a
dissemination tree to cover all vertices in V exactly once, such
that the maximum Hi is minimized. We call the induced graph
a LAMD tree, which is short for Location-Aware Message
Dissemination Tree. Constructing a LAMD tree is obviously
an NP -hard problem, as the (d = 1, h = n) solution is a
Hamilton path. Therefore, we look for good approximations.

As OSN servers see large number of updates every sec-
ond [5], the computational complexity of the tree construction
algorithm has to be low enough, so that the server can
afford the cost to construct a new tree for each incoming
message. When designing algorithms, we consider only the
single-server case, which is the basic building block for more
complicated cases. In scenarios where multiple geographically
distributed servers are in effect, the service provider may first
map the user’s IP address to one or more servers, and each
server then performs our algorithm separately.

IV. APPROXIMATE LAMD TREE

For each message, all followers form a complete graph on
the overlay network. Computing the edge set costs O(n2)

computational steps, which is already too expensive as pop-
ular users may own millions of online followers. To avoid
the huge computational overhead, we present Approximate
LAMD Tree Algorithm (LAMDA) that partitions the node set
into smaller groups, in each of which the nodes recursively
form a sub-tree. Edges are computed only as needed within
each sector, and inter-sector edges are skipped. The algorithm
takes O(n log n) time, which is efficient enough even if n
goes up to a few million. We call the result structure the
LAMDA tree.

A. Algorithm Description

The LAMDA algorithm borrows the idea of divide-and-
conquer. With the input node set V , the algorithm first sets
up a polar coordinate system, with a given root r as the pole.
The polar axis is the ray pointing from r to north. Then, any
node u can be located by (l, θ), where l is the geographic
distance between u and r, and θ is the clockwise angle from
the polar axis to u. Fig. 1 shows an illustrative example.
According to the ascending order of θ, the divide step
partitions the Euclidean space into multiple sectors. There
are two conditions to create a new sector: partition angle,
and partition size. The partition angle α, as a configurable
parameter, is the maximum sector angle, while the partition

size dh−1
d−1 is the maximum number of nodes in a sector, which

is the number of nodes in a full h-level d-ary tree. (Please
refer to Section IV-B for detailed discussions regarding α, d,
and h.) Breaking either condition will cause the algorithm to
seal the current sector and start a new one. Define the sector
root as the node with the minimum l in the sector. When a
sector is sealed, a sub-LAMDA tree will be constructed in the
sector, with h−1 as the hop height bound, and the sector root
as the input root node for the recursive call. The conquer step
connects r to all sector roots.

�������������������������� ���

�� 	

���
	

���
	

��
�	

		�

��
�
��	���

Fig. 1. Polar Angles

� �

� �

��
��

��
	�

��
�	

���
��

�
Fig. 2. Recurrence Formula

Algorithm details are shown in Algorithm 1. It takes 5
inputs: the node array V , the root node r, the degree constraint
d, the hop height constraint h, and the partition angle α. Line
2 ∼ 5 checks if the recursive call arrives at a parent of leaf
nodes. A positive answer means that r only has direct children
without further descendants. Therefore, the algorithm appends
all nodes in V to r’s children array. Line 6 ∼ 9 sets up the
polar coordinate system, and computes the coordinates of all
nodes in V with given root r. Line 10 sorts all nodes based on
the polar angle θ. Line 13 ∼ 25 scans all nodes according to
the sorted order, and performs divide-and-conquer steps. Line
15 checks if the current state meets either partition condition.
If not, the algorithm simply updates U on line 16. Otherwise,
the algorithm starts a new recursive call on line 21 with U
as the input node set, sector root rr as the input root node,
and h− 1 as the hop height constraint.

Algorithm 1 LAMDA

Input: Node set V , Root node r, Degree constraint d, Tree height constraint
h, Partition angle constraint α.

