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Abstract—Recent advances in attention networks have gained
enormous interest in time series data mining. Various attention
mechanisms are proposed to soft-select relevant timestamps from
temporal data by assigning learnable attention scores. However,
many real-world tasks involve complex multivariate time series
that continuously measure target from multiple views. Different
views may provide information of different levels of quality
varied over time, and thus should be assigned with different
attention scores as well. Unfortunately, the existing attention-
based architectures cannot be directly used to jointly learn
the attention scores in both time and view domains, due to
the data structure complexity. Towards this end, we propose a
novel multi-view attention network, namely MuVAN, to learn fine-
grained attentional representations from multivariate temporal
data. MuVAN is a unified deep learning model that can jointly
calculate the two-dimensional attention scores to estimate the
quality of information contributed by each view within different
timestamps. By constructing a hybrid focus procedure, we are
able to bring more diversity to attention, in order to fully utilize
the multi-view information. To evaluate the performance of our
model, we carry out experiments on three real-world benchmark
datasets. Experimental results show that the proposed MuVAN
model outperforms the state-of-the-art deep representation ap-
proaches in different real-world tasks. Analytical results through
a case study demonstrate that MuVAN can discover discriminative
and meaningful attention scores across views over time, which
improves the feature representation of multivariate temporal
data.

I. INTRODUCTION

Recently, attention-based neural networks have been suc-

cessfully applied in a wide range of tasks, including neural ma-

chine translation [1], [2], speech recognition [3], [4], disease

diagnosis [5]–[7], and risk prediction [8]. Among different

applications, various attention mechanisms are proposed as a

hidden layer to make soft-selection over several timestamps

by assigning different attention scores from a categorical dis-

tribution [9], [10]. Combined with recurrent neural networks

(RNN), such as long short-term memory (LSTM) and gated

recurrent neural networks (GRU), attention mechanisms are

able to focus on the most relevant hidden states of the sequence

to conduct detection or prediction. These approaches have

been proven to be useful for deep feature representation of

temporal data.

However, the aforementioned existing attention mechanisms

can only handle univariate temporal data. In practice, the

recent advances of pervasive sensing make many real-world

tasks involve complex multivariate temporal data that con-

tinuously measure target from multiple views (or different

information sources) [11]–[13]. Different views may carry

different amount of information varied over time, and thus

should be assigned with different attention scores to make

decisions. For instance, in healthcare setting, various physi-

ological measurements, such as electrocardiogram (ECG) and

electroencephalogram (EEG), provide complementary infor-

mation on clinical observations and reflect patient’s health

condition from different perspectives, i.e., views. These raw

temporal records are often used to diagnose diseases [14]–

[16]. For the task of human activity recognition, multi-sensor

data record synchronous movements (or actions) in different

body areas, and each of which is monitored by a sensor serving

as a ‘view’ of the activities. Intuitively, if we can estimate the

importance of information contributed by each view within

different timestamps, we will be able to enhance the feature

representation of multivariate temporal data. Unfortunately, no

attention mechanism can be directly used to jointly assign

attention scores to both time and view dimensions. Due

to the complex data structure, the existing attention-based

architectures are not applicable to the modeling of a continuum

of multi-view time series. Thus, it remains a difficult task to

develop multi-view attention to learn meaningful representa-

tions from long and broad temporal inputs.

To develop a multi-view attention mechanism for multi-

variate temporal data, we must address several challenges.

First, there exist inherent connections among views over time

containing complicated observations that cannot be simply

captured and interpreted. In practice, multivariate temporal

data can be represented as a collection of heterogeneous

continuous time series consisting of several non-uniformly

sampled signals. It has a unique data structure where the

record fragments of each view are temporally ordered but

the views within a timestamp form an unordered set. Com-

pared to the discrete setting that contains a single-dimensional

fragment at each time step, e.g., binary diagnosis codes or

one-hot words, multivariate temporal data comprises a two-

dimensional heterogeneous fragment within one timestamp,

e.g., multimodal biosignals with different sampling rates. This

introduces a challenge of modeling complex structures with
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Fig. 1. Deep model for attention-based architecture.

attention mechanism. Moreover, the hidden patterns of raw

waveform records in decision-making vary significantly across

individuals. For example, patients suffer from diseases to

different extents, and the diagnosis is often regarded as a

result dependent on physicians’ experience with significant

uncertainty [17].

To address the above challenges, we propose a novel multi-

view attention network (MuVAN) to learn fine-grained atten-

tional representations from multivariate temporal data. The

idea is to mimic the practical visual inspection that pays atten-

tion to the details jointly from both time and view dimensions.

The learned attention scores are highly interpretable, since they

can be used to explain how important each view at each time is

to the goal of real-world tasks. Specifically, we first separately

embed each view of the heterogeneous time series into a

unified latent space through a view-wise recurrent encoder.

