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Abstract—Aiming at prolonging the lifetimes of sensor net-
works, various scheduling schemes are designed to reduce the
number of active sensors. However, some scheduling strategies,
such as partial coverage scheduling and target coverage schedul-
ing, may result in disconnected network topologies, due to the
low density of active nodes. In such cases, traditional routing
algorithms cannot be applied, and the shortest path discovered by
these algorithms may not have minimum packet delivery latency.
In this paper, we address the problem of finding minimum latency
routes in intermittently connected sensor networks by proposing
an on-demand minimum latency (ODML) routing algorithm.
Since on-demand routing algorithm does not work well when
the source and destination frequently communicate with each
other, we propose two proactive minimum latency routing algo-
rithms: optimal-PML and quick-PML. Theoretical analysis and
simulation results show that (1) ODML can effectively identify
minimum latency routes which have much smaller latency than
the shortest path, and (2) optimal-PML can minimize the routing
message overhead and quick-PML can significantly reduce the
route acquisition delay.

I. INTRODUCTION

Wireless sensor networks have been envisioned to be useful
in many military and civilian applications such as battlefield
surveillance, target tracking, habitat monitoring, etc. Since
sensor nodes are generally powered by battery, techniques to
prolong the network lifetime have become the recent research
focus. A variety of energy conservation strategies have been
proposed. Among them, a frequently used mechanism is to
deploy more sensors than required, and schedule the activity of
each sensor node such that sensors perform the given mission
in turn and at any time, only a small number of sensors are
active to meet the coverage requirement of the mission [1],
(21, (31, [4], [5], [6].

With scheduling scheme, the number of active nodes is sig-
nificantly reduced and thus the network lifetime is prolonged.
However, these scheduling schemes are application driven,
hence their priority is to achieve the desired sensing coverage.
As a result, some scheduling strategies, such as partial cov-
erage scheduling [3], [4] and target coverage scheduling [5],
[6], may result in very sparse distribution of active nodes.
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Consequently, the network may not be connected at some
instant due to the low node density.

When the network is not fully connected, there will be
problems in sending the sensing data to the sink since tradi-
tional routing algorithms such as AODV [7] and DSR [8] may
fail. Furthermore, in intermittently connected sensor networks,
the metric of hop number used in many traditional routing
schemes may not work well because the shortest path may not
be able to achieve minimum end-to-end packet delivery delay,
which is crucial for many applications of sensor networks,
such as military surveillance and forest fire alarms.
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Fig. 1.  An example of intermittently connected network, where nodes
B.C,D,E monitor the targets in turn, and A wants to send packets to the
sink

Example 1.1: Consider a target coverage scheduling example
shown in Fig. 1(a). The mission of the sensor network is to
continuously monitor (cover) two targets (black points) in the
deployed region. Initially, the targets are sensed by multiple
nodes B,C, D, E (circles denote the sensing range of the
nodes). To save power, the scheduling algorithm proposed
in [5] is used to only keep part of the nodes active. As
illustrated in Fig. 1(e), node B is active from time 0 to 10,
node C' is active from time 10 to 20, and both D and E are
active from time 20 to 30. Suppose at time 7, node A collects
some data and wants to send the data to the sink. If B is within
the communication range of A, A can immediately send the
data to B which subsequently forwards the data to the sink as
shown in Fig. 1(b). However, if A’s data is available at time
11, it cannot send the data to B which has been scheduled
to sleep. Since only node C' is active at this time, and it is
outside the communication range of A (Fig. 1(c)), A’s data



cannot be forwarded to the sink.

To address this problem, the source node has to buffer the
data temporarily and send the data to its neighbor when it
wakes up. Note that the source node can be in sleep and only
wake up before sending the data. As in our example, A buffers
the data until D wakes up at time 20. Then, it turns on its
transceiver and passes the data to D as shown in Fig. 1(d).
The data follows the path A — D — E — sink and arrives at
the sink at time 20, thus the packet delivery latency is 9 (20-
11). On the other hand, if A chooses the shortest path, A —
B — sink, it has to wait for B’s wakeup in the next round,
i.e., time 30, resulting in a much longer delay. Therefore, the
end-end packet delivery latency is a better routing metric in
intermittently connected sensor networks.

In this paper, we propose an on-demand minimum latency
(ODML) routing algorithm to find minimum latency routes
in intermittently connected sensor networks. Since on-demand
routing algorithm does not work well when the source and des-
tination frequently communicate with each other, we propose
two proactive minimum latency routing algorithms: optimal-
PML and quick-PML. Theoretical analysis and simulation
results show that (1) ODML can effectively identify minimum
latency routes which have much smaller latency than the
shortest path, and (2) optimal-PML can minimize the routing
message overhead and quick-PML can significantly reduce the
route acquisition delay.

The rest of the paper is organized as follows. In the next
section, we introduce the system model and formulate the
problem. Section III and Section IV present our on demand
routing scheme and proactive routing schemes respectively.
Then, we discuss some related issues in Section V, and
evaluate the performance of proposed schemes in Section VI.
The related work is discussed in Section VII. Section VIII
concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network and Scheduling Model

Similar to many application-driven scheduling schemes [1-
6], we assume the lifetime of a sensor network is divided into
rounds with equal duration (7}.). For each node, a round con-
sists of a working period (T,,) and a sleep period. Each round
is divided into time slots, and a packet is only transmitted at
the start of a time slot. Note that the schemes in this paper
can also work well if T, varies among the nodes.

To simplify the discussion, in all the examples, the sensor
nodes are synchronized. Nevertheless, our algorithms do not
pose any restriction on the synchronization between neighbor-
ing nodes. Each node only needs to know the relative position
of its neighbor’s working period (i.e., the offset between the
start times of their working period), and this can be easily
achieved through the periodic exchange of hello messages.