Output: A tree structure rooted at r.
1: procedure LAMDA(V , r, d, h, α)
2: if h ≤ 2 then /* Reaching a parent of leaf nodes. */
3: r.children ← V
4: return r
5: end if
6: for v in V do /* Set up polar coordinate system. */
7: v.θ ← compute v’s polar angle with given root r
8: v.l ← compute the distance between v and r
9: end for

10: Sort V according to ascending order of θ
11: minAngle ← 0 /* the mini θ in the current sector*/
12: U ← ∅ /* Node set for the next level recursive calls*/
13: for i ← 1 to |V | do /* Scan through all nodes to do partition.*/
14: v ← V [i]

15: if v.θ −minAngle ≤ α and |V | ≤ dh−1−1
d−1

then
16: U ← U

⋃{v}
17: else /* Seal a sector, and start recursive call. */
18: rr ← the node in U with smallest l
19: U ← U \ {rr}
20: r.children ← {rr}⋃ r.children
21: LAMDA(U , rr, d, h− 1, α)
22: minAngle ← v.θ
23: U ← {v}
24: end if
25: end for
26: return r
27: end procedure

B. Algorithm Analysis

Complexity: Each recursive call takes three major operations:
compute node coordinates in the polar coordinate system, sort
nodes based on θ, and partition them according to the sorted
order. Setting up the polar coordinate system, and partitioning
the nodes both take O(n) time. If θ is stored with fixed
precision, the sorting on line 10 also takes O(n) with linear
sorting algorithms, such as radix sort [20]. Let T (n) denote
the computational complexity of LAMDA with n nodes. Then,
the recurrence relation is:

T (n) = (d+
2π

α
− 1)T (

n

d+ 2π
α − 1

) +O(n). (1)

According to the Master Theorem ([20]), the complexity of
LAMDA is:

T (n) = θ(n
lg

d+2π
α

−1
(d+ 2π

α −1)
lg0+1 n) = θ(n lg n). (2)

Approximation Ratio: Besides the algorithm complexity,
another very important property of the algorithm is the
approximation ratio. To prove the approximation ratio, we
need an estimation of the global optimal solution. As the
LAMD tree connects all nodes, one trivial lower bound of the
optimal solution is the largest l of all nodes with respect to
the top level root r. Let L denote this lower bound. We use
L to prove the approximation ratio of our algorithm.

Each recursive call has a different root r, and a new polar
coordinate system is set up with respect to r. Denote aji and bji
as the largest and smallest v.l for all nodes v in the jth sector
of recursive level i, where l is the distance between v and r.
Let ai = maxj a

j
i , and bi = maxj b

j
i . When constructing the

LAMDA tree, the root always connects to the nearest node in
its subtree. Hence, the physical meaning of bi is the maximum
edge length in the tree between level i−1 and level i. Clearly,
the distance height of the tree is bounded by the length sum of

longest edges of all level (i.e.,
∑h

i=1 bi). Thus, the worst case

approximation ratio is upper bounded by
∑h

i=1 bi
L . Please note,

except a1 (equals to L), ai and bi depend on the algorithm
input. With fixed input, both ai and bi are deterministic. In the
analysis, we consider the worst case approximation ratio for
any input. Hence, both ai and bi are considered as variables
(except a1).

As shown in Fig. 2, let us consider a sector with α <
60o, and derive the relationship between ai, bi, and ai+1.
According to Law of Cosines, the upper bound of ai+1 with
respect to ai and bi is:

a2i+1 ≤ a2i + b2i − 2aibi cosα. (3)
Hence, to find the worst possible approximation ratio, we

need to solve the following problem:

max
h∑

i=1

bi,

s.t. a2i+1 ≤ a2i + b2i − 2aibi cosα,

0 ≤ bi ≤ ai, a1 = L. (4)

Theorem 1. With any input node set, and α < 60o,
∑h

i=1 bi
induced by the LAMDA algorithm is bounded by L

1−√
2−2 cosα

for any tree hop height h.

Proof: We prove Theorem 1 by applying induction on
LAMDA Tree hop height h.

• Basis: For h = 1, b1 ≤ a1 = L ≤ L
1−√

2−2 cosα
.

Therefore, the proposition holds trivially.