Then we feed all the view representations into a new multi-

view attention layer that jointly assigns attention scores to each

view within different timestamps. In order to fully utilize the

multi-view information, we construct a hybrid focus procedure

that brings more diversity to attention. To preserve the spatial

locality, the attentional representation is further aggregated

through a spatial feature fusion layer. Finally, we adopt a

softmax layer for the classification of task. We demonstrate

that the proposed MuVAN model achieves better performance

compared to the state-of-the-art deep representation learning

approaches on three different real-world datasets. Moreover,

we evaluate the interpretability of the learned attention scores

through a case study.

In summary, the main contributions of this paper are as

follows:

• We formalize the problem of multi-view attention learn-

ing for multivariate temporal data and identify its unique

challenges resulting from structure complexity.

• We propose MuVAN, a unified multi-view attention-based

deep learning model, to learn fine-grained attentional

representations from multivariate temporal data. MuVAN
can jointly calculate two-dimensional attention scores to

estimate the quality of information contributed by each

view within different timestamps.

• We empirically show that the proposed MuVAN out-

performs existing deep representation learning methods

on three real-world datasets. The results indicate that

the learned attention scores can identify the influential

concepts across views over time.

In the following sections, we first discuss the connection

of the proposed approaches to related work in Section 2.

Our proposed methodology is then described in Section 3.

Section 4 presents and discusses the experimental results for

our method. Finally, we conclude this work in Section 5.

II. PRELIMINARIES AND RELATED WORK

In this section, we first give a brief introduction of attention-

based neural networks, then review the existing work using

deep representation learning for multivariate temporal data.

A. Attention-based Neural Networks

The basic idea of attention mechanism is to distinguish

the task-related importance of different timestamps from a

sequence x1:T . In practice, x1:T is often processed by an

encoder, e.g., RNN, which outputs a sequence of hidden

vectors h1:T that are more suitable for attention mechanism.

Fig. 1a shows a basic structure of attention-based network

following a self-attention strategy [9]. Intuitively, attention

mechanism is trained to capture the dependencies by calcu-

lating a normalized energy score αt,i corresponding to each

input timestamp i(1 ≤ i ≤ t) separately. More formally,

the following three formulations describe a general attention

procedure for the t-th timestamp:

et,i = Energy(ht,hi), (1)

αt = Normalize([et,1, et,2, ..., et,t]), (2)

h̃t =
∑t

i=1
αt,i � hi.

We can observe that the attentional vector h̃t is fused

by weighted sum of all hidden representations from times-

tamp 1 to t. Recently, researchers have attempted to adopt

attention-based models with various energy functions based

on Eq. (1), including location-based attention [6], [18], graph-

based attention [7], concatenation-based attention [6], [18],
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Fig. 2. Schematic illustration of the proposed multi-view attention model.

and channel-aware attention [19]. Different from existing

work, we consider a more complex structure of the raw mul-

tivariate temporal data shown in Fig. 1b. The input contains

multi-view information and thus is represented as a sequence

of hidden matrices H1:V
1:T rather than vectors. Compared to

the conventional single-dimension attention-based networks,

our multi-view attention mechanism should capture the two-

dimension importance of different input data in both time

and view domains, in order to unleash the power of feature

representation for multivariate temporal data.

B. Deep Representation Learning for Multivariate Temporal
Data

Deep representation learning for multivariate temporal data

is one of the core research tasks in temporal data mining, as

such multivariate time series refers to different observation

views that can be continually measured and monitored for

various real-world tasks. On one hand, some simplified deep

representation learning approaches are designed to extract

abstract features from single part (or a few parts) of views

independently [20]–[22]. However, these methods may ignore

information carried by the rest of views and hence obtain

limited improvement in real-world tasks. On the other hand, in

order to incorporate multi-view information, previous studies

have validated that modifying deep learning structures can im-

prove the performance in modeling multivariate temporal data.

To extract hidden features from multivariate and multimodal

Polysomnography (PSG) records, concatenated deep belief

networks (DBN) are adopted for sleep stage classification [23],

[24]. Multi-view stacked denoising autoencoders (SDAE) are

employed to detect characteristic patterns of epileptic seizure

in multi-channel EEG signals [25]. Some variants of convolu-

tional neural networks (CNN) are used to learn common and

modality-specific representations from multimodal temporal

data for the task of human activity recognition (HAR) [26] and

sleep stage classification [15]. A hybrid deep learning model

that combines CNN with RNN is also proposed to extract

both local and temporal relationships from different sensory

modalities [27], [28]. In most of the aforementioned deep

learning models, the joint features are extracted mainly using

the parameter sharing architecture. In contrast, we propose to

derive the combined representation by explicitly fusing the

view representations according to the relative significance of

each view over time. With the help of our multi-view attention

mechanism, we can jointly capture dependencies from both

time and view dimensions.

III. METHODOLOGY

In this section, we first introduce the structure of multivari-

ate temporal data and some basic notations. Then we present

an overview of the proposed MuVAN model, and discuss the

details of the main components. Finally, we explain how to

interpret the learned attention scores.