Under an intermittently connected topology, if a node only
delivers packets during the working period, the packets may
never be sent out, because its working period may not overlap
with that of its neighbors. To address this issue, each node still
receives packets within the working period but the sending

rule is modified as follows: if a node has packets to forward
outside its working period, it wakes up its transceiver and
sends packets at the start of the working period of its next
hop neighbor.

In intermittently connected networks, a new kind of packet
delivery latency called buffer delay is introduced. Buffer delay
is the duration from the moment when a packet is available
for sending to the time when the packet is successfully sent
out. Since buffer delay (in the order of seconds) is much
longer than other kinds of delays (e.g., processing delay,
transmission delay and propagation delay, which are in the
order of milliseconds), we only consider buffer delay in this
paper.

In our model, the wireless communication link between any
pair of nodes is symmetric, that is, two neighboring nodes
can talk to each other if their Euclidean distance is within
the communication range. We assume all the sensor nodes are
stationary, and each sensor node does not need to know its
own location in this paper.

B. Problem Formulation

First, we introduce some notations:

o S; denotes the start time of node v;’s working period.

¢ F; denotes the end time of node v;’s working period, and
E, =S5,+T, (mod T,).

o d"I(t): the one hop buffer delay between node v; and v;
when v; has a packet to send at time ¢.

. Rg’k: the i*" route between the source node v; and the
destination node vg. We can also use this notation to
depict a subsegment of a route. For instance, R?’" is
a n-hop route vg, v, ..., Un, and R{’k,o <j<k<n
denotes one of its subroutes. For simplicity, we use R;
to represent Rfk if there is no confusion. _

o L] *(t): the packet delivery latency of a given route Rl ok
in which ¢ is the time when the packet is available. For
instance, the packet delivery latency of a route R?’” =
{vo, v1,...,v,} can be calculated by the following:

n
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k=1
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For simplicity, we use £;(t) to represent ﬁg’k(t) if there
is no confusion.

With these notations, we can formally define minimum
latency route.

Definition 1: Minimum Latency Route. Suppose there
are n different routes between the source node v, and the
destination node v, denoted as R, ..., R%%. If a route R
satisfies CZ’d(t) < £f’d(t),i # k,1 <1 < n, we call this route
the minimum latency route from v to vy when the packet is
available at 7, and use MLR*%(t) and MDL**(t) to denote
the minimum latency route and its packet delivery latency
respectively.

Similar to traditional routing schemes in mobile ad hoc
network, the minimum latency routing algorithm can be on-
demand or proactive. The on-demand approach is used when



the source and destination nodes are not frequently commu-
nicate with each other. Formally, the On Demand Minimum
Latency Routing problem is defined as follows.

Given the source node vs and the destination node vy, and
suppose the data is available at time t in the source node,
our goal is to find the minimum latency route from v to vq
on-demand.

In this paper, we present an On Demand Minimum Latency
routing algorithm (ODML), which can find a minimum latency
route reactively given the time when the source node has a
packet to send. However, on-demand routing does not work
well when the source and the destination frequently communi-
cate with each other. In intermittently connected network, the
network topology varies with time. As a result, the minimum
latency route may also change accordingly. Since the route
provided by ODML is only optimal at the time when the
packet is ready for sending, the source node has to invoke
ODML again if it wants to send another packet at different
time. Besides the delay of finding the route, it will incur
enormous unnecessary communication overhead. For instance,
consider the example shown in Fig. 1, if there is a packet
available at each time point within the working period of
node A, A has to run ODML 10 times to find minimum
latency route for each packet. Apparently, this is not necessary
because the minimum latency route does not change within
some consecutive time slots, e.g., from time 5 to 10. In this
scenario, proactive routing should be used. Instead of finding
a minimum latency route at each time slot, we aim to find the
time points where the minimum latency route changes. We
define these time points as below.

Definition 2: Route Transition Point (RTP) denotes the
time point when the minimum latency route is about to change.
Formally, suppose at time ¢, R‘;’d is the minimum latency route
from vg to vg. If at time #+/, the minimum latency route
changes to a different route, say R;’d, t is referred to as the
route transition point.

As shown in Fig. 1, within the working period of A, there
is only one route transition point located at time 10. Thus,
ODML only needs to be called twice (at time 5 and 11
respectively), which implies a significant decrease in message
overhead. We formulate the Proactive Minimum Latency Rout-
ing problem as follows.

Given the source node v, and the destination node vg, our
goal is to find all the route transition points within the working
period of the source node, and find the route during each time
period defined by the route transition points.

In this paper, we propose two proactive schemes: the Opti-
mal Proactive Minimum Latency Routing algorithm (optimal-
PML), and the Quick Proactive Minimum Latency Routing
algorithm (quick-PML). Among them, optimal-PML can min-
imize the communication overhead, whereas quick-PML can
reduce the route acquisition delay, which is the delay to find
the minimum latency route.

III. ON-DEMAND MINIMUM LATENCY ROUTING

In this section, we present our on-demand minimum latency
routing algorithm (ODML). In ODML, to find a route, the
source sends a route request (RREQ) to its neighbors. When
an intermediate node receives a RREQ), it records the latency
of RREQ, and updates the latency field of RREQ by adding
the buffer delay of the next link to the original value. Then,
it unicasts the request to other neighbors except the one from
which it receives RREQ. Clearly, the first RREQ arriving at
the destination went through the minimum latency route. The
destination node then unicasts a route reply (RREP) back to the
source along the minimum latency route. As the RREP travels
back, each node along the path sets up a forward pointer to the
node from which the RREP came. In addition, the arrival time
of RREQ and the corresponding latency to the destination are
recorded in the routing table. As can be seen, ODML is based
on AODV but with some fundamental difference.

First, instead of broadcasting the RREQ as in AODV, each
node in ODML unicasts RREQ to its neighbor when this
neighbor’s working period starts because the working periods
of neighbors are usually different. In the header of RREQ, a
latency field (instead of hops) is used to represent the latency
that the packet has accumulated so far.