• Inductive Step: We assume for h = k,
∑k

i=1 bi ≤
L

1−√
2−2 cosα

. Then, for h = k + 1, we have:
k+1∑
i=1

bi = b1 +
k+1∑
i=2

bi. (5)

Let b′i = bi+1, a′i = ai+1, and a′1 = L′, for i ≥ 1. Let β
denote cosα, and let γ denote 1−√

2− 2 cosα.
k+1∑
i=1

bi = b1 +

k∑
j=1

b′j ≤ b1 +
L′

γ
= b1 +

a2
γ
. (6)

Then with inequality 3, we have:
k+1∑
i=1

bi ≤ b1 +

√
a21 + b21 − 2a1b1β

γ
. (7)

Let G(b1) denote the right side of Inequality 7. We then
evaluate the maximum value of G(b1) by examining the
derivative of G(b1) .

dG(b1)

db1
= 1 +

b1 − βa1

γ
√
a21 + b21 − 2βa1b1

. (8)

The condition for
dG(b1)

db1 > 0 is:

b1 > a1

(
β
√
1− γ2 − γ

√
1− β2√

1− γ2

)
. (9)

Therefore, G(b1) first decreases and then increases, and
the maximum value is achieved at boundary point 0 or
a1. By evaluating both boundary point, we conclude that

the statement
∑k+1

i=1 bi ≤ a1

γ holds for both b1 = 0,
and b1 = a1. Hence, the approximation ratio is upper
bounded by L

1−√
2−2 cosα

.

In the LAMDA algorithm, d is a soft constraint, such that
some node may have at most d+ � 2π

α � − 1 children in worst
case. It is because some partition may reach the partition size

0 10 20 30 40 50
0

100

200

Parition Angle (o)

D
eg

re
e

V
io

la
tio

n

0 10 20 30 40 50

2

4

6

A
pp

ro
xi

m
at

e
R

at
io

Chosen Partition Angle
Degree Violation
Approximate Ratio

Fig. 3. Approximate Ratio vs Partition Angle

bound before reaching the partition angle bound, leaving the
actual sector angle smaller than α. We call such sector a
full sector. Within one recursive call, there are at most d full
sectors, otherwise the number of nodes in sub-sectors will

exceed |V | in this call (i.e., d
(

dh−1−1
d−1

)
+ 1 ≥ dh−1

d−1). The

2π angle can be split into at most � 2π
α � sectors with angle

α. To create a worst case input that forces LAMDA algorithm
to split the 2π angle with � 2π

α � sectors, some nodes have to
be spread out evenly in terms of θ, leaving at most d − 1
full sectors. Putting them together, the children number of
any node is bounded by d+ � 2π

α �− 1. Consider a worst case

example, where |V | is large enough. Let |V | − 2� 2π
α � nodes

located on the ray with θ = 0. The polar angles (θ) of the
other 2� 2π

α � nodes follow the sequence (ε, α+ε, α+2ε, 2α+
2ε, ..., �n−1

2 �α+ �n
2 �ε, ..., 2π − ε).

However, as long as α is large enough, the extra overhead is
negligible. For example, with α = 29o, LAMDA tree achieves
2-approximation, and the worst case d violation is bounded
by 12. For any modern computer, the cost of sending out 12
more short messages is negligible. Therefore, this violation
does not affect the practicality of the algorithm. Fig. 3 shows
the mapping between α, d violation, and approximation ratio.

V. RANDOMIZED LAMD TREE

The LAMDA algorithm achieves both low computational
complexity and appealing approximation ratio. One may con-
struct a LAMDA tree over the entire receiver set to disseminate
the new message by setting the OSN server as the root. Any
node that participates in the dissemination tree calls for only
two pieces of data: the topology of the subtree rooted at itself
(topo), and the new message (msg). These two data fields are
encapsulated in the payload of an application level packet. On
receiving this packet, the node only needs to forward the first
level subtree of topo and msg to the corresponding child.

When applying LAMDA in practice, we have three more
concerns. First, the size of topo linearly proportionally relates
to the size of the subtree rooted at the receiver node. LAMDA

tree, as a deterministic algorithm, always chooses the nearest
node as the next hop. Hence, the nodes closer to the the
data center are more likely to receive larger topo payload
than those far away nodes, leaving the load unbalanced on
user side. Second, user nodes may fail (e.g., crash or leave)
during the message dissemination before finishing their jobs.
If one user node fails, all of its descendants will not be able
to receive the message. Therefore, some redundancies are
needed to compensate the possible failures. Again, as LAMDA

tree algorithm is deterministic, it always generates the same
dissemination tree for the same input, making redundancies
useless. Third, for a large receiver set, it may not be feasible

to keep both d and h small at the same time, as dh−1
d−1 (the

number of nodes in a full h-level d-ary tree) has to be equal

to or larger than |V |. To attack the aforementioned problems,
we present Randomized LAMD Tree (LAMDR) algorithm
which employs LAMDA tree algorithm as a subroutine. The
generated tree structure is called LAMDR tree.