A. Basic Notations

In this part, we model the multivariate temporal data as a

set of time-labeled heterogeneous sequences for a multi-class

classification problem. Since the waveform pattern associated

with practical meanings is related to an interval rather than

a certain point [29], [30], in our model, we assume that

there are M multivariate temporal records, and the m-th

record has T (m) timestamps with V (m) views. Then, the

record can be further represented by a sequence of fragments

{X1,X2, · · · ,XT (m)}. Each fragment Xt consists of a set

of waveform vectors {x1
t ,x

2
t , · · · ,xV (m)

t } where xv
t ∈ R

n(v)

.

Each fragment Xt also has a corresponding coarse-grained

category label yt ∈ {0, 1}|C| where |C| is the unique number

of categories related to different real-world tasks. Moreover,

in signal processing, the sampled waveform data expressed

in time-frequency domain are more meaningful than time

domain [30]. In the context of our model, the input vector

xv
t refers to a scalogram vector using wavelet transform.

With the aforementioned notations, the inputs of the pro-

posed multi-view attention model are the set of time-ordered

heterogeneous sequences {X(m)
1 ,X

(m)
2 , · · · ,X(m)

T }Mm=1 with

a set of corresponding labels {y(m)
1 ,y

(m)
2 , · · · ,y(m)

T }Mm=1.

B. Model Architecture

Attention networks aim at performing a soft-selection pro-

cedure over sequential inputs using an internal inference step.

In this work, we present MuVAN to mimic the practical visual

inspection that focuses on several details jointly from both time
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and view dimensions. For example, physicians diagnose dis-

eases by exploring the subject’s monitoring records, and they

always pay attention to some influential clinical observations

in different aspects (i.e., views) happened at different time,

such as fast heart beat, abnormal brain activity, and irregular

body motion. Fig. 2 depicts the high-level overview of our

proposed model. Given a multivariate temporal record from

timestamp 1 to t, the i-th input vector from the v-th view

xv
t is fed into a view-wise recurrent encoder, which outputs

a hidden vector hv
t . Along with the set of integrated hidden

matrix {Hi}t−1
i=1 , we are able to compute a score matrix At for

the current timestamp t. Subsequently, a context matrix Ct is

computed from At and {Hi}t−1
i=1 . The procedure is presented

as multi-view attention mechanism combining with a hybrid

focus module, which will be detailed in the rest of this section.

From the context matrix Ct and the current hidden matrix Ht,

we can further obtain an attentional hidden representation h̃t

through a spatial feature fusion module to predict the label,

i.e., yt. The proposed network can be trained end-to-end.

C. View-wise Recurrent Encoder

In the task of learning deep representations from multivari-

ate temporal data, simply concatenating raw input features,

namely global feature learning, may not be enough to achieve

accurate and robust performance, especially with the pres-

ence of a large number of views with different modalities.

The effectiveness of extracting features from different views,

referred to view-wise feature learning, has been proven for

different tasks [19], [25], [27]. Inspired by these studies, we

further extend this strategy by adopting view-wise RNN to

learn latent representations from multi-view time series. Given

the v-th view sequence from xv
1 to xv

T , we can obtain their

hidden representations hv
t ∈ R

2p through a 2-layer stacked

Bidirectional Gated Recurrent Units (BGRU) [31] as follows:

hv
1:T = BGRU(xv

1:T ;θr), (3)

where θr denotes all the parameters of BGRU. The obtained

hv
t is the concatenation of both forward and backward hidden

vectors, denoted as
−→
h v

t ,
←−
h v

t ∈ R
p, respectively.

In our model, we choose BGRU since it takes advantages of

all the available sequence information from two directions [6].

Moreover, compared to LSTM, BGRU shows similar perfor-

mance but with a more concise expression [32], which reduces

network complexity for our view-wise settings. The hidden

features extracted from different views are further integrated

into a hidden matrix Ht = {h1
t ,h

2
t , ...,h

V
t } ∈ R

2p×V . In

this way, we unify the feature dimension from the heteroge-

neous inputs, and the unique characteristics of each view are

preserved for the attention mechanism.

D. Multi-view Attention Mechanism

To distinguish the importance of different views over time,

we propose two multi-view attention mechanisms, namely

location-based attention and context-based attention, respec-

tively, to jointly assign attention energy to both view and time

domains.

• Location-based Attention. An easy way to calculate the

attention energy evt,i ∈ R is scoring solely from each view-

wise representation Hv
i , as follows:

evt,i = Energy(Hv
i ) = W�

e Hv
i + be, (4)

where We ∈ R
2p and be ∈ R are the weight vector and bias

value, respectively. Note that the location-based multi-view

attention mechanism does not capture any relationships among

views or timestamps, as it only considers individual informa-

tion. Moreover, it is time-consuming to directly measure all

pairwise correlations of every two view-wise representations,

since the computational complexity may grow exponentially

with the increase in the number of correlated views. Thus,

to fully characterize the complicated view relationships, we

propose a novel context-based multi-view attention mechanism

in the proposed MuVAN.