Second, two new fields are added in the routing table. The
first field is used to record the packet arrival time, and the
second field is used to record the packet delivery latency to
the destination. After the route is constructed, upon receiving
a packet, the node forwards the packet to the next hop only
when it can find an entry matching both the destination and
the arrival time of that packet.

Third, during the route discovery process of AODV, the
expanding ring search technique is used to reduce the message
overhead. In this scheme, a TTL field is placed in the RREQ
header, denoting the maximum number of hops the RREQ can
travel. TTL is initially set to 1 and increased by 1 after each
search. This continues until a route to the destination is found.
In this way, the first route found is the shortest route in terms
of hop number, but may not be the minimum latency route.

To address this problem, in ODML, TTL is set as the
product of the maximum hop number and the expected per-hop
buffer delay (E(d)). E(d) can be estimated using the following
formula:

B To  Tr—To  Tr—Ty (T —Ty)?
E(d)=0x T R X T = o, 2)

The maximum hop number is initiated to be 1. During route
discovery process, before an intermediate node forwards the
RREQ to its subsequent node, it subtracts the buffer delay of
this link from the current TTL value. When TTL becomes
negative, the packet is dropped. When time out, the source
node re-sends the RREQ after increasing the maximum hop
number by 1.

Example 3.1: We use an example to illustrate how ODML
works. As shown in Fig. 2, A wants to find a minimum latency
route to the sink after the data is available at time 6. Knowing



its neighbors’ schedule, A sends a RREQ to C' at time 7 (the
start time of C’s working period) and to B at time 11, with
the latency field (of RREQ) set to be 1 (7-6) and 5 (11-6),
respectively.

Data available at 6

Arrival ‘ Next Hop ‘ Destinatinn‘ Latency ‘
267 11 ‘ i
} } ‘ 6 ‘ C ’ ‘ sink ‘ 1 ‘
| 525)| 1y 15 | A’s Table
! ‘ [ Arrival | Next Hop [ Destination | Latency |
| 7 1 |7 | D [ sink | 0 |
! ! C’s Table
D } 3 } \ Arrival \ Next Hop \Destination\ Latency \
A (L7 ik | sink | 0]
Sink e T2— ) D’s Table

(a) Network Topology (b) Schedules (c) Routing Tables

Fig. 2. Illustration of ODML

After B receives the RREQ from A, it records the field of
packet arrival time as 11, updates the latency field of RREQ
to be 19 (5+14) before forwarding it to D at time 25, as it has
to wait until the start of D’s next working period. Similarly,
C records the field of packet arrival time, which is 7, and
sends it to D immediately. When D receives the route requests
from B and C, it only forwards the one from C' (the one first
arrives) to the destination. After the sink receives the request
from D, which has the minimum latency, it sends a RREP
back to the source following the same route that the request
has traveled along, with the routing table of each intermediate
node updated (shown in Fig. 2(c)). Later, the RREQ sent by
B will be dropped by the sink.

IV. PROACTIVE MINIMUM LATENCY ROUTING

When the source and the destination node frequently com-
municate with each other, the on-demand approach may not
work well, and the proactive approach should be used. The
objective of proactive minimum latency routing is to provide
a minimum latency route whenever a packet is ready to be
sent. To reach this goal, ODML should be proactively invoked
to locate all the route transition points (RTP) and find the
corresponding minimum latency routes.

In this section, we introduce two efficient proactive
schemes: the optimal proactive minimum latency routing al-
gorithm (optimal-PML) which can minimize the call number
of ODML (the number of times ODML is called) and the
quick proactive minimum latency routing algorithm (quick-
PML) which can significantly reduce the route acquisition
delay.

A. Optimal-PML

The goal of optimal-PML is to find the route transition
points. If we can identify which points are likely to become
the route transition points and which points are not, the
search space can be significantly reduced. To achieve this,
let’s observe the latencies of routes in Fig. 1. Fig. 3 compares
the latencies of route A — B — sink (B for short) and
A — D — E — sink (DE for short), and displays the
minimum between them at each point within A’s working
period. As can be seen, route B’s optimality ends at time
10, where its latency increases abruptly at the next point.
By observation, we find that time point 10 has following

characteristics: (1) if a packet is available at this point, it will
arrive at B exactly at the end point of B’s working period. (2)
if a packet is available to be sent at the next point, i.e., time
11 (suppose this packet still follows route B), it will arrive
at B at the start point (time 30) of B’s working period in
the next round (since B has entered sleep period of current
round). Motivated by this observation, we make a hypothesis
that the minimum latency route only changes at the points with
the above characteristics. Now we formally define this kind of
points and prove our hypothesis.
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Fig. 3. Latencies of routes in Fig. 1

Definition 3: Sleep Transition Point (STP). As illustrated
in Fig. 4, suppose R, is a route from vg to v,,, and at time ¢ and
t+1, two packets (P; and P, 1) are available to be sent at vg. If
the time when P; arrives at an intermediate node v; is exactly
the end time of v;’s working period, i.e., t + EZ’Z(t) = F;
and the time when P; 1 arrives at v; is the start time of v;’s
working period in the next round, i.e., t + 1 + Eg”’(t +1) =
S; + T, time t is referred to as a sleep transition point of Ry,
denoted as ST P,(;’". v; is referred to as the sleep transition
node (STN) of STP)™.
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Fig. 4. Sleep transition point

The sleep transition point denotes the time when a node in
a route is about to enter sleep, which usually incurs an abrupt
increase in the latency of this route. As shown in Fig. 4, the
delivery latency of packet P;; is much larger than that of P;.
Actually, the sleep transition point is exactly the end time of
the corresponding sleep transition node. Below is the formal
proof.

Lemma 1: Suppose Ry is a route from vy to v,, t; and
to are two time points within the working period of vy, and
furthermore, there is no ST Py, from ¢; to to— 1. If L, (t1) =0,
then Ek(tg) =0.