Randomized LAMD tree is a message dissemination tree
rooted at the OSN data center. The motivating intuition is
that, the data center is much more reliable and powerful
than normal OSN user nodes. Hence, the algorithm asks
the data center to send out more messages or carry out
more computation when necessary. Compared to LAMDA

algorithm, differences come from two aspects. First, the top-
level root (data center) randomly chooses one user node from
each sector as its direct child, rather than always picking the
nearest one. The randomness only applies to the top level,
as the approximation ratio deteriorates with the increase of
randomness. According to our experiments shown in Section
VII-C, this top-level randomness is enough to balance load
among users. Second, the children number constraint d does
not apply to the top-level root. In LAMDR algorithm, the
top-level root first partitions V into sectors with at most
dh−1−1
d−1 nodes. Then a LAMDA tree is constructed within each

sector. Thanks to the randomization in the top-level children
selection, repeat LAMDR algorithm s times will generate s
different dissemination trees, which allows redundancies to
be applied.

Algorithm 2 LAMDR

Input: Node set V , root r, degree constraint d, tree height constraint h,
partition angle constraint α, number of redundancy copies s.

Output: A set of s LAMDR trees R.
1: procedure MAIN(V , r, d, h, α, s)
2: R ← ∅ /* The set to hold the roots of all LAMDR trees.*/
3: for i ← 1 to s do /* repeat LAMDR s times. */
4: R ← {LAMDR(V, r, d, h, α)}⋃R
5: end for
6: return R
7: end procedure
1: procedure LAMDR(V , r, d, h, α)
2: for v in V do /* Set up polar coordinate system. */
3: v.θ ← compute v’s polar angle with given root r
4: v.l ← compute the distance between v and r
5: end for
6: Sort V according to ascending order of θ
7: U ← ∅ /* node set for the next level subtree. */
8: for i ← 1 to |V | do
9: v ← V [i]

10: if |U | ≤ dh−1−1
d−1

then
11: U ← U

⋃{v}
12: else /* Seal the current sector and build a LAMDA. */
13: rr ← randomly pick one node from U
14: U ← U \ {rr}
15: r.children ← {rr}⋃ r.children
16: LAMDA(U , rr, d, h− 1, α)
17: U ← {v}
18: end if
19: end for
20: return r
21: end procedure

The pseudo code of LAMDR is shown in Algorithm 2.
Compared to LAMDA, LAMDR takes one more input pa-
rameter: the number of redundant copies, denoted by s. The
MAIN procedure builds s LAMDR trees by calling the LAMDR

procedure repeatedly. In the LAMDR procedure, line 2 ∼ 5

sets up the polar coordinate system with given root r as the
pole. Line 8 ∼ 19 scan through all nodes in V according
to the ascending order of θ to build the LAMDR tree. Line
10 checks if the current sector reaches the size bound. If
no, it adds v into the current sector on line 11. Otherwise,
the algorithm randomly chooses a node rr from U as direct
child on line 15, and calls the LAMDA algorithm on Line 16
to construct a LAMDA tree with U as the input node set, rr
as the root, and h− 1 as the hop height bound.

LAMDR algorithm addresses all of the aforementioned
three concerns. First, user node failures can be compensated
by choosing the right value of s. Second, thanks to the
randomization, any user node is equally possibly to be the
direct child of the data center, and hence, the load spread out
evenly. Third, LAMDR does not apply d constraint to the data
center node. Therefore, d and h can be reasonably small at
the same time.

VI. IMPLEMENTATION

Fig. 4. Twitter User Location

0 0.5 1
0

2

4

6

8

10

12

D
is

ta
nc

e
(1

03 K
m

)

Delay (s)

Fig. 5. Delay

To evaluate the performance of Centaur, we implement both
large scale simulations with real Twitter and Google data and
a web-based prototype by using Adobe Cirrus [21].

A. Crawlers
We develop a few crawlers to get user profile, follower set,

and tweets information from Twitter. We first use the sample
API [22] to collect more than 1 million tweets on October
22nd 2012. To speed up the user graph crawling phase, we
utilize 20 machines with different IP addresses. After more
than 3 months, we have crawled roughly 1.2 billion users and
1.5 billion edges.