• Context-based Attention. We use a multi-layer perceptron

(MLP) [2] to calculate the energy based on four context

information sources: 1) local self-context of Hi, 2) target self-

context of Ht, 3) cross-context between Ht and Hi, and 4)

previous score information from αt,(i−1). Specifically, for self-

context expression, we learn a weighted sum vector h̄t ∈ R
k

by convolving Ht with a matrix Wsc ∈ R
V×(2p−k+1), as

follows:

h̄t =
V∑

v=1

Hv
t ∗W v

sc, (5)

where ∗ denotes the convolution operator. Similarly, we derive

a vector h̄t,i ∈ R
k to express the cross-context between

representations Ht and Hi, defined as:

h̄t,i = Ht ∗W 1
cc +Hi ∗W 2

cc, (6)

where Wcc ∈ R
2×V×(2p−k+1) is the parameter to be learned.

Based on Eq. (5) and Eq. (6), the attention energy vector et,i ∈
R

V can be calculated as follows:

et,i = Energy(Ht,Hi,αt,(i−1))

= tanh (Wah̄t +Wbh̄i +Wch̄t,i +Wdαt,(i−1) + be),
(7)

where Wa ∈ R
V×k, Wb ∈ R

V×k, Wc ∈ R
V×k, Wd ∈

R
V×V , be ∈ R

V are the parameters to be learned. Differ-

ent from the location-based attention, context-based attention

captures hidden connections of Ht and Hi by considering

the surrounding context information from both time and view

domains, and thus can generate informative representations

from multi-view data. Based on Eq. (4) or Eq. (7), we can

obtain an energy matrix Et ∈ R
V×(t−1) of current timestamp

t for score normalization.

E. Hybrid Focus Procedure

According to Eq. (2), to obtain a normalized attention

score matrix At ∈ R
V×(t−1) from the energy matrix Et, the

softmax function can be directly used, as follows:

Av
t,i = exp (Ev

t,i)

/
t−1∑
i=1

V∑
v=1

exp (Ev
t,i) . (8)
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The conventional softmax-based normalization is based on the

assumption that only a few elements are related to the task

goal. As a result, it tends to assign close-to-zero scores to most

of the elements due to the unbounded exponential function in

Eq. (8). However, in the scenario of our multi-view attention,

such assumption does not hold, since a significant portion of

the views may provide informative observations for decision

making.

To address this issue, we design a new score assignment

strategy, named hybrid focus module, to fully utilize the multi-

view information and bring more diversity to attention. In

particular, we propose to separately enlarge the details in view

domain within each timestamp, while preserving the global

energy distribution in time domain. More formally, given the

energy matrix Et, we first adopt view-aware smoothing for

each timestamp i, as follows:

êvt,i = βt,iσ(e
v
t,i)

/
V∑

v=1

σ(evt,i) ,

where σ(·) is the bounded sigmoid function used to narrow

the energy distance among views within each timestamp, and

βt,i denotes the coefficient of global energy distribution at

timestamp i, defined as:

βt,i =

∑
i,v∈Uv

i
ev+t,i∑t−1

i=1

∑
i,v∈Uv

i
ev+t,i

,

where Uv
i identifies the group of the v-th view at the i-

th timestamp. Here ev+t,i means that only positive values are

counted in order to avoid energy offset. Given the smoothed

energy matrix Êt, we then adopt time-aware sharpening for all

the timestamps, to obtain the final score matrix At, as follows:

αv
t,i = exp (γêvt,i)

/
t−1∑
i=1

V∑
v=1

exp (γêvt,i) ,

where γ is the sharpening factor [4] to prevent aggregating

multiple focus. In this way, the proposed hybrid module

would focus on the topology of energy distribution rather

than scattered points, and thus can help MuVAN preserve more

useful information from the learned attention energy.

F. Attentional Feature Fusion

In order to preserve the spatial locality of view-wise char-

acteristics during feature fusion, CNN can be employed. The

benefit of adopting CNN is to utilize the layers with non-

linear filters to share weights among all the locations in the

input, which has shown its superior capability for several

content-related tasks, such as image analysis [33] and language

modeling [34]. In our model, we obtain the context matrix

Ct ∈ R
2p×V according to the attention score matrix At and

the hidden matrix from H1 to Ht−1, as follows:

Ct =
t−1∑
i=1

At,i �Hi.

Given the context matrix, we combine it with the current

hidden matrix Ht to generate a 3D-tensor composed of two

input planes. The attentional hidden representation can be

further obtained using CNN, defined as:

h̃t = CNN2D([Ht ⊕Ct];θc), (9)

where ⊕ is the combination operator, and CNN2D denotes a

series of 2D convolutional-nonlinear-pooling cells with the

parameter θc. All the features extracted by CNN are then

flattened to represent the attentional vector h̃t ∈ R
r. The

advantage of the proposed CNN-based attentional feature

fusion module is that it not only keeps the content across

views, but also extracts the correlations between context and

hidden matrix, which further helps MuVAN to enhance the

capability of feature representation. Note that the dimension r
relies on the input size and the structure of CNN, which are

both given in Section 4.2.