Proof: As L (t1) = 0, Ry, is connected at time ¢;. Since
there is no ST Pj, from t; to to — 1, Ry, is always connected
from ¢; to to. Therefore, the latency of Ry is always zero
from ¢; to to. |

Lemma 2: Suppose Ry, is a route from vg to v,, t; and
ty are two time points within the working period of vy, and
furthermore, there is no ST Py from ¢ to to — 1. If L (t1) >
tQ — tl, then Ek(tg) = Ek(tl) — (tQ - tl).

Proof: Suppose t1 + 7,0 < j <ty —t; is any time point
between ¢, and to. Since Ly (t1) > to — t1, it can be inferred



that Ly (t1 +7) > Li(t1) —j > 0 because the packet available
at t; cannot arrive at the destination earlier than the packet
available at ¢; + j. Therefore, the one-hop buffer delays of
some links along Ry are nonzero at time ¢; + j. Suppose
link v;v;41 is the first link with nonzero buffer delay, in other
words, £, (t1 +7) = 0 and d"**1(¢; +j) > 0. Since ¢; +j is
not a ST Py, by lemma 1, Eg”(h +j+1) = 0. Therefore, the
packets available at t; + 5 and ¢; 4+ j 4+ 1 will reach node v; at
t1-+7 and t; +j+1 respectively. Since d**1(¢;+75) > 0, it can
be inferred that v; has to buffer the data available at ¢, +; for at
least one slot until v; 1 wakes up, i.e., t1+7 < S;4+1 —1, from
which we can derive d“" 1 (ty +j) = Sip1 — (t1+7) > 0 ().
On the other hand, since t1+j < S;y1—1,s0t1+74+1 < S;y1,
then we can get "1 (t; +j+1) =S4 1 —(t1+5+1) >0
(ii). Therefore, by Eqn.(i) and Eqn.(ii), d***1(¢t; + 5+ 1) =
d“*1(t; + j) — 1. Consequently, these two packets arrive at
node v; 1 at the same time, i.e., S;11. As a result, from node
v;41 to the destination node, the packet delivery latency of
these two packets will be the same. In summary, the delivery
latency of the packet available at time ¢; 4+ j + 1 is equal
to Eg’" (t1 + j) — 1. Therefore, the difference between the
delivery latencies of Ry, at t; and to is: £ (t1) — L™ (t2) =
ST (i) — LYt i+ L) =t — b n

Theorem 1: Suppose Ry is a route from vg to v,,. Further-
more, t is a sleep transition point of Ry, and v; is the sleep
transition node of ¢, then ¢t = E;, i.e., EZ’Z(t) =0.

Proof: By contradiction, suppose F; —t = d > 0. First of
all, we suppose there is only one sleep transition node along
R, therefore, ¢ is not a sleep transition point of the subroute
Rd(iz Since £)°(t) = d > 0, by Lemma 2, L' (t + 1) =
L, (t) — 1. Therefore, the time when the packet available at
arrives at v; is the same as the time when the packet available
at t+1 arrives at v;, however, this conflicts with the definition
of sleep transition point. Similarly, it can be proved that if
there are multiple sleep transition nodes of ¢ with same end
times of working periods, the conclusion also holds. ]

Now, we prove that only the sleep transition point has the
potential to become a route transition point.

Theorem 2: Suppose there are m routes from vs to vy,
denoted as R1, Ra,..., R, t1 and to are two time points
within the working period of vs. In addition, at time ¢, the
minimum latency route is Rq. If there is no ST P; from t; to
to, then the minimum latency route does not change, i.e., at
any time point t1+75, 0 < j < to—tq, MﬁRS’d(tl +Jj) =Ri.

Proof: By assumption, R is the route with minimum
delivery latency at time t¢;. There are three possible cases
regarding £ (t7).

Case 1: L1(t1) = 0.

Since there is no ST P from ¢1 to to, by lemma 1, L1(t1+j) =
0,0 S j S t2 - tl. ObViOllSly, El(tl +j) S ,Cl(tl +]),2 S
1 < m, thereby MﬁRS’d(tl +7) =R

Case 2: El(tl) > tg — tl.

By lemma 2, ﬁl(tl —|—j) = El(tl) —j,l S j S t2 — t1. On
the other hand, £;(¢;+7) > L;(t1) — j as proved in lemma 2.
Therefore, given L£1(t1) < L;(t1), Li(t1 + j) < Li(t1 + j)
can be derived.

Case 3: ,Cl(tl) <tg —1tq.
Let t3 = tl +£1(t1), by lemma 2, ,Cl(tl)—ﬁl(tg) = t3—t1 =
L1(t1), thus £4(¢t3) = 0. Similarly, it can also be proved that
L4(t3—1) = 1. Therefore, during the period from ¢; to t3—1,
we can apply the proof of Case 2, and during the period from
t3 to to, the proof of Case I is applicable. In summary, R, is
always the minimum latency route from t; to ts. [ ]

Based on Theorem 2, if t is not a sleep transition point,
it can not be a route transition point. In other words, a route
transition must happen at a sleep transition point. Therefore, to
find the time point where the current minimum latency route
loses its optimality, only its sleep transition points need to be
checked.
optimal-PML: Theorem 1 tells us that only the end time of
the working period of a node could be a sleep transition point.
Therefore, the basic idea of optimal-PML is to sequentially
check all the end times of the nodes in the current minimum
latency route, until a new minimum latency route is found.
This process repeats and eventually all the minimum latency
routes will be identified. Note that, if the current minimum
latency route is found at time ¢, then only those end times
that are larger than ¢ need to be checked.

The pseudo code of the algorithm is shown in Algorithm 1.
Variables stp and rtp are used to store the latest sleep
transition point and route transition point. time_list records
the start point (1 slot after the route transition point) of each
minimum latency route, which is stored in route_list.