The next step is to gather user locations. Twitter can easily
get that information internally, as servers know users’ current
IP addresses. Unfortunately, this part of the information is
not publicly available. We try another way around. From
the data given by “users/lookup” API [22], we found that
many users specify a short string in the “location” field to
indicate their locations. We submit this string to Google
Geocoding API [23] to translate it into latitude-longitude
coordinates. Google has rate-limited each IP address to submit
at most 2500 request per day. As many users share the same
location string especially for people in big cities (e.g., many
people just write “New York” as their location), we first
extract the distinct location string set, which contains more
than 2 million strings. With months of parallelized crawling,
we managed to translate those “distinct” location strings
into more than 300 thousand “distinct” coordinations. The
number of “distinct” coordinations is much smaller than the
number of “distinct” location strings, because many different

0 2 4 6 8
0

0.5

1

Delay (s)

C
D

F

LAMDA
LAMDR
Random

(a) Average Delay

0 5 10 15
0

0.5

1

Delay (s)

C
D

F

LAMDA
LAMDR
Random

(b) Maximal Delay

1 2 3 4 5 6 7 8
0

1

2

3

4

Users

T
ra

ff
ic

 (M
B

)

LAMDA
LAMDR
Random

(c) Outgoing Traffic
Fig. 6. Real-world Experiment Results

strings are representing the same coordination (e.g., “New
York City”, and “the Big Apple”). Fig. 4 shows the location
crawling result. Each small dot corresponds to one distinct
user location.

B. Web Based Centaur
The ultimate goal of Centaur is to implement all the user

side logics in web pages, rather than require extra user
efforts to download dedicated softwares to do that. We have
implemented a prototype system based on Adobe Cirrus [21].
Cirrus is web based P2P framework. Upon open, the Centaur
web page will get a peer ID from Cirrus, and translate the
current IP address into coordinations using IPInfoDB [24] and
Google Geocoding [23]. Then, the Centaur web page sends
those information to the Centaur server. On closing, the web
page also sends a notification to the Centaur server. In this
way, the server keeps track of the online user set. When a
new message is published, the Centaur server will compute
three LAMDR tree, and disseminate the message according
to the tree structure. The evaluation involves 8 users in 7
different cities, namely Champaign (2 users), Mountain View,
Nanjing, New York, Seattle, Shanghai, and Shenzhen. The
7 cities are marked with rounds in Fig. 4. Fig. 5 illustrates
how geographical distance relates to the RTT time of pushing
64 bytes data between two users. The clear increase trend
supports our assumptions.

VII. EVALUATION

We compare Centaur to two other different solutions:
Random Tree, and Cuckoo [3]. We design Random Tree
algorithm as a base line solution, while Cuckoo is the state-
of-the-art distributed microblogging system.

Random Tree also utilizes user assisted message dissem-
ination. However, it is oblivious of the user location infor-
mation. Upon receiving a new message, the server randomly
shuffles the online follower set, and then, cut the set into
blocks with at most (dh − 1)/(d − 1) followers in each
block. After that, each block (only contains node information
without edge information) along with the new message is
sent to a random user in that block, and the receiving
follower will further propagate the message in the similar way.
Hence, the followers actually form a dissemination tree with
randomized topology. Random Tree also employs the same
level redundancies as Centaur to compensate node failures.

Cuckoo is a P2P microblogging system, that mostly relies
on individual users’ storage, computation, and network re-
sources. The publisher of a message is responsible for either
notifying all followers, or initializing gossip-based message
propagations, depending on the size of the follower set. If the
follower set is small, the publisher’s machine will directly
notify all followers by itself. Otherwise, the publisher will
send the new update to O(logn) followers, where n is the

0 60 120 180

5

10

15

20

25

30

35

40

45

Time (m)

A
ve

ra
ge

 D
el

ay
 (s

)

C(2,7)
C(2,9)
R(2,7)
R(2,9)
Cuckoo

Fig. 7. Average Delay

0 60 120 180
0

20

40

60

80

100

120

Time (m)

M
ax

im
al

 D
el

ay
 (s

)

C(2,7)
C(2,9)
R(2,7)
R(2,9)
Cuckoo

Fig. 8. Maximal Delay

0 60 120 180
105

106

107

Time (m)