Finally, the attentional vector h̃t is fed to a softmax layer

for classification, as follows:

ŷt = Softmax(Wsh̃t + bs), (10)

where Ws ∈ R
|C|×r and bs ∈ R

|C| are the parameters to be

learned.

G. Unified Training Procedure

To train a unified model, we adopt cross-entropy to measure

the loss between the ground truth yt and the ŷt obtained by

Eq. 10. Formally, the final cost function of our end-to-end

MuVAN model is defined as:

JMuVAN(X
(1)
1 , · · · ,X(1)

T (1) , · · · ,X(M)
1 , · · · ,X(M)

T (M))

= − 1

M

M∑
i=1

1

T (i)

T (i)∑
t=1

[
y�
t log ŷt + (1− yt)

� log (1− ŷt)
]
.

H. Interpretation

For various real-world applications, interpreting the learned

representations is important to understand the practical mean-

ings. We focus on analyzing the interpretability of each view

over time, in order to discover which ones are crucial to the

real-world task. Since the proposed model is based on multi-

view attention mechanism, it is easy to find relevant inputs by

analyzing the attention score matrix At. For the t-th fragment

Xt, if the attention score αv
t,i is large, then the information

of the v-th view at the i-th timestamp has high probability to

be related to the current label. Detailed examples and analysis

are given in Section 4.4.

IV. EXPERIMENTS

In this section, we experimentally evaluate the performance

of the proposed MuVAN model on three benchmark datasets,

compare its performance with other state-of-the-art deep rep-

resentation learning models, and conduct a case study to show

the benefit of the proposed multi-view attention mechanisms

in real-world tasks.
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A. Dataset Description

In the experiments, three benchmark multivariate temporal

datasets from different real-world tasks are used to validate

our proposed MuVAN model. The datasets are the CHI-MIT

dataset, the UCD dataset, and the MHEALTH dataset, respec-

tively.

The CHB-MIT Dataset
The CHB-MIT dataset is a publicly available multi-channel

EEG dataset collected at the Children’s Hospital Boston [35].

In this dataset, the EEG signals contain 23 channels (i.e.,

views) recorded from different brain areas at 256 Hz. The

beginning and end of intractable seizures are both annotated in

the ground truth. We follow the preprocessing steps adopted in

previous work [30]. Finally, the total number of input vectors

we generated is 252, 862 by sliding a fix-length window

through the entire signals of 23 subjects parameterized by

two predefined parameters: window length l = 3sec and step

length s = 1sec. We use this dataset to show that our model

can learn meaningful representations for seizure detection task.

The UCD Dataset
The UCD dataset is a multi-modal PSG dataset provided

by St. Vincent’s University Hospital and University College

Dublin, which can be downloaded from PhysioNet [36]. The

PSG time series consist of 14 views from adult subjects,

including EEG at 128 Hz, electrooculography (EOG) at 64Hz,

electromyography (EMG) at 64Hz, and other signals related

to patient movement, posture and breathing. In addition, each

30-second fragment is labeled as in one of the five sleep stages

by experts. Different from previous work that select specific

views [20], [24] or subject groups [23] using prior knowledge,

we generate 287, 840 input vectors from all the 25 subjects

and feed all the views into our model. We perform sleep stage

classification on this dataset.

The MHEALTH Dataset
MHEALTH [37] is a HAR benchmark dataset, which contains

23 body sensor views while performing 12 physical activities.

Multiple sensors are placed on chest, right wrist, and left ankle,

i.e., accelerometer, gyroscope, magnetometer, and ECG. All

the sensing views are recorded at a sampling rate of 50Hz. We

generate 137, 494 input vectors from all the 10 subjects based

on the segmentation experience gained in [37], [38], where

the window length and step length are set as l = 5.12sec and

s = 1sec, respectively. Similarly, we employ all the views for

evaluation.

Table I provides detailed statistics of each multivariate

temporal dataset used in our experiments. We can observe

that different datasets have different data formats in terms of

sample rates, sensor type, and modalities, which can compre-

hensively evaluate our model in different situations. Note that

all the datasets are imbalanced.

B. Experiment setup

In this subsection, we first introduce the state-of-the-art

deep representation learning approaches which are used as

TABLE I
STATISTICS OF EACH EXPERIMENTAL DATASET: TASKS INCLUDE SEIZURE

DETECTION (SD), SLEEP STAGE CLASSIFICATION (SSC), AND HUMAN

ACTIVITY RECOGNITION (HAR).

Dataset CHB-MIT UCD MHEALTH

# of fragments 252,862 287,840 137,494

# of classes 2 5 12

# of views 23 14 23

- # of modalities 1 12 4

- # of sensors 23 14 8

Sample rate(s) (Hz) 256 128, 64, 8, 4 50

Task SD SSC HAR

baselines, and then outline the criteria used for evaluation.

Finally, we describe the implementation details.

Baseline Approaches
To validate the performance of the proposed model for differ-

ent real-world tasks, we compare it with several state-of-the-art

models. We select the following eight existing approaches as

baselines:

• RNN. RNN is a commonly used baseline for global feature

learning. We first concatenate all the inputs into a vector space,

and then feed it to the BGRU. The hidden representations

produced by the BGRU are directly used for task-related

training using softmax.

• RNNAtt. We incorporate attention mechanism into RNN.

After the BGRU outputs the hidden vectors h1:t, RNNAtt
adopts attention module to obtain a context vector ct. Then,

RNNAtt concatenates both ct and ht as an attentional rep-

resentation for final training. For the sake of fairness, two

existing strategies, namely location-based and concatenation-

based attention [6], are employed, denoted as RNNAttl and

RNNAttc, respectively.

• vRNN. vRNN is an RNN variant considering view-specific

characteristics, which is widely used in several view-related

tasks [25], [27], [38]. We first feed each view to the BGRU

based on Eq. (3), and then concatenate the hidden representa-

tions of all the views into a vector space to train an end-to-end

model using softmax.

• vRNNAtt. vRNNAtt employs attention mechanism on each

view after the feature extraction of vRNN. Similarly, we

perform the same process as RNNAtt, denoted as vRNNAttl
and vRNNAttc, respectively.

• CNN. We first integrate the inputs from all views as a

matrix, and then extract features through a plain convolutional

architecture with the same structure in Eq. (9). The learned

hidden representations are directly used for task-related train-

ing using softmax.

• ChannelAtt [19]. ChannelAtt focuses on soft-selecting

critical views from multivariate signals. Compared to RNNAtt,
ChannelAtt adopts a new global attention mechanism in the

view domain instead of the time domain.

Our Approaches
We show the performance of the following three approaches
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TABLE II
CNN STRUCTURE OF THE ATTENTIONAL FEATURE FUSION MODULE IN

MUVAN.

Cell No. Conv Non-linear Pooling

1 5× 5× 16 ReLU 2× 2

2 5× 5× 32 ReLU 2× 2

in the experiments.

• MuVAN−. MuVAN− is a reduced model that only uses

the hidden representations generated by Eq. (3), i.e., without

employing any multi-view attention mechanisms.

• MuVANloc. It is based on location-based multi-view at-

tention mechanism with softmax-based normalization in the

unified model.

• MuVANctx. This model uses context-based multi-view

attention and hybrid focus procedure when calculating the

score matrix.

Evaluation criteria
Since the evaluation tasks belong to classification problem, we

use F1-score and Accuracy to validate our model. Moreover,

the area-under-the-curve of receiver operator characteristic

(AUCROC) and precision-recall (AUCPR) scores are also

employed to numerically evaluate the quality of each method.

Regarding the tasks related to multi-class classification prob-

lem, here we show both the Macro-F1 and Micro-F1 scores.

Macro-F1 score biases the metric towards the least populated

labels, while Micro-F1 score biases towards to the most

populated labels. Note that the AUCROC and AUCPR scores

are both based on Macro metric.

Implementation Details
We implement all the approaches with Pytorch [39]. In order

to conduct subject-independent evaluations, we randomly split

each dataset by subjects into the training, validation and testing

sets with a 0.7 : 0.1 : 0.2 ratio (i.e., the model is never

trained on data from both the validation and testing subjects).

The validation set is used to determine the best values of

parameters within 100 iterations. We repeat experiments with

different data combination for 5 times (or folds) and report the

average test performance for each method. Note that, to fairly

compare the performance, we adopt the same data combination

for all models at each fold. During the whole training step,

we use Adadelta [40] with mini-batch to minimize the cost

function. We also use momentum (ρ = 0.95), weight decay

(L2 penalty with the coefficient 0.001), and dropout strategies

(the dropout rate is 0.5) for all the approaches. Furthermore,

the CNN structure of our attentional feature fusion module is

shown in Table II, and we set the same p = 128 and k = 128
for baselines and our models.

C. Performance on Real-world Tasks

In this subsection, we investigate the effectiveness of Mu-
VAN compared to other models in different real-world tasks,

including seizure detection, sleep stage classification, and

human activity recognition, respectively.

TABLE III
DETECTION PERFORMANCE COMPARISONS ON THE CHB-MIT DATASET.

CHB-MIT Dataset

Method AUCROC AUCPR F1-score Accuracy

RNN 0.9343 0.8274 0.6201 0.8775

RNNAttl 0.9251 0.7794 0.7149 0.8958

RNNAttc 0.9289 0.7780 0.6517 0.9021

vRNN 0.9414 0.8467 0.7529 0.8840

vRNNAttl 0.9484 0.8941 0.7924 0.9255

vRNNAttc 0.9522 0.9056 0.8199 0.9268

CNN 0.9263 0.8702 0.7959 0.9088

ChannelAtt 0.9556 0.9119 0.8675 0.9506

MuVAN− 0.9480 0.8645 0.7561 0.9189

MuVANloc 0.9749 0.9233 0.8916 0.9566

MuVANctx 0.9832 0.9654 0.9238 0.9705

Results of Seizure Detection
In this set of experiments, we evaluate the performance of