Algorithm 1 Optimal Proactive Minimum Latency Routing
Procedure:Optimal_Proactive_Routing;

Input: (G, s, start, end);

Output: (time_list, route_list);

1: stp < start — 1

2: rtp < start — 1

3: start_route «—ODML(G, s, start)

4: time_list < start

5: route_list < start_route

6: current_route < start_route

7: repeat

8: Find node v; with earliest end time larger than stp in current_route
9: stp — E;
10: stp_route —ODML(G, s, stp + 1)
11: if stp_route # current_route then
12: rtp < stp
13: current_route «— stp_route
14: time_list «— rtp + 1
15: route_list < current_route

16: until stp > end

Initially, stp and rtp are set as 1 slot ahead of the start time
of the source’s working period (line 1-2), and the minimum
latency route at the start time is used as the current minimum
latency route (line 3-6). In each iteration (line 7-16), the node
with the earliest end time larger than stp (last sleep transition
point checked by optimal-PML) along the current minimum
latency route is found (line 8) and its end time is used to
update stp (line 9). Then, the algorithm checks whether the
minimum latency route at stp + 1 is the same as the current
route (line 11). If the result is true, a new minimum latency
route is found, and the corresponding variants are updated (line



12-15). Otherwise, a new iteration is started.

To implement optimal-PML, we modify ODML as follows.

o To get the next STP (end time) to be checked, we add
two new fields to the header of RREP. last_stp is used to
record the last sleep transition point checked by optimal-
PML, and earliest_stp is used to record the earliest STP
larger than last STP. When RREP travels back to the
source, each intermediate node compares its own end time
with the values in these two fields. If its end time is earlier
than the value in earliest_stp, and larger than the value
in last_stp, it updates the earliest_stp field with its end
time.

e In order to compare the routes at different time points,
whenever ODML is called, the information of the whole
route must be returned to the source node. However, it is
difficult to keep the IDs of all nodes along the route in
RREP since the packet size is very small (e.g., in TinyOS,
the default packet size is 36 bytes, out of which 29 bytes
are used for the actual payload).

Hash(Hash(Hash(Vn,Vn-1),Vn-2), ... ,V0)
Hash(Hash(Vn,Vn-1),Vn-2)

Fig. 5. A Merkle-hash tree constructed from the ids of the nodes traveled
by a RREP

To address this problem, we apply Merkle hash tree [9],
and add a new field (route_hash) to the header of RREP.
As illustrated in Fig. 5, when RREP travels back to the
source, in each intermediate node, route_hash is updated
by hashing the concatenation of the old value and the
ID of this node. Therefore, the length of route_hash is
independent of the length of the route. To compare the
routes, route_hash stored in RREP can be used instead
of the ID sequence along the route.
Example 4.1: We use a simple example to illustrate how
optimal-PML works. As shown in Fig. 6!, node A has two
possible routes to the sink: A - B — D — F — sink
(BDF for short) and A — C — E — sink (CE).

Initially, through ODML, at the start time (time 0) of A’s
working period, route BDF' is the minimum latency route.
In the first iteration of optimal-PML, since time 7 (the end
time of F’s working period) is route BDF"s the earliest sleep
transition point larger than 0, ODML is invoked for a second
time at time 8(7+1). However, as shown in Fig. 6(d), the
latency of route BDF is still the minimum at this point. This
shows that a sleep transition point is not necessarily a route
transition point. In the second iteration, ODML is invoked at
the point 1 slot after the earliest transition point larger than 8,
which is point 11 (1 slot after the end time of D’s working
period), resulting in a new minimum latency route, namely

"Note that bold lines denote the working periods, and the end time of a
node may be earlier than its start time, such as node D.
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CFE. optimal-PML terminates at this time because route C E’s
earliest sleep transition point larger than 11 (the end time of
node C, which is 28) is located outside the working period
of A. Thus, A has two minimum latency routes: BDF' from
time O to 10, and C'E from time 11 to 15.

In optimal-PML, when a node has a packet to send, it may
find multiple entries having the same destination in its routing
table. These entries have different packet arrival times, with
corresponding next hops. At this time, the node forwards the
packet according to the entry which has the largest packet
arrival time earlier than the arrival time of the packet to be
sent. For example, as shown in Fig. 6(c), node A has two
entries destined to the sink. Suppose a packet is available at
A at time 13. The second entry has the largest packet arrival
time earlier than 13, and thus the packet should be sent to C.

B. quick-PML

Although optimal-PML can minimize the call number of
ODML, it has long route acquisition delay because it can
find only one minimum latency route in each route discovery
round, which is defined as the period from the moment when a
RREQ is ready to be sent to the time when the corresponding
RREP returns®. To address this problem, we propose a quick
proactive minimum latency routing algorithm (quick-PML).
Different from optimal-PML, which sends RREQs serially,
quick-PML applies multiple route discoveries simultaneously.

quick-PML is inspired by binary search algorithm, which
borrows the idea of divide and conquer scheme. In each route
discovery round, there are two time points: the start point and
the end point, whose corresponding minimum latency routes
(referred to as the start route and end route) are different.
quick-PML finds the middle point between the start and the
end points, and compares the middle route with the start
and end routes. If the middle route is different from the
start (end) route, the middle point becomes a new end (start)

Note that route discovery round is conceptually different from the round
defined in Section II, which is the unit of sensor’s working cycle.



point. Recursively, quick-PML narrows the search space and
approaches the route transition points. In the end, all the route
transition points within the working period of the source node
will be identified.

quick-PML is based on the following assumption: If the
minimum latency routes at two time points are identical, there
is no route transition point between these two points. Actually,
this is not always true. However, if one of the following two
conditions is satisfied, the minimum latency route between two
points, t1 and to, will not change.

1) MD;C(tg) > (0 and MDﬁ(h) _MDE(tQ) = (tQ —tl).

2) Mpﬁ(tg) =0 and t2 — tl < T?" — Tu,

Condition 1 can be guaranteed by theorem 3.

Theorem 3: Suppose ¢; and ¢ are two time points within
the working period of vs. In addition, at time ¢; and ¢, the
minimum latency routes are both Ry. If L£1(t1) — L1(t2) =
(t2 — 1), then the minimum latency route does not change
from ¢1 to to.

Proof: Since Lq(t1) — L1(t2) = (t2 — t1), the packet
available at ¢; gets to the destination at the same time as the
packet available at t5. Thus, it can also be inferred that the
packets available between ¢1 and ¢, reaches v, simultaneously,
ie., L1(t1+7) = L1(t1) — 5,0 < j < (t2 — t1). On the other
hand, for any other route R;, £;(t1+3j) > L£;(t1)—j as proved
in lemma 2. Therefore, given £1(¢1) < £;(t1), L1(t1 +J) <
L;(t1 + j) can be derived, thus the minimum latency route
keeps fixed. ]

Condition 2 can be guaranteed by theorem 4. Below is the
formal description of theorem 4, preceded by lemma 3 which
is used to prove theorem 4.

Lemma 3: Suppose Ry is a route from vy to v,, t is a
time point within the working period of vy. If t is a ST Py,
then Li(t+1) > T, — Ty, — 1.

Proof: Suppose v; is t’s first sleep transition node along
Ryi. Since v;—1 has to buffer the packet available at ¢ + 1
until the start time of v;’s working period in the next round,
d=Vi(t+1) = T, — T, — 1 (the packet available at ¢ + 1 gets
to v;_1 at F; + 1, gets to v; at S; + T.). Furthermore, since
E%’Zfl(t +1)=0and L.™(S;) > 0, therefore, LYt +1) =
Ly E+ D) +d (1) +L(S) > T — Ty — 1. =

Theorem 4: Suppose Ry is a route from vy to vy, t; and
to are two time points within the working period of vy, and
there is at least one sleep transition point from ¢; to t5 — 1.
It’s always true that to — t; > T, — Ty, — Ly (t2).

Proof: Suppose there is only one sleep transition point
from ¢; to to — 1, denoted as ¢. According to lemma 3, L (t+
1) > T, — Ty, — 1, further by lemma 2, to — (t + 1) = L (¢t +
1) — Lp(ta) > T, — Ty — 1 — Li(t2), so we get to — ¢ >
T,.—Ty—Lk(t2) (i). Furthermore, t—t; = Lx(t1)—Lx(t) >0
(ii) by lemma 2. Therefore, by Eqn.(i) and Eqn.(ii), it can be
deduced that to —t1 > T, — Ty + (L (1) — Lk (t)) — Li(t2) >
T, — Ty — Li(t2).

Obviously, the difference between ¢; and ¢ will be even
larger if there’re multiple sleep transition points from ¢; to
to — 1. Therefore, T,. — Ty, — L (t2) is the lower bound of
to — 1. |

Based on theorem 4, when MDL(t3) = 0, if to — 1 <
T, — T, there is no sleep transition point along the minimum
latency route between ¢; and t,. Further by theorem 2, the
minimum latency route does not change.

Algorithm 2 Quick Proactive Minimum Latency Routing

Procedure:Quick_Proactive_Routing;

Input: (G, s, start, end);

Output: (time_list, route_list);

: start_route — ODML(G, s, start)

. end_route «— ODML(G, s, end)

. time_list <+ start

. route_list < start_route

: Binary_Routing(G,s,start,end, start_route,end_route)
Procedure:Binary_Routing;

1: if start = end — 1 then

[T S S

2: time_list «— end

3: route_list «— end_route

4: else

5: mid — |(low + up)/2]

6: mid_route < ODML(G,s,mid)

7. if start_route # mid_route then

8: Binary_Routing(G,s,start,mid, start_route,mid_route)

9: else if mid_route.latency > 0 and start_route.latency —
mid_route.latency < mid — start then

10: Binary_Routing(G,s,start,mid,start_route,mid_route)

11: else if mid_route.latency = 0 and mid — start > T, — Ty,
then

12: Binary_Routing(G,s,start,mid,start_route,mid_route)

13: if mid_route # end_route then

14: Binary_Routing(G,s,mid,end,mid_route,end_route)

15: else if end_route.latency > 0 and mid_route.latency —
end_route.latency < end — mid then

16: Binary_Routing(G,s,mid,end,mid_route,end_route)

17: else if end_route.latency = 0 and end — mid > T — T}, then

18: Binary_Routing(G,s,mid,end,mid_route,end_route)

The pseudo code of quick-PML is depicted in Algorithm 2.
Initially, the minimum latency routes at start and end points are
obtained by calling ODML (line 1-2), with the start time and
the corresponding route recorded in time_list and route_list
respectively (line 3-4). Then, the binary_routing (BR for short)
procedure is called as a subroutine (line 5). The binary_routing
procedure is self-recursive. It finds the minimum latency route
at the middle point (BR:line 6) and compares it with the routes
at start and end points (BR:line 7-18). If the middle route
(route at the middle point) is different from the start route
or end route, the binary_routing procedure will be recursively
called to approach the route transition points (BR:line 8 and
14). Otherwise, quick-PML will check the latencies of the
middle route and the start (end) route to determine whether
the conditions discussed earlier are satisfied. If none of the
conditions is satisfied, quick-PML will also invoke the bi-
nary_routing procedure (BR:line 10,12,16,18). The recursion
ends when the start point is exactly one slot before the end
point (BR:line 1-3).

Example 4.2: Let’s still use the example shown in Fig. 6.
Figure 7 shows the search tree of quick-PML. In the search
tree, each node denotes a time point within the working period
of A, and the nodes on the same level of the tree are checked
parallelly in the same route discovery round. The black node
(time 10) denotes the route transition point, and the shade
nodes denote the time points checked by quick-PML. As can
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be seen, in the the first route discovery round, the minimum
latency routes at the start point (0), end point (15), and the
middle point (7), are found. Since the route at time 0 is the
same as that at time 7, and condition 2 is satisfied, the time
points between 0 and 7 will not be checked. On the other
hand, since the route at 15 is different from that at time 7, a
new middle route (at point 11) is checked in the second round.
This route is equal to the route at 15, so there’s no need to
check the routes from time 11 to 15 (condition 1 is satisfied).
Since the route at 11 is different from that at time 7, the route
at time 9 is checked in the third round. Although the route at
time 9 is the same as that at time 7, as neither of the conditions
is satisfied, ODML has to be called at time 8. Eventually, the
route transition point is found in the forth round.