Se
rv

er
 O

ut
go

in
g

T
ra

ff
ic

Star
C(2,7)
C(2,9)
R(2,7)
R(2,9)

Fig. 9. Server Out Traffic

0 60 120 180

5

10

15

20

Time (minute)

A
ve

ra
ge

 O
ut

go
in

g
T

ra
ff

ic
 (K

B
) Centaur−(2, 7)

Centaur−(2, 9)
Random−(2, 7)
Random−(2, 9)
Cuckoo

Fig. 10. User Out Traffic

C(2,7) C(2,9) R(2,7) R(2,9) Cuckoo
0

0.2

0.4

0.6

0.8

1

D
el

iv
er

y
R

at
e

Fig. 11. Delivery Ratio

size of the follower set. When the follower receives the first
notification, he will forward the message to other O(logn)
followers.

A. Experiment Setup
We carry out both small-scale real-world evaluations and

large-scale simulations.
Real-world Evaluation: In small-scale real-world evalua-

tions, 8 users in 7 different cities stay online during a 2-hour
time period. As the number of users is small, we do not allow
them to disconnect during the experiment, and all users form a
complete graph (i.e., each user is a follower of all other users).
The evaluation compares LAMDA, LAMDR, and Random Tree
algorithms. Both LAMDA and LAMDR are bounded by d = 2
and h = 3. The LAMDA tree structure is mark on Fig. 4.

Large-scale Simulation: In large scale simulations, we
further evaluate different settings with each solution. Let C-(d
,h) and R-(d,h) denote the experiment using Centaur algorithm
or Random Tree algorithm with children number bound d and
tree hop height bound h. The parameter α is chosen as 29o

in all experiments.
During packet level simulations, we replay the 4 hour

tweet trace collected by using Twitter sample API [22]
from 8PM to 12PM on October 22nd 2012. Users join and
leave dynamically during the simulation. When join, the user
chooses one from the crawled user locations as shown in
Fig. 4. Every second, each user will leave with probability
of 1%. When one user leaves, another different user will be
created at the same time. In this way, we maintain 150,000
dynamic online users. Both user overall incoming and overall
outgoing bandwidth are limited by 20 KB. If the required
bandwidth goes beyond the limit, packets will be queued at
the sender side. For each new tweet, we assume that 1% of
the publisher’s followers are online.

There are three types of delays in the simulation: prop-
agation delay, transmission delay, and queueing delay. The
propagation delay linearly relates to geographic distances.
According to literatures [16, 17], the delay increases by 1MS
every 50KM. To simulate the transmission delay, we employ
the TCP flow control protocol. Every message (topo + msg)
is cut into 1KB packets. As most messages are short (just a
few KB), the flow finishes before the end of TCP slow start.
The transmission delay also positively relates to geographic
distances [25, 26]. As each user updates sporadically, the
queueing delay is expected to be small.

B. Delivery Delay
We first evaluate the message delivery delay. In the evalu-

ation, each parent node records the time difference between

a message is sent to and its ACK is received from the child,
which we call link delay. In order to avoid introducing errors
in synchronizing clocks of different users, the delivery delay
of each message in the evaluation is measured by the sum of
link delays along the path from each user to the server. Fig. 6
(a) and (b) show the CDF of average and maximal message
delivery delay respectively. LAMDA is doing much better than
the other two, and LAMDR does not considerably outperform
Random Tree algorithm. The reason is that, LAMDR assigns
children of the server randomly to achieve better load bal-
ancing. In such a small-scale experiment, the tree built by
LAMDR is at most of height 3. Therefore, even one level
of randomness will introduce significant relative performance
degradations.

As simulations are executed on a single machine, we
employ a global clock for the server and all users. Each
application packet carries a timestamp of when it is sent by the
server, and the delivery delay is calculated on the receiver side
by comparing the current time with the timestamp. Time is
divided into 3-minute blocks. The average delay averages the
delivery delay inside each time slot, while the maximal delay
is the largest delay measured in the time slot. Fig. 7 and Fig. 8
show simulation results. Clearly Centaur achieves the shortest
delay. The delivery delay induced by Random Tree algorithm
is roughly 6 times longer with respect to the average delay,
and roughly 4 times longer with respect to the maximal delay.
It is because, the Random Tree algorithm does not take the
geographic information into account, and hence each overlay
hop in the dissemination tree can be much longer than in the
Centaur case. For example, we have three online nodes: server
in New York, Bob in Shanghai, and Cathy in D.C, and they
are expected to form a path to disseminate message from the
server to the other two. With Random Tree, it is possible that
the path will be server → Bob → Cathy. Hence, the message
go across the Pacific ocean twice, while server → Cathy →
Bob is obviously a better solution.