various models for detecting epileptic seizure onset on the

CHB-MIT dataset, as shown in Table III. Given the results of

baselines, we can observe that the attention-based RNN models

perform better than plain RNN methods both in global and

view-wise strategies. This is because attention mechanism can

help model to learn reasonable parameters and hence make

correct detection. We can also see that the results of view-wise

attention models perform on par with those of global-based

attention models. The reason is that all the views belong to

the same modality, i.e., EEG, which makes both strategies easy

to identify critical seizure patterns. Moreover, the ChannelAtt
model adopting view-wise attention performs better than the

time-wise attention models. This results from the fact that

brain related activities are often associated with several differ-

ent brain areas. There exist more hidden connections across

views related to the EEG seizures. This observation can also

be found from the performance comparison between RNN and

MuVAN−, where MuVAN− achieves better results since the

spatial information is remained instead of simply adopting

concatenation.

From the results, both our MuVANloc and MuVANctx models

outperform the baselines on all five different evaluation mea-

surements. Specifically, MuVANctx significantly outperforms

all other models. For example, MuVANctx obtains the best

of 0.9238 on F1-score compared with 0.8916 and 0.8675
achieved by our MuVANloc model and the ChannelAtt baseline,

respectively. This means that MuVANctx is able to enhance

feature representation in imbalanced classes. Based on the

overall performance comparisons on the CHB-MIT dataset,

we can demonstrate that our proposed multi-view attention

mechanism can improve the performance for seizure detection

task in healthcare.

Results of Sleep Stage Classification
In this set of experiments, we evaluate the performance of

various models for the purpose of sleep stage classification.

Table IV shows the classification results on the UCD dataset.
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TABLE IV
CLASSIFICATION PERFORMANCE COMPARISONS ON THE UCD DATASET.

UCD Dataset

Method AUCROC AUCPR MacroF1 MicroF1 Accuracy

RNN 0.6228 0.3350 0.2663 0.3970 0.5091

RNNAttl 0.6172 0.3305 0.2457 0.3734 0.5002

RNNAttc 0.6234 0.3335 0.2554 0.3712 0.5010

vRNN 0.8489 0.5923 0.5523 0.6287 0.6538

vRNNAttl 0.8433 0.5858 0.5579 0.6342 0.6619

vRNNAttc 0.8529 0.5970 0.5845 0.6530 0.6717

CNN 0.8732 0.6725 0.5925 0.6492 0.6590

ChannelAtt 0.8662 0.6458 0.6137 0.6773 0.6859

MuVAN− 0.8474 0.6023 0.6022 0.6952 0.7180

MuVANloc 0.8538 0.6105 0.6200 0.7068 0.7193

MuVANctx 0.8722 0.6611 0.6510 0.7313 0.7430

In the task of PSG-based sleep stage classification, the vari-

ability of rhythmic patterns in different modalities makes it

hard to train an effective model with simple design. This can

be observed from the bad performance of all the global-based

models, which shows that directly concatenating raw features

into model may not work on multimodal data. However, taking

the view-wise strategy into consideration, the performance

enormously increases.

Although adopting view-wise learning significantly im-

proves the classification performance, given the results of vRN-
NAttc using complicated attention mechanism, only relatively

minor gains are achieved in terms of Accuracy and F1 scores,

compared with vRNN and CNN. This observation can also

be found from the performance of ChannelAtt in terms of

AUCROC and AUCPR, which illustrates that in sleep PSGs

data, the inherent dependencies shift across views over time,

and hence simply using multilayer perceptrons on each domain

cannot work well.

Our MuVAN model still performs better than the baselines,

which demonstrates that the proposed multi-view attention

mechanism can help the models to enhance the ability of fea-

ture representation. Furthermore, MuVAN− does not use any

attention mechanism, but the performance is higher than other

baselines, which shows that keeping spacial information can

improve the recognition performance. Thus, it is reasonable to

employ matrix-based representation for feature learning. The

limited improvement of MuVANloc, compared with MuVAN−,

demonstrates that the learned context matrix using location-

based attention does not provide much useful information.

Our proposed MuVANctx model, on the other hand, yields

better results than the other methods, which confirms that

the proposed context-based attention mechanism can focus on

more useful information from both view and time domains

and hence help learn better representations.

Results of Human Activity Recognition
We also evaluate the performance for human activity recogni-

tion. The experimental results on the benchmark MHEALTH

dataset are listed in Table V. Among all the approaches,

TABLE V
RECOGNITION PERFORMANCE COMPARISONS ON THE MHEALTH

DATASET.

MHEALTH Dataset

Method AUCROC AUCPR MacroF1 MicroF1 Accuracy

RNN 0.9835 0.9459 0.8684 0.8582 0.8915

RNNAttl 0.9765 0.9196 0.8858 0.8658 0.8931

RNNAttc 0.9720 0.9163 0.9026 0.8949 0.9106

vRNN 0.9849 0.9204 0.9080 0.9062 0.9091

vRNNAttl 0.9868 0.9267 0.9197 0.9191 0.9266

vRNNAttc 0.9833 0.9136 0.9400 0.9384 0.9399

CNN 0.9821 0.8992 0.9134 0.9122 0.9167

ChannelAtt 0.9848 0.9336 0.9296 0.9276 0.9310

MuVAN− 0.9825 0.9334 0.9358 0.9328 0.9352

MuVANloc 0.9846 0.9287 0.9262 0.9252 0.9328

MuVANctx 0.9915 0.9576 0.9600 0.9678 0.9698

similarly, the results of global-based models still perform

worse than those of view-wise models, under the influence of

multiple modalities. We observe that vRNNAttc outperforms all

other baselines in terms of Accuracy and F1 scores, includ-

ing ChannelAtt, and even performs better than the proposed

MuVAN− and MuVANloc on this dataset. This is because of

the fact that, in human related activities, there exist more

distinctive rhythmic patterns within views than those across

views, which illustrates the advantages of time-wise attention

mechanism over other attention strategies. However, as we

mentioned before, vRNNAttc fails to perform well across

different datasets and tasks. On the other hand, our MuVANctx

model consistently achieves better results than others. It not

only achieves better Accuracy and F1 scores, but also obtains

higher AUC-ROC and AUC-PR than baselines. Moreover, the

comparison between MuVANctx and vRNNAttc indicates that the

context-based attention mechanism provides complementary

information carried by multiple views and hence learns more

meaningful representations that are helpful for human activity

recognition.

Based on all the above analysis, we can conclude that the

conventional single-dimension attention mechanisms may lose

critical information, and hence do not work well dealing with

complex data structure. The context-based multi-view attention

mechanism achieves better results on all the datasets compared

with the location-based multi-view attention mechanism. We

arrive at a conclusion that our proposed multi-view attention

model indeed learns informative representations to improve

the performance in different real-world tasks.

D. Case Study

To demonstrate the benefit of adopting proposed multi-view

attention mechanisms in real-world tasks, in this part, we

analyze the attention scores learned from both of our MuVANloc

and MuVANctx models. In addition, we interpret how the multi-

view attention works using different mechanisms to affect the

quality of learned feature representations. Fig. 3 shows a case

study for PSG sleep stage classification on the UCD dataset
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Fig. 3. A case study for sleep stage classification of a patient using different multi-view mechanisms from MuVAN on the UCD dataset.

where a patient woke up suffering from central sleep apnea.

We choose this task because of the complex PSG data structure

and relationships among views and timestamps. Specifically,

the score matrix At for the 20-th timestamp is calculated

according to previous representations from 1 to 19 timestamps

with 14 views. Thus, in Fig. 3, X-axis represents views and

Y-axis denotes the previous timestamps. We can observe that

the score matrices learned by the proposed two multi-view

attention mechanisms are different since they adopt different

focus strategies. This is reasonable in visual inspection, since

physicians may make the same diagnosis based on different

observations [41], [42], which also reflects the uncertainty and

variability in decision making.

Analyzing the score matrix of MuVANloc from Fig. 3a, which

utilizes location-based attention mechanism with softmax-

based normalization, we observe that the recent two times-

tamps with the first five views significantly contribute to the

current sleep stage. This demonstrates that the previous eye

movements with salient brain activities cause the patient to

wake up. Different from MuVANloc, the score matrix learned

from MuVANctx in Fig. 3b, using context-based attention mech-

anism with hybrid focus normalization, provides an in-depth

interpretation. We can observe that C3-A1 EEG and ECG

are the two most active views, and the contributions of EOG

and EMG appear in turns. There is a strong probability that

the wake-up is related to the nervous system irregularities

which trigger the heart abnormalities and muscles movements.

According to [43], the second interpretation conforms more

to the pathology of central sleep apnea. To sum up, between

two multi-view attention mechanisms, MuVANloc can focus on

surface phenomena that are close to the current timestamp,

while MuVANctx tends to incorporate topological correlations

to derive explicit explanations with more practical meanings.

In addition, as shown in Table IV, the meaningful represen-

tations support the effectiveness of our model to yield good

performance in sleep stage classification.

V. CONCLUSIONS

In this paper, we propose a novel multi-view attention

network, named MuVAN, to address the challenges of modeling

multivariate temporal data. MuVAN is a unified model that

consists of several components: (1) view-wise recurrent en-

coder (2) multi-view energy assignment, (3) hybrid focus, and

(4) spatial attentional feature fusion. Two multi-view attention

mechanisms are developed to jointly learn two-dimensional

attention scores to estimate the quality of information con-

tributed by each view over time. Experimental results on three

benchmark datasets justify the effectiveness of our proposed

MuVAN model in real-world tasks. Analytical results through a

case study demonstrate that MuVAN can discover meaningful

attention score matrices to provide complementary information

to enhance feature representation. As the proposed multi-

view attention mechanism is end-to-end and task-oriented, it

is applicable to other applications with similar data struc-

ture, especially in pervasive sensing where interpretable broad

learning is still a major challenge.
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