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Abstract—In this paper, we describe oCast, an energy-optimal
multicast routing protocol for wireless sensor networks. The gen-
eral minimum-energy multicast problem is NP-hard. Intermittent
connectivity that results from duty-cycling further complicates
the problem. Nevertheless, we present both a centralized and
distributed algorithm that are provably optimal when the number
of destinations is small. This model is motivated by scenarios
where sensors report to a small number of base stations or where
data needs to be replicated on a small number of other nodes.
We further propose an extended version of oCast, called Delay
Bounded oCast (DB-0Cast), which can discover optimal multicast
trees under a predefined delay bound. Finally, we demonstrate
the advantages of our schemes through both theoretical analysis
and simulations.

I. INTRODUCTION

Multicast is an essential operation in wireless sensor net-
works, as it can provide an efficient way for group commu-
nication, which is widely used in sensor networks. Generally,
a sensor network is composed of a large number of sensing
nodes, whose task is to sense physical surroundings, and a
small number of base stations (or sink nodes), whose task
is to store and process the sensory readings. Based on the
communication patterns between these two kinds of nodes,
the multicast applications of sensor networks can be divided
into two categories, namely, large group multicast and small
group multicast.

Large group multicast normally takes place when a sink
node attempts to disseminate a query (or command) to parts
or all of the sensor network. A notable feature of this style of
multicast is the large size of the destination set. This scenario
is similar to the multicast/broadcast applications in wireless
ad hoc networks, which have been widely studied in recent
years. Unfortunately, the problem of finding minimum-energy
multicast/broadcast trees in ad hoc networks is proven to be
NP-hard [1], [2], [3], making it generally impossible to find
an optimal solution in polynomial time.

In contrast, the small group multicast is used when a sensor
reports its readings to multiple sink nodes. In this case, the
number of the destinations is small, which is normally less
than 10. The well known Directed Diffusion paper [4] gives a
typical description of this scenario. In its description, a sensor
node needs to periodically report its sensing data to one or
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multiple sink nodes that are interested in the data. Naturally,
if more than one sinks are interested in the same data or
events, a small group multicast tree should be constructed.
Another common example of small group multicast involves
data-centric storage (DCS) [5], [6], where the sensing data are
saved on some nodes inside the sensor network. In data storage
protocols, to increase the data reliability and availability,
and to balance the load, the data are usually replicated to
multiple nodes. This strategy can make good use of small
group multicast trees to improve the energy efficiency of data
replication.

As depicted in [4], after the multicast tree is constructed, a
sensor may be required to report its data in a very frequent
pattern (once every 20ms for example). Therefore, great en-
ergy savings can be achieved if we can optimize the small
group multicast. To our pleasure, the small-destination-number
property of the small group multicast provides us a chance to
exploit optimal multicast trees.
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Fig. 1.  An example of intermittently connected topology, where nodes
B.C,D.E monitor the targets in turn, and A wants to send packets to the
sink

Providing multicast services in sensor networks is further
complicated by another unique challenge: intermittently con-
nected topology, which is recognized in the recent work
[7]. It arises because of the energy conservation scheduling
scheme [8], [9], [10], [11], [12], [13], [14], a frequently used
mechanism in sensor networks.

The basic idea of the scheduling scheme is to schedule the
activity of each sensor node such that sensors perform the
given mission in turn and at any time, only a small number
of sensors are active to meet the coverage requirement of the
mission. With this scheme, the number of active nodes is sig-
nificantly reduced and thus the network lifetime is prolonged.



However, some scheduling strategies, such as partial coverage
scheduling [10], [11] and target coverage scheduling [12],
[13], may result in very sparse distribution of active nodes.
Consequently, the network may not be connected at some
instant due to the low node density.

Example 1.1: Consider a target coverage scheduling example
shown in Fig. 1(a). The mission of the sensor network is
to continuously monitor (cover) two targets (black points) in
the deployed region. Initially, the targets are sensed by nodes
B,C, D, E (circles denote the sensing range of the nodes).
To save power, the scheduling algorithm proposed in [12] is
used to only keep part of the nodes active. As illustrated in
Fig. 1, node B is active from time 1 to 10 (Fig. 1(b)), node
C is active from time 11 to 20 (Fig. 1(c)), and both D and F
are active from time 21 to 30 (Fig. 1(d)). Suppose at time 11,
node A collects some data and wants to send the data to the
sink. However, since only node C'is active at this time, and it
is outside the communication range of A (Fig. 1(c)), A’s data
cannot be forwarded to the sink.

For such intermittently connected sensor networks, tra-
ditional multicast algorithms designed for wireless ad hoc
networks cannot be applied. To address this problem, we
propose oCast, the Optimal multiCast routing protocol for
sensor networks. oCast can effectively identify minimum-
energy multicast trees for small group multicast in inter-
mittently connected sensor networks. In case the network is
always connected (i.e., no energy saving scheduling), oCast
can also construct optimal multicast trees. Furthermore, oCast
does not rely on any specific unicast routing protocol, and it
can provide the shortest end-to-end path from any sensor node
to any sink by itself. In this paper, we describe both centralized
and distributed implementations of oCast.

Many applications in sensor networks, such as military
surveillance and forest fire alarms, have delay constraints, but
the multicast trees identified by oCast may not satisfy such
delay requirements. To address this problem, we propose an
extended version of oCast called Delay Bounded oCast (DB-
oCast), which can discover optimal multicast trees under a
predefined delay bound.