Fig. 7 and 8 also show that with the increase of h, the delay
also increases to some degree. The first reason is that larger
tree height will result in higher failure rate. Therefore, for
one user node, the fastest notifying message copy is likely
to get dropped, forcing the user to wait for slower copies.
Besides, the packets may get queued at the user nodes, and the
queueing chance increases with the increase of hop number.

Cuckoo takes even longer time to deliver messages when
compared to Random Tree. It is because, 1) Cuckoo does not
take geographic information into account, 2) it does not even
have a centralized server to help calculate a well-structured
tree. The resulting gossip-based message dissemination topol-

ogy is ad hoc, and some paths can be excessively long with
respect to both hop number and geographic distances.

C. User and Server Traffic
For practicality reasons, Centaur should not add too much

overhead to individual users. In Centaur, each user only needs
to forward an application packet containing topo and msg to
each of his or her children in the received tree structure. As
the user side logic is very simple, the computational overhead
is not a concern. Therefore, we focus on the communica-
tion overhead. Fig. 6 (c) shows the accumulated outgoing
network traffic of 8 users. Although LAMDA achieves good
performance in terms of delivery delay, its communication
workload is highly skewed. LAMDR algorithm clearly bal-
ances Centaur’s load into a much more uniform distribution.
Random Tree algorithm balances users’ load most evenly as
expected. Fig. 10 plots average user outgoing traffic in the
simulation, which further confirms that Centaur introduces
negligible communication overhead to users.

To quantify the savings of servers’ outgoing traffic, we
introduce another baseline solution to simulations which is
called the Star Tree.

Star Tree solution resembles to the current OSN mes-
sage dissemination implementations the most. The server is
responsible for delivering every single message, and users
are just simple-logic receivers. In simulations, the server
aggressively pushes new messages to followers, rather than
handling user polls passively. Besides, we assume the server
has unlimited outgoing bandwidth, such that the message will
not get queued on the server side.

As we are utilizing a large number of users to perform
message dissemination, the server side load is expected to be
greatly reduced. As shown in Fig. 9, Centaur does achieve
that. The saving given by Centaur is more than one order
of magnitude compared to the Star Tree solution. Random
Tree wins a little bit with respect to server outgoing traffic.
The reason is that the server does not need to send out any
edge information, as it is randomly computed at the user side.
Cuckoo is not applicable here, as the Cuckoo server does not
actively participate in the message dissemination phase.

D. Delivery Rate
The delivery rate is also a crucial metric. One solution is

useful and reasonable only if the delivery rate is high enough.
Fig. 11 shows the delivery ratio of different solutions. In the
experiment, Both Centaur and Random tree uses redundancy
3. C-(2, 7) achieves about 98% delivery rate, while R-(2, 7)
achieves 90%. We believe Random tree loses due to its long
delivery delay. Since, every second, one user is possible to fail
with probability 1%, longer delay means higher failure rate in
the dissemination tree. In C-(2, 9) and R-(2, 9) experiments,
the delivery rate decreases a little bit, because taller tree leads
to longer delay and higher failure rate.

VIII. CONCLUSION

This paper elaborates the design and evaluation details
of Centaur, a user-assisted message dissemination solution
for Online Social Networks. The huge number of OSN

publishers/channels, and the sporadic nature of each chan-
nel make OSN message dissemination distinct from ear-
lier multicast, publish/subscribe, or P2P streaming scenar-
ios. With Centaur, the server computes an well-shaped dis-
semination tree for every incoming message to connect all
online followers of the message’s publisher. In order to
make this design practical, we design the LAMDR Tree al-

gorithm which achieves
(

1
1−√

2−2 cosα

)
-approximation with

O(n log n) computational complexity. Since any user node
in the dissemination tree may fail before finishing its job,
leading all of its descendants disconnected from the tree,
Centaur utilizes redundancies to compensate failures. The
optimal redundancy level is computed to satisfy the given
message delivery rate. Evaluation results show that Centaur
saves more than an order of magnitude outgoing bandwidth
on the server side compared to the star topology, and achieves
very high message delivery rate with very low delay.

REFERENCES

[1] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users: real-time
event detection by social sensors,” in ACM WWW, 2010.

[2] P. Earle, D. Bowden, and M. Guy, “Twitter earthquake detection: earthquake
monitoring in a social world,” in Annals of Geophysics, 2011, pp. 851–860.

[3] T. Xu, Y. Chen, L. Jiao, B. Y. Zhao, P. Hui, and X. Fu, “Scaling microblogging
services with divergent traffic demands,” in Middleware, 2011.

[4] “Facebook, twitter, google+, pinterest: The users of social media,” http://www.
mediabistro.com/alltwitter/social-media-users b22556, November 2012.

[5] “Twitter turns six,” http://blog.twitter.com/2012/03/twitter-turns-six.html, Novem-
ber 2012.

[6] B. Zhang, S. Jamin, and L. Zhang, “Host multicast: A framework for delivering
multicast to end users,” in IEEE INFOCOM, 2002.

[7] E. Brosh, A. Levin, and Y. Shavitt, “Approximation and heuristic algorithms for
minimum-delay application-layer multicast trees,” IEEE/ACM Trans. Netw., pp.
473–484.

[8] Z. Li, T. Zhang, Y. Huang, Z.-L. Zhang, and Y. Dai, “Maximizing the bandwidth
multiplier effect for hybrid cloud-p2p content distribution,” in IWQoS, 2012.

[9] V. Ramasubramanian, R. Peterson, and E. G. Sirer, “Corona: A high performance
publish-subscribe system for the world wide web,” in NSDI, 2006.

[10] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a
wide-area event notification service,” ACM Trans. Comput. Syst., vol. 19, no. 3,
pp. 332–383, Aug. 2001.

[11] R. S. Kazemzadeh and H.-A. Jacobsen, “Publiy+: A peer-assisted pub-
lish/subscribe service for timely dissemination of bulk content,” Macau, China,
2012, pp. 345–354.

[12] Y. Liu, L. Xiao, X. Liu, L. M. Ni, and X. Zhang, “Location awareness in
unstructured peer-to-peer systems,” IEEE Trans. Parallel Distrib. Syst., vol. 16,
no. 2, pp. 163–174, Feb. 2005.

[13] T. Qiu, G. Chen, M. Ye, E. Chan, and B. Y. Zhao, “Towards location-aware
topology in both unstructured and structured p2p systems,” in IEEE ICPP, 2007.

[14] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and A. Zhang,
“Improving traffic locality in bittorrent via biased neighbor selection,” in IEEE
ICDCS, 2006.

[15] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and performance prediction
in peer-assisted on-demand streaming systems,” in IEEE INFOCOM, 2011.

[16] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. Anderson, and
Y. Chawathe, “Towards ip geolocation using delay and topology measurements,”
in ACM IMC, 2006.

[17] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, “Constraint-based geolocation
of internet hosts,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1219–1232, Dec.
2006.

[18] “Neustar,” http://www.neustar.biz, November 2012.
[19] Fitzsimons and Dennis, “Rhumb Lines and Map Wars: A Social History of the

Mercator Projection by Mark Monmonier,” The Professional Geographer, vol. 58,
no. 4, pp. 497–499, Nov. 2006.

[20] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[21] “Adobe cirrus,” http://labs.adobe.com/technologies/cirrus, November 2012.
[22] “Twitter rest api,” https://dev.twitter.com/docs/api, November 2012.
[23] “Google geocoding api,” https://developers.google.com/maps/documentation/

geocoding/, November 2012.
[24] “Ipinfodb,” http://ipinfodb.com, November 2012.
[25] I. F. Akyildiz, O. B. Akan, C. Chen, J. Fang, and W. Su, “Interplanetary internet:

state-of-the-art and research challenges,” Comput. Netw., vol. 43, no. 2, pp. 75–
112.

[26] M. Ghobadi, S. H. Yeganeh, and Y. Ganjali, “Rethinking end-to-end congestion
control in software-defined networks,” in ACM Hotnets, Seattle, WA, USA, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