Suppose there are n minimum latency routes within the
working period of the source node. Since quick-PML applies
multiple route discoveries simultaneously, it’s clear that when
n > logy (T — 2), quick-PML takes smaller number of route
discovery rounds than optimal-PML. As a result, quick-PML
tends to identify all the route transition points in a shorter time.
This claim is justified by the simulation results in Section VI.

V. DISCUSSIONS

A. Call Number of ODML

For optimal-PML, its call number of ODML (number of
times ODML is called) is equal to the number of sleep
transition points checked by it. Simulation result shows that
this number is slightly larger than the number (denoted as n)
of route transition points. On the other hand, for quick-PML,
it’s evident that its call number of ODML can be bounded
by n (lower bound) and the product of n and the height of
the search tree (upper bound). Furthermore, the expected call
number of ODML of quick-PML, denoted as E(N.), can be
estimated by the following formula:

logo (Tw —2) o N (gloma (Tw—2—i+1_)
E(NJ)= Y 27'(1-(1-) )+3
=2 w
3)

B. Energy Consumption and Balancing

Energy Consumption: Since the schemes of this paper are
dedicated to achieving minimum packet delivery latency be-
tween communicating nodes, the minimum latency route found
by our schemes may not have as small number of hops as
the shortest path. Therefore, if all the nodes in the network
transmit packets using the same power, the energy consump-
tion of the minimum latency route may be larger than that
of the shortest path. However, if each sensor node can adjust

its transmitting power based on the distance to the receiving
node and the background noise, the energy consumption gap
between the minimum latency route and the shortest path can
be significantly reduced.

Nowadays, the capability of power control is readily avail-

able for the state-of-the-art sensor nodes. For example, the RF
power of a MICA2 node can be adjusted ranging from -20
dBm to 5 dBm [10]. In the most common power-attenuation
model [11], the signal power falls as 1/d* where d is the
Euclidean distance between two transmitting nodes and « is
the pass loss exponent of the wireless environment, a real
constant typically between 2 and 5. In this paper, we assume
that all sensors have the same power threshold for signal
detection, which is typically normalized to 1. Furthermore,
we normalize the time to transmit a packet to 1. Therefore,
the energy consumption required for a node v, to transmit a
packet to a neighbor node vy is dg . Using this model, the
minimum latency route can achieve a smaller per hop energy
consumption than the shortest path due to the smaller per hop
Euclidean distance.
Energy Balancing: Although the shortest path can achieve
the minimum number of transmissions, it may not be optimal
from the point of view of network lifetime and long-term
connectivity. Since the shortest path keeps unchanged all the
time, in each transmission, only the energy of the nodes along
the shortest path is consumed, resulting in a wide disparity in
the energy levels of the nodes, and eventually a disconnected
network. In contrast, in our proactive minimum latency routing
schemes, the routes traveled by the packets between a source-
destination pair vary over time. As a result, nodes burn energy
in a more equitable way, and thus the lifetime of the network
is extended. This could be regarded as another merit of our
schemes.

C. Imperfect Link

In our discussions and examples, we assume perfect link
quality. If the link quality is not perfect, retransmissions may
occur. A simple solution is to increase the length of time slots
to accommodate retransmissions. As aforementioned, we focus
on the buffer delay, which can be in the order of seconds, and
thus the delay caused by these retransmissions (in the order
of milliseconds) can be ignored.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the schemes
proposed in this paper. The evaluation consists of three parts:
1) we use a scenario to illustrate the effectiveness of our
schemes; 2) we compare the performance of the minimum
latency route and the shortest path, and 3) we compare the
performance of the two proactive minimum latency routing
algorithms.

A. A Scenario

Consider a scenario where 200 sensor nodes are deployed
in a 500 x 500m? area. The communication range of a sensor
node is 100m, T, = 500ms, and T, = 200ms. Initially each
node randomly selects its start time of the working period. We



evaluate the routing schemes when the node on the upper left
corner sends packets to the node on the lower right corner.
Fig. 8(a) shows the shortest path and the minimum latency
route found by ODML at time 46, which is the start time of
upper left node’s working period.

Figure 8(b) shows the packet delivery latencies of the routes
provided by 5 different schemes at each time point within
the working period of the node on the upper left corner.
Apparently, the shortest path (SP) is the worst one because
its latency is the highest all the time. Although the route
discovered by ODML has the minimum latency at the start
time, it is not optimal from a STP. In contrast, the two
proactive minimum latency routing algorithms can guarantee
that whenever a packet is available within the working period
of the source node, it follows the minimum latency route. For
comparison purpose, we also give a brute force scheme (BF),
which runs ODML at each time point within the working
period of the source node. As shown in the figure, BF, optimal-
PML, quick-PML have the same delay.
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B. Minimum Latency Route VS Shortest Path
In this subsection, we compare the performance of the

minimum latency route (MLR) and the shortest path (SP).
We still use the aforementioned simulation setup. To test the
scalability, the number of sensor nodes increases from 200 to
1000, with fixed node density, i.e., the area of the deployed
region increases proportionally to the network size. For each
network size, we generate 100 different network topologies,
and record the average results shown in Fig. 9.

Figure 9(a) illustrates the comparison of packet delivery
latency between the minimum latency route and the shortest
path. Obviously, the minimum latency route can achieve much
smaller latency than the shortest path. Fig. 9(b) compares the
number of hops between two routes. As can be seen, the
average length of the minimum latency route is around 30
percent larger than that of the shortest path, which implies 30
percent extra energy consumption (suppose the energy con-
sumed by MLR is denoted as E/j; 1 r, and the energy consumed
by the SP is denoted as Egp,we define the percentage of
extra energy consumption of MLR as EMLERis_PESP) if all the
sensor nodes transmit in same power level. However, if power
control is adopted, the extra energy consumed by the minimum
latency route would be radically reduced. Fig. 9(c) shows the
comparison result of the two routes’ energy consumption when
the path loss exponent « is 3. As we can see, the minimum
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Fig. 9. Comparisons between shortest path and minimum latency route
latency route only consumes less than 10 percent extra energy.
Moreover, with the increase of the path loss exponent, the
extra energy consumption could be further reduced. Fig. 9(d)
further illustrates the effect of varying path loss exponent on
the percentage of the extra energy consumption of MLR. As
can be seen, when the path loss exponent is larger than 4, the
percentage becomes negative, which implies that the energy
consumption of MLR becomes smaller than that of SP.

To compare the energy balance, we consider a network of
200 nodes. Suppose the working period of each node includes
200 time slots, and the source node sends one packet at each
time slot within a working period. Then, we observe how many
nodes are involved in the dissemination processes of these 200
packets, and how many transmissions are conducted by each
of them. The results of comparison are plotted in Fig. 9(e).
In this figure, each bar denotes the number of nodes whose
number of transmissions fall into the corresponding region.
For example, the leftmost bar implies that there are 24 nodes
whose number of transmissions is within the range of [0, 20].
As we can see, when shortest path routing protocols (SPR)
are used, since the shortest path does not change throughout
the working period of the source, to deliver 200 packets to the
destination, each of the nodes along the path needs to transmit
200 times. Therefore, the number of nodes involved in the
packet disseminations is fixed to be the length of the shortest
path, which is 8. That’s the reason why SPR only has one



bar displayed in the graph. On the contrary, when proactive
minimum latency routing protocols (PML) are employed, the
variation of the minimum latency routes result in more nodes
being involved in the packet disseminations. Altogether, there
are 54 nodes, each of which works as a relay for at least
one time in different minimum latency routes. As observed
from the figure, most of the nodes transmit less than 40 times,
which implies a more equitable energy consumption from the
perspective of the whole network.

C. optimal-PML VS quick-PML

In this subsection, we use the same experimental setting as
in the last subsection, and compare the performance of the two
proactive routing schemes: optimal-PML and quick-PML.

—H-Optimal
—>*—Quick

120 35

A0

-
=)
=]
w
=]

-]
=]
N
o

—&-Optimal
-©-Quick
—%—Quick in Theory

[3/8//

'
=]

Number of Calls
{2}
F=
&

Number of Rounds
N
o

n
=]
-
=]

0
200 400 600 800 1000 300 400 600 800 1000
Network Size Network Size
(a) Number of Calls (b) Number of Rounds
x10' 1000
1.8 e
& Optimal ! W
> 1.6[| ¢ Quick 8007
° i
g 1.4 E
o o 600
£1.2 = b
2 'g
g 1 3 400
< ['4
208
3 0 200
Tog, XX ] —5- Optimal
—¥— Quick
04

1000 200 400 600 800
Network Size

(d) Round Delay
Fig. 10. Comparisons between optiaml-PML and quick-PML

200 400 600 800
Network Size

(c) Route Acquisition Delay

1000

Figure 10(a) compares the message overhead (in terms of
call number of ODML) of two schemes. As we can see,
optimal-PML has a much better performance than quick-PML
in message overhead (its call number of ODML is actually
optimal according to our proof in section IV). Figure 10(a)
also shows quick-PML’s theoretical call numbers of ODML
(calculated by Eqn. 3),which are very close to the experimental
values. On the contrary, optimal-PML suffers from a large
route acquisition delay. As illustrated in Fig. 10(b)(c), both
the number of route discovery rounds and the real route
acquisition delay of optimal-PML are much larger than those
of quick-PML. By contrast, quick-PML can achieve a bounded
route acquisition delay, however, at the cost of message
overhead. Finally, in Fig. 10(d), optimal-PML is found to have
a smaller per round delay (the ratio of the route acquisition
delay over the number of route discovery rounds) than quick-
PML.

VII. RELATED WORK
The presented work has some similarity to Delay Tolerant
Network (DTN), although with much difference. The work
in [12] demonstrates that optimal delivery paths in a DTN can

be discovered by constructing a directed graph of nodes if the
whole network topology and the schedules of all nodes are
known. However, this is impossible for a large scale wireless
sensor network with limited resources. Furthermore, different
from DTN, where the network is partitioned due to the
mobility of the mobile nodes, in the sensor networks scheduled
by application-driven schemes, although the communication
link is intermittently connected, the physical topology of the
network is always connected. Therefore, in our scheme, a
sensor node can still forward the packet anywhere outside of
its working period.

In [13], a dynmic switch-based forwarding (DSF) algorithm
is designed to address routing problems in extremely low duty-
cycle sensor networks. Here extremely low duty-cycle means
that each sensor works for a very short T, (e.g., a single time
slot) within a long 7;. (e.g., 1000 slots). Under this assumption,
there is probably no route transition. In contrast, the proposed
schemes in this paper can be applied for any percentage of the
duty-cycle (In this sense, the scenario described in [13] can be
considered as a special case of our problem). Furthermore, our
schemes can identify route transitions when the working pe-
riods of sensor nodes are relatively long, and this is supposed
to be the largest contribution of this paper.

VIII. CONCLUSIONS

In this paper, we first proposed an on-demand minimum
latency (ODML) routing algorithm to find minimum latency
routes in intermittently connected sensor networks. Since on-
demand routing algorithm does not work well when the source
and destination frequently communicate with each other, we
proposed two proactive minimum latency routing algorithms:
optimal-PML and quick-PML. The schemes proposed in this
paper can provide generic routing functionalities for most of
the existing scheduling schemes.
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