The rest of the paper is organized as follows. We introduce
the system model in Section II and formulate the problem
in Section III. Section IV and Section V present our oCast
and DB-oCast algorithms respectively. In Section VI, we
explain how oCast and DB-oCast are applied in a decentralized
manner. Then, we discuss some related issues in Section VII,
and evaluate the performance of the proposed schemes in
Section VIII. Section IX concludes the paper.

II. SYSTEM MODEL

Similar to many application-driven scheduling schemes [8],
[9], [10], [11], [12], [13], we assume the lifetime of a sensor
network is divided into rounds with equal duration (7). For
each node, a round consists of a working period (T,,) and
a sleep period. Each round is divided into time slots, and a
packet is only transmitted at the start of a time slot. Without
loss of generality, we assume T, varies among the nodes.
In our discussion, we use s;.start and s;.end to denote the

start and end times of node s;’s working period (s;.end =
si.start + Ty, — 1 (mod T3.)).

To simplify the discussion, in all the examples, the sensor
nodes are synchronized. Nevertheless, our algorithms do not
pose any restriction on the synchronization between neighbor-
ing nodes. Each node only needs to know the relative position
of its neighbor’s working period (i.e., the offset between the
start times of their working period), and this can be easily
achieved through the periodic exchange of hello messages.

Under an intermittently connected topology, if a node only
delivers packets during the working period, the packets may
never be sent out, because its working period may not overlap
with that of its neighbors. To address this issue, each node still
receives packets within the working period but the sending rule
is modified as follows: a node can wake up its transceiver and
send packets at any time, if needed. For instance, as shown in
Fig. 1(e), node A can buffer the data until D wakes up at time
21. Then, it turns on its transceiver and passes the data to D .

In intermittently connected networks, a new kind of packet
delivery delay called buffer delay is introduced. Buffer delay
is the duration from the moment when a packet is available for
sending to the time when the packet is successfully sent out.
For instance, in Example 1.1, the buffer delay of the packet
at node A is 21 — 11 = 10. Since buffer delay (in the order
of seconds) is much longer than other kinds of delays (e.g.,
processing delay, transmission delay and propagation delay,
which are in the order of milliseconds), we only consider
buffer delay in this paper.

In our model, each sensor node does not need to know its
own location. For simplicity of discussion, we assume that
each node has the same transmission power level. We discuss
the varying power level scenario in Section VIIL.

IIT. MULTICAST IN SENSOR NETWORKS

In this section, we define the problem of finding optimal
multicast trees in sensor networks. We start with single-hop
multicast, and then extend it to the general multi-hop sce-
nario. By default, we assume energy-conservation scheduling
schemes are employed, since the scenario where there is no
scheduling scheme can be considered as a special case when
Ty, ="1T..

A. Single-hop Multicast

In single-hop multicast, a packet is delivered from the
source to part (or all) of its one-hop neighbors. If all nodes are
always connected (i.e., no energy conservation scheduling),
this problem is trivial because the broadcast nature of the
wireless link allows the source to disseminate the packet to
all the neighbors through a single transmission. However, if
the network is intermittently connected, the problem becomes
nontrivial.

Example 3.1: For example, suppose the network shown in
Fig. 2(a) is used to monitor the target region for H = 10
hours. Unfortunately, none of the sensor nodes has such a
long lifetime. Specifically, their lifetimes are: L; = 3 hours,
Lo = 3 hours, L3 = 4 hours, Ly = 5 hours, Ls = 5 hours.
A feasible solution is to schedule the activity of each node
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Fig. 2. An example of single-hop multicast

and let the length of its working period be 7T;. x Lﬁ For each
sensor node, the start time of its working period can be random
or deterministic, depending on the scheduling scheme. In this
case, we assume each round has 7}, = 10 slots, and show the
schedule of each node in Fig. 2(b).

As can be seen, the time slot at which the source transmits
the packet decides which neighbors can receive it. For exam-
ple, if the source sends a packet at the first time slot, only node
s1 can receive it because all others are in sleep. We formally
define the set of the nodes which can receive the transmitted
packet at a specific time slot as follows:

Definition 1: Forwarding Set. If node s; transmits a
packet at time slot ¢, s;’s forwarding set at t, denoted as F; ;,
includes all s;’s neighbors that can receive the packet.

In the above example, Fy1 = {s1} by our definition. The
upper bound of the number of different forwarding sets a
sensor can have is given below:

Theorem 1: For any sensor node s;, it has at most 2| N (s;)|
different forwarding sets, where N (s;) denotes the neighbor
set of s;.

Proof: We call both the start and the end slot of a sensor
node as switch slots. Apparently, the forwarding sets at the
slots between two consecutive switch slots of s;’s neighbors
are identical. For instance, as shown in Fig. 2(b), so.start = 2
and si.end = 3 are two consecutive switch slots, and thus
Foo2 = Foz = {s1,52,s3} . Also, since different neighbors
may have the same switch slots, duplicate forwarding sets may
be recorded. Therefore, the number of s;’s different forwarding
sets cannot be larger than 2| N (s;)|. [ |

Therefore, minimizing the number of transmissions to de-
liver a packet from the source to part (or all) of its one-
hop neighbors is equivalent to minimizing the number of
forwarding sets which can collectively cover these destination
neighbors.

Algorithm 1 Optimal Forwarding Sets Selection Algorithm

Input: (so’s Forwarding Sets Fo,¢,,1 < i < mg, Destination Set D);
Output: (Optimal Multicast Set OS);
i1
2: while D # () do
if (]:(),ti ND) C (.7:0,11-+1 (D) then
i+ +
else
OS — OSU{Fo,:;}
DD Fou,
14+
9: return OS

PN AW

Example 3.2: According to the schedules illustrated in
Fig. 2(b), we record the forwarding sets at the switch slots

(s;.start and s;.end + 1) of each neighbor node, and show
them in Table I. After eliminating the duplicate and empty
sets, there are six candidate forwarding sets. Subsequently,
we run a simple iterative algorithm (Algorithm 1') on these
sets. The algorithm scans the forwarding sets in chronological
order (i.e.,t; < t;+1), and in each iteration, it checks whether
the uncovered destinations contained in the current forwarding
set are included in the next forwarding set (line 3). Finally,
Fo,2 and Fq 5 are selected as the optimal multicast set.

TABLE I
FORWARDING SETS

Recording Time Forwarding Candidate Destination
’ Time ‘ Slot ‘ Set ‘ FS Set

s1.start slotl {s1} Fo1 {s1, 2, 83, 84, S5}
sa.start slot2 S1, 82, 83 Fo,2v {s1, s2, 83, 54,85}
s3.start slot2 S1, 82, 83

si.end + 1 slot4d S2, 83, 84 Fo,a {s4,55}
s4.start slotd S2, 83, S4

sg.end + 1 sloth S3, 84, S5 Fo,5v {s4,55}
s5.start sloth S3, 84, S5

sz.end + 1 slot6 {s4,s5} Fo.,6

sq.end + 1 slot9 {s5} Fo,9

ss.end +1 | slotl0 {}

B. Multi-hop Multicast

Example 3.3: Fig. 3(a) shows a simple multi-hop multicast
scenario where the source node s( tries to deliver a packet
to nodes sz, s4 and ss. Suppose only nodes s4 and s5 have
overlapped working schedules. Then, there are only two pos-
sible ways to forward the packet, i.e., two different multicast
trees, shown in Fig. 3(b) and (c), respectively. Apparently,
the latter is better in terms of the number of transmissions,
because so can deliver the packet to s4 and s5 through a single
transmission due to their schedule overlap.
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Fig. 3. An example of multi-hop multicast

When the network scales, the problem becomes intractable.
To address this problem, we propose oCast which is explained
in the next section.

IV. THE OPTIMAL MULTICAST ALGORITHM (OCAST)
A. Graph Transformation

It is well known that in wired networks, determining a
minimum-energy multicast tree is equivalent to finding a
minimum-cost Steiner tree (the cost of a tree is the sum of its
edges’ weights) in the network graph. However, as disclosed
in [15], this conclusion does not hold in wireless applications
because of the broadcast nature of the wireless links, which is

'In this algorithm, we assume the synchronization among the sensor nodes,
which is trivial for single-hop networks to achieve. Under this assumption,
in so’s point of view, each of its neighbors has a single duration of working
period within a round, i.e., s;.start < s;.end. However, our oCast algorithm,
which is designed for multi-hop scenario, does not have such an assumption.



referred to as the “wireless multicast advantage”. Furthermore,
the network graph is only based on the geographical distances
of the node pairs, and cannot reflect the topology dynamics
when scheduling schemes are employed. Thus, it is impossible
to solve the multicast problem directly based on the network
graph. To address this problem, we transform the original
network graph to a directed graph which can characterize
both the wireless multicast advantage and the intermittently
connected topology.

Given the undirected network graph G = (V,E), we
construct a directed graph G’ = (V' E’) by substituting each
node s; € V' with a widget, denoted by W, = (V;, E;). W; is
illustrated in Fig. 4, and defined as follows:

o Vi ={si, fitss fitas--s fit, }» Where s; is the original
sensor node in V, and f;;, L(l < j < m;) corresponds
to the forwarding set of s; (suppose s; has m; different
forwarding sets) at time ¢;. In the rest of this paper, s;
is referred to as the sensor vertex, and fi’t] is referred to
as the forwarding vertex.

o By = {(s4, fiz;)|]1 < j < my}, ie., the sensor vertex
s; has a directed edge to each of its forwarding vertices.
Each edge (s;, fit;) € E; has a weight of 1 since s; can
deliver a packet to all the nodes in the forwarding set
Fi,t, with one transmission.

o For each forwarding vertex of s;, say f;¢;, it has a
directed edge to each sensor vertex in its corresponding
forwarding set. We set the weights of these edges as 0
and denote the set of them by E; ;.

Fig. 4. The widget for node s;

With a widget for each node in GG, we can construct G’
by letting V' = UL, Vi and E' = U;_,(E; U2, Ei))
Furthermore, for each v € V', we define N;,(v) as the set
of vertices which have outgoing edges to v, and No,:(v) as
the set of vertices which have incoming edges from v.

By this transformation, we translate the multicast problem
into the well known directed Steiner tree problem. We ap-
ply this transformation to the examples discussed previously.
Fig. 5 illustrates the derived graph for single-hop topology
shown in Fig. 2(a). In this graph, there are six forwarding
vertices, corresponding to six different forwarding sets listed
in Table I. There is a 1-weighted edge from the source sensor
vertex to each forwarding vertex, and a O-weighted edge from
a forwarding vertex to each of its member sensor vertices.
A minimum directed Steiner tree originated from vertex sq is
depicted in the figure (the red dashed nodes and edges). As can
be seen, the Steiner tree spans the forwarding vertices fj 2 and
fo,5, implying that the forwarding sets at slot 2 and 5 should
be selected. This matches the result obtained by Algorithm 1.

The derived graph of multi-hop topology (Fig. 3(a)) is
illustrated in Fig. 6. Since only nodes s4 and s5 have over-
lapped working schedules, there is only one forwarding vertex,

Fig. 5.

Derived graph of single-hop topology

i.e., fa2, which is incident on more than one sensor vertex.
Therefore, the minimum directed Steiner tree (red dashed
nodes and edges) originated from node sy spans this vertex
because it can cover two destinations at the cost of only 1
transmission.
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Although constructing a minimum directed Steiner tree is
NP-hard, the small multicast group nature of sensor networks
makes it possible to find an optimal directed Steiner tree in
G’ with polynomial time.

B. oCast Algorithm

oCast borrows the idea of dynamic programming. It starts
with recording each destination vertex as a simplest tree, and
subsequently expands the trees by either increasing the heights
of trees or merging the different trees rooted at the same vertex.
This expansion process is repeated until for any vertex v € V'
and any destination subset D C D, the optimal Steiner tree
rooted at v which covers D is found.

Before describing oCast in detail, we first introduce some
notations: (1) Let T'(v, D) denote the minimum directed
Steiner tree originated at vertex v and spanning all the desti-
nation vertices in the subset D. (2) Let C'(T) be a function
denoting the cost of tree 7.

In oCast, we construct T'(v, D) recursively as described by
Eqn. (1). Initially, each vertex v € V' is a simplest rooted
tree with zero height. If v is one of the destinations, we
set C(T'(v,{v})) to be 0. Otherwise, we set D to be () and
C(T(v,D)) to be oco. After that, the trees are constructed
through two different tree expansion operations: tree grow and
tree merge, which are precisely explained as follows:

o Tree grow: As shown in Eqn. (2), @ denotes an operation
of attaching a directed edge (v,u) to T'(u,D), a tree
rooted at w and containing D (as shown in Fig. 7(a)).
Eqn. (2) picks the tree with the smallest cost and marks
it as T,(v, D). As a special case, if v is an element of
D, the last term on the right-hand side is changed to
T(u, D — {v}).

o Tree merge: Tree merge operation is described by
Eqn. (3). In this case, @ denotes an operation of merging



two trees rooted at the same vertex into a new tree (as
shown in Fig. 7(b)). Eqn. (3) exhaustively checks all the
possible Dy and D, pairs, and picks the one which can
minimize the cost of T, (v, D).

0 if D = {v},
C(T(v,D)) =< oo if D=0, )]
min(C (T4 (v, D)), C(Tm (v, D))) otherwise.
‘Where

. _ Jminuen,, (0 {C((v,u) & T(u, D))} ifvgD,
C(Ty(v, D)) {minueNOm(v){C((v, w) ® T(u, D — {v}))} ifveD.

@
C(Tm (v, D)) = {C(T(v, D1) ® T(v, D2))} (3)

min
Dy U Dg=D and Dy () Da=0

T(v,D) T(v,D1) T(v,D) T(v,D2)

(2)
Tree Grow

Tree Merge

Fig. 7. Tree Expansion

Finally, we assign the one with smaller cost among Ty (v, D)
and T, (v, D) to T'(v, D), which is illustrated in Eqn. (1). In
the following, we first prove the correctness of tree merge
operation by Theorem 2, then prove the correctness of oCast
by Theorem 3.

Theorem 2: Suppose tree T is obtained through merging
Ty and T3 based on Eqn. (3), then there is no common vertex
shared by 77 and T5.

T1 T2 T

Tu Tz

o T Tn n
(a) (a)
Tiand T2 Ti' and T2'

Fig. 8.

Proof: By contradiction, suppose 7 and 75 share a
common vertex u, and 17 = 111 D112 and 1o = TH B Tho as
illustrated in Fig. 8(a). Obviously, 7] = T11 ® T12 ® Tse and
T4 = T (as shown in Fig. 8(b)) is another possible tree pair
which can construct 7. It is easy to see that if the weight of
edge es is nonzero (If its weight equals 0, es is just a virtual
edge, and thus it does not matter whether it is included), then
C(Ty ® Tz) > C(Ty ® T3). Therefore, the assumption does

Correctness of Tree Merge

not hold, and the theorem is proved. [ |
Theorem 3: Given the derived graph G’, and a set of d
destination vertices, which is D = {dy,ds, - ,dq}. The

optimal directed Steiner tree which is rooted at any vertex
v € V' and spans any destination subset D C D, i.e., T'(v, D),
can be identified through Eqn. (1).

Theorem 3 can be proved by induction on | D|. Due to space
limit, we omit the detailed proof.
oCast: The pseudo code of the oCast algorithm is shown in
Algorithm 2. In oCast, trees are maintained in a min-priority

Algorithm 2 oCast

Input: (Derived Directed Graph G’ = (V’, E’), Destination Set D);
Output: (Optimal Steiner Tree Set 7S);

1: Let Q7 be a priority queue sorted in the increasing order of the costs of

trees;
2: Qr «— 0;
3: for each v € V' do
4: if v € D then
5: Enqueue T'(v, {v}) into Qr;
6: while Q1 # 0 do
7:  Dequeue Q1 to T'(v, D);
8 TS8S—TSUT(v,D)
9: for each u € N;y, (v) do
10: if C((u,v) ®T(v,D)) < C(T(u, D)) then
11: T(u, D) « (u,v) ® T (v, D);
12: Update Q7 with the new T'(u, D);
13: D1 «— D;
14:  for each D3 satisfying D1 (| D2 = 0 do
15: if C(T(v,D1) ® T(v, D2)) < C(T(v, D1 | D3)) then
16: T(’U7D1 UDQ) — T(’U,Dl) @T(U,Dz);
17: Update Q7 with the new T'(v, D1 |J D2);
18: return 7S

queue @7 in the increasing order of costs. Initially, oCast sets
Q7 to be empty (line 2). Subsequently, it enqueues the single-
vertex tree T'(v, {v}) into Qr if vertex v is a destination (line
3-5). In each iteration of the while loop (line 6-17), if the
queue @ is non-empty, the algorithm dequeues the top tree
T(v, D) (i.e., the tree with the smallest cost) from Qr, and
inserts it into 7S (line 7-8).

Afterwards, oCast carries out the tree grow operation in line
9-12. The algorithm examines each of v’s incoming neighbor
vertices, say u, to see whether it can improve the tree rooted at
u and containing the destination subset D, by attaching edge
(u,v) directly to T'(v, D). If so, T'(u, D) will be updated by
(u,v) ® T(v, D) (line 11-12). If T'(u, D) does not originally
exist in @, it will be enqueued as a new element into Q.

The tree merge operation is performed in line 13-17. The
algorithm considers every possible pair of disjoint subsets,
denoted by D; and D, and tries to reduce the cost of
T(v,D1J D). To achieve this, the algorithm fixes D; as
D (line 13) and exhaustively checks all the D» which satisfies
D1 D2 = 0 to see whether the tree T'(v, D1) & T(v, D2)
has a smaller cost than T'(v, D;|J D) (line 14-15). If so,
T (v, D1 J D2) will be updated by T'(v, D1) @ T (v, D) (line
16-17). If T'(v, D1 |J D2) does not originally exist in Qr, it
will be enqueued as a new element into Q7.
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Example 4.1: Fig. 9 shows how the algorithm works with an
example. As shown in the figure, vertex 3, 4 and 5 are des-
ignated as destinations, and each small subgraph represents a
Steiner tree identified by the algorithm. Two positive integers,
separated by a colon, are associated with each tree. The former
one denotes the iteration of the algorithm in which this tree
is enqueued into (), and the latter one shows the iteration in
which this tree is dequeued.

During the initialization phase, i.e., the Oth iteration, each
destination vertex is enqueued into QQr as a single-vertex tree
(Fig. 9(b) to (d)). After three iterations, all the single-vertex
trees are dequeued and four I-height trees are constructed
through tree grow and they are enqueued into Q1 (Fig. 9(e)
to (h)). Then, the optimal tree rooted at vertex 1, containing
destinations 3 and 4, is constructed by merging trees (edges)
(1,3) and (1, 4) in the 4th iteration (Fig. 9(i)), and it is further
expanded to vertex 0 in the 9th iteration (Fig. 9(k)). The single-
path tree from vertex O to destination 5 is found in the 7th
iteration (Fig. 9(j)). Finally, the tree which is originated at
vertex 0 and covers all the destinations is constructed in the
12th iteration (Fig. 9(1)). After this tree is dequeued in the 16th
iteration, Q7 becomes empty and the algorithm terminates.

Actually, during the whole 16 iterations, 16 different optimal
Steiner trees are identified and inserted into 7S. Due to space
limitation, we only show part of them.

C. Computational Complexity of oCast

In this subsection, we analyze the computational complexity
of oCast, and explain why oCast can identify the optimal
multicast trees in polynomial time with respect to n.

1) Computational Complexity: Let n' = |V’| and m' =
|E'|, the overall cost of oCast consists of three parts: (1)
dequeue. (2) tree grow. (3) tree merge.

« Dequeue: With Fibonacci Heap, the cost of each dequeue
operation is O(log 2%n’), and thus the total cost needed
for the dequeue operations is O(2%n'(d + logn')).

o Tree Grow: The total number of comparisons in the tree
grow operations is O(2¢%,cv/ | Nip(v)|) = O(29m/).
Since the enqueue/update of Q7 takes O(1) time, the
total time is O(2%m/).

o Tree Merge: The number of comparisons is
o' S, (9277 = O(3%’), and thus the total
time needed for all the tree merge operations is O(3%n’).

In summary, the overall computational complexity is
O(3%n' +24((d + logn/)n' +m')).

2) Analysis of Graph Transformation: Suppose the average
size of neighbor sets of the nodes in the whole network is
n = w By Theorem 1, in each widget, there are
on average O(7) different forwarding vertices, we can get
W =Y, Vil = O(n(1 + 1)) = O(nn).

Apparently, the size of each forwarding set is O(n), and
thus each forwarding vertex has on average O(7) outgo-
ing edges. From this hint, it can be inferred that m' =
S B U Byl = S0 B+ S 1 U By | =
O(nn) + O(nn ) = O(ni?).

In sensor networks, n is normally small due to the low
density of sensor nodes, and thus can be regarded as a constant.
Therefore, n’ = O(n) and m’ = O(n). Furthermore, since d
can be considered as a constant in small group multicast, the
computational complexity of oCast is actually a polynomial
function of n.

V. DELAY BOUNDED OCAST (DB-0OCAST)

Although oCast can minimize the energy consumption, it

may not be able to achieve satisfactory end-to-end packet
delivery delay, which is defined as the period from the moment
when the source node has a packet to send to the time when
every destination in the multicast group successfully receives
the packet?.
Example 5.1: As shown in Fig. 10, suppose at time 1, sensor
so receives a packet and wants to forward it to its five neigh-
bors. It has three different forwarding sets, which are shown in
the derived graph. Obviously, the most energy efficient way
to disseminate the packet is to transmit it to Fp 4 at slot 4
because only a single transmission is needed. However, if there
is a delay constraint, e.g., the communication must be done
before time 3, this solution is not valid. To satisfy the delay
constraint, oo and Fp 3 are used to construct the optimal
multicast set, although they have one more transmission.

Fig. 10. An example of delay bounded multicast

Energy and delay are two conflicting parameters, and thus it
is very difficult to satisfy one goal without compromising the
other. Our objective is to minimize the number of transmis-
sions, while guaranteeing its delay is bounded by a predefined
threshold. This problem is equivalent to finding the minimum
delay bounded directed Steiner tree (DB-Steiner tree) in G'.
In this section, we will introduce Delay Bounded oCast (DB-
oCast), which can effectively identify DB-Steiner trees.

A. DB-oCast Algorithm

In DB-oCast, the DB-Steiner tree is constructed recursively
by Eqn. (4). By adding a delay bound parameter t, T (v, D, t)
denotes the optimal Steiner tree whose delay is bounded by
t. Initially, C'(T'(v,{v},0)) is set to be 0, and C(T'(v,0,0))
is set to be oo. Similar to oCast, the trees are expanded
through either tree grow or tree merge (in DB-oCast, we call
them delay bounded tree grow and delay bounded tree merge,
respectively).

e DB tree grow: As described in Eqn. (5), it exhaustively

examines each u € Ny, (v) to see whether Ty (v, D, t)

2Sometimes, packet congestion may cause unpredictable delay as well.
Firstly, in sensor networks, packet traffic is normally light. Secondly, in this
paper, we focus on the delay that depends on the path (i.e., the delay caused
by the disconnected network topology). The delay depending on the load is
not our concern and can be addressed by specific load control element like
an admission or rate controller.



can be improved by attaching (v, ) to T'(u, D, t—t(v, u))
(or T(u, D — {v},t —t(v,u))), a tree rooted at u which
holds the optimal cost under the delay constraint of ¢t —
t(v,u). Here t(v,u) denotes the delay for a packet to go
through edge (v, ), and will be further explained later.

o DB tree merge: As described in Eqn. (6), all possible
T(v, D1,t) and T (v, Do, t) pairs are checked to minimize
the cost of T, (v, D, ).

0 if D= {v}andt =0,
oo if D=0and t =0,
C(T(v,D,t)) = min(C(Ty(v, D, t)), 4)
C(Ty, (v, D, 1)),
C(T'(v,D,t—1))) otherwise.
Where

minge N, (v) 1

C((v,u) & T(u, D — {v}, ¢ — t(v,w))} ifve D.
©)

C(Tm (v, D, t)) = @{C(T(U,Dl,t)EBT(v,Dg,t))}

©6)

After the tree grow and tree merge operations are done,
Eqn. (4) compares the generated trees to the tree with 1-slot
lower delay bound, i.e., T'(v, D,t — 1), and update T'(v, D, t)
with the best one.

Now, we clarify how the delay function of directed edges
in G’ is calculated: Each v € V’ has a receiving time,
which denotes the moment when the packet is received by
v. We denote the receiving time of v by v.rtime, and
thus the delay of directed edge (v,u) can be calculated by
t(v,u) = u.rtime — v.rtime (if w.rtime > v.rtime) or
t(v,u) = w.rtime + T, — v.rtime (if uw.rtime < v.rtime).

For a forwarding vertex, its receiving time is actually
the time when its corresponding forwarding set is recorded.
On the other hand, the determination of a sensor vertex’s
receiving time is much more complicated. According to the
construction of G’, the time when a sensor vertex receives
packets is determined by the forwarding vertices connected
to it. However, a sensor vertex may have multiple incoming
edges from different forwarding vertices, resulting in multiple
possible receiving times.

To solve this problem, we split each sensor vertex into a
group of new vertices, and each new vertex corresponds to a
possible receiving time of the original sensor vertex. Formally,
suppose s; is a sensor vertex, and it has [; different receiving
times. After transformation, it will be split into [; new vertices,
which form a small vertex group. We denote this group by .S,
and the I; new vertices in S; by 5,4, (1 < j < ;) (where
t; represents a receiving time). These new sensor vertices,
together with the forwarding vertices in V', construct a new
graph, G = (V" E"). In G”, the edges are defined as
follows:

min
Dy U Dy=D and Dy () Dy=

 For each sensor vertex s; € V', suppose f;, is one of
s;’s forwarding vertices, (s;,, fir) € E"(1 < j < 1;).
Moreover, the delay of the edge is t(s;,, fi,t) =t —t;
(or t + T —t;).

o For each forwarding vertex f;, € V' (suppose ¢ denotes
its receiving (recording) time), if edge (fj, si) € E',
then (f;,s:¢) € E”. Obviously, t(fj,si) = 0.

Example 5.2: Fig. 11 shows how to construct G”’. Suppose
each of sensor vertices X, Y, Z has a forwarding vertex
connected to sg, as illustrated in Fig. 11(a). Since the for-
warding vertex from X is recorded at time 1, whereas the
forwarding vertices from Y and Z are both recorded at time
5, vertex sg has two possible receiving times. Therefore,
in G’ (Fig. 11(b)), sg is split into two different vertices.
Among them, sg ; corresponds to receiving time 1, and thus is
connected by the forwarding vertex from X. sg 5 corresponds
to receiving time 5, and thus is connected by the forwarding
vertices from Y and Z. In addition, both sy ; and s 5 retain
the connections to the forwarding vertices of sq. With G”,
we can easily figure out the delays of the edges, for example
t(fx.1,50,1) =0 and t(so 5, fo.2) =2+ T, —5 =7 (Suppose

T, = 10).
® ©
ONC
(2
&)

@G

Fig. 11.

Split of sensor vertex

In G”, each vertex has a fixed receiving time, thus we
can further transform the problem of finding the minimum
delay bounded directed Steiner tree in G’ into the problem
of finding the minimum delay bounded directed group Steiner
tree in G”. Group Steiner tree problem is another well known
NP-hard problem [16], [17]. Its major difference from the
standard Steiner tree problem includes: (1) Each destination
of the standard Steiner tree is a single vertex, whereas each
destination of the group Steiner tree is a group (set) of vertices.
(2) The group Steiner tree only needs to cover at least one
vertex of each destination group.

In our transformation, each destination vertex s; in G’ has
a corresponding destination group .S; in G”. In DB-oCast, the
minimum group Steiner tree 7' must satisfy V(T)(.S; # 0
for any S; € D, where V(T') denotes the vertices spanned by
T.

We roughly describe DB-oCast as follows: the algorithm
starts to iterate on the delay bound ¢, from 0 to 7, the
predefined maximum bound. Under each bound, the algorithm
expands the group Steiner trees through either DB tree grow
operations (Eqn. 5) or DB tree merge operations (Eqn. 6).
Finally, all the optimal group Steiner trees will be identified.

B. Computational Complexity and Delay Granularity

The overall computational complexity of DB-oCast is
O(7(2%m” + 39n")), where n” = |V"| = O(nn) and m" =
|E"”| = O(nn?). Since 7i and d are considered as constants in
small group multicast, the computational complexity of DB-
oCast is actually a polynomial function of n.



From the computational complexity analysis of DB-oCast,
we can see that it’s approximately 7 times larger than that of
oCast. This is because in the recursive formula of DB-oCast, a
new dimension of delay bound is added. If the maximum delay
bound of the network is relatively large, for instance 1000
time slots, the computational complexity of DB-oCast would
be unacceptably large. However, in the simulations, we find
that the minimum DB Steiner tree does not change frequently
with the increase of the delay bound. For example, a minimum
DB Steiner tree whose delay is 150 may still remain optimal
when the delay bound increases to 170. Therefore, it is not
necessary to calculate the DB Steiner trees for each bound,
and we can greatly reduce the computational complexity by
increasing the granularity of the delay bound, without losing
too much accuracy.

VI. DISTRIBUTED IMPLEMENTATION

In this section, we demonstrate that oCast and DB-oCast can
be easily applied in a decentralized fashion. Distributed oCast
borrows the idea of Distance Vector routing algorithm. Each
vertex in G’ maintains an oCast routing table, and periodically
broadcasts a distance vector, which contains a “digest” of the
information in its oCast routing table.

An example of oCast routing table is illustrated in Fig. 12.
In this figure, a multicast tree is shown on the left and part
of vertex 0’s oCast routing table is shown on the right. In
the routing table, the first column contains the Destination
String*(DS) of each destination subset which is used to
uniquely identify an entry, and the second column displays
the cost of the corresponding Steiner tree. The third column
of the table stores the information of next hops. It includes
two sub-columns. The first sub-column represents the ID of
each next-hop vertex, and the second sub-column indicates the
corresponding destination set which is expected to be covered
by the subtree rooted at the next-hop vertex. In each entry,
there may be multiple next-hop vertices, which implies that
the packet be forwarded to multiple subtrees.

In this scenario, the sorted super destination set comprises
vertex 3, 4 and 5, and thus they correspond to the 1st, 2nd and
3rd bit of the destination string, respectively. Suppose vertex
0 wants to multicast a packet to all the desired destinations.
Based on the first entry of the routing table (next hop part),
it should send the packet to both vertex 1 and 2. Also, it will
encode the destination strings (110) and (001) in the headers
of the packets to vertex 1 and 2, respectively. Since the length
of a DS equals the size of the super destination set, which
is a small number, this kind of destination encoding won’t
cause too much communication overhead. Subsequently, after
receiving the packet, vertex 1 and 2 will decode the DS, and
forward the packet along their own subtrees according to the
decoded DS.

In our distributed oCast algorithm, neighboring vertices
periodically exchange distance vectors. The distance vector
consists of the costs of the Steiner trees (i.e., first two columns)

3A DS is used to describe a subset of the destination set. For instance, a
DS of (100) means that only the first destination appears in the subset.

Destination

String
1 110
111 4 > 001

17 1

110 2 1 110

100

101 4 001

1 1. 010
011 3 001

001 2 2 | oot

(@)

(b)
0's Routing Table

- Next Hop
Cost Vertex | DS

of

Multicast Tree

Fig. 12.  An example of oCast routing table

in the routing table. To address the routing loops and count-to-
infinity problem caused by link-cost changes or link failures,
we can borrow the idea of DSDV [18], and add sequence
numbers to the distance vectors.

We imitate the study of the communication complexity of
DSDV in [19] to analyze the message overhead of oCast. In
conclusion, the overall communication overhead of oCast is
from O(2%n) (best case) to O(2%n’?) (worst case). Therefore,
the average communication overhead to identify a Steiner tree
is from O(1) (best case) to O(n') (worst case), given the
number of Steiner trees to be 29n/.

However, the above description and analysis are based on
G’, a virtual graph. In reality, there exist only n sensor nodes
which form the network graph G. Our solution is to let each
sensor node, say s;, delegate its corresponding widget, i.e.,
W; in G’. In other works, s; locally maintains not only its
own routing table and distance vector, but also each of its
forwarding vertices’ routing table and distance vector. In this
way, the total communication overhead drops to O(29n) (best
case) to O(29n?) (worst case).

DB-oCast can be decentralized in a similar way. One
problem is the communication overhead caused by DB-oCast
would be 7 times larger than that of oCast. As explained in
the last section, by carefully selecting the delay granularity,
we can reduce this overhead.

VII. DISCUSSIONS

A. Imperfect Link

In our discussions and examples, we assume perfect link
quality. If the link quality is not perfect, retransmissions may
occur®. A simple solution is to increase the length of time
slots to accommodate retransmissions. In addition, each node
should estimate the expected number of transmissions for each
link, and use these numbers as the weights of the edges in the
network graph. As aforementioned, we focus on the buffer
delay, which can be in the order of seconds, and thus the delay
caused by these retransmissions (in the order of milliseconds)
can be ignored.

B. Varying Power Level

In this paper, sensor nodes have a fixed power level, which is
different from some multicast schemes developed for ad hoc
networks [1], [2], [20]. This assumption is used to simplify
the discussion. Also, varying the power level is not widely
employed in sensor networks. Since a node may be involved in

4Retransmission can be easily achieved by allowing receivers to explicitly
send ACKs back.



multiple multicast sessions simultaneously, frequently chang-
ing its power level may incur some implementation problems
on the existing sensor platforms.

However, our oCast can be easily adapted to the varying
power level applications. The only change occurs in the
transformation from G to G’. In each widget W; of G’,
we connect some virtual power vertices corresponding to the
alternative power levels to the sensor vertex, and each power
vertex is incident on s;’s forwarding vertices. Subsequently,
we apply the oCast algorithm to the new G’, and the optimal
solution can be obtained.

VIII. PERFORMANCE EVALUATIONS
A. Simulation Model
To evaluate the performance of different multicast protocols,

we use a flexible parameterized destination placement model
which includes two parameters to control the destination
locations. One parameter is the angle of dispersion (AOD),
and the other is the radius (or range). These two parameters
define a pie-shaped region that contains the destinations and
the source, as shown in Fig. 13.

..

Degree of Dispersion
(Polar Angle)

Destinations

Source Node
(Origin)

Range
(Radius)

Fig. 13.

We compare oCast with two classic heuristics used to
approximate the optimal Steiner tree: the Shortest Path Tree
(SPT), and the Minimum Spanning Tree (MST). SPT is a
naive approximation of the Steiner tree because it is simply
the aggregation of the shortest paths from the source to
the destinations. MST is the most widely used heuristic for
Steiner tree. Its basic idea is to use a partial spanning tree
to approximate the Steiner tree. As mentioned in [21], under
the fixed power level model, MST is a bestcase baseline and
no decentralized scheme can outperform it so far. Therefore,
to demonstrate the performance advantage of oCast, we only
need to outperform MST.

Unless otherwise stated, the default parameters are as
follows. The communication range is 50m, The area is
500m x 500m, and the density is 20 nodes per communication
range. AOD is 90 degrees, and the radius of the pie shaped area
is 250m. A total of 636 nodes are deployed and the number
of destinations is 10.

Destination placement model

B. Performance Evaluation of oCast without Scheduling
Without scheduling protocols, the network topology does

not change and the network is always connected. In this case,
each sensor node has a single forwarding set, which includes
all its neighbors. We apply SPT and MST on the original
network graph G and the derived graph G’, denoted as SPT-
G, SPT-G’, MST-G, MST-G’, and compare their performances
with that of oCast.
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Fig. 14. Performance evaluation of oCast without scheduling protocols
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The results are illustrated in Fig. 14. Fig. 14(a) and (b)
show the impact of two destination placement parameters on
the energy consumptions (i.e., the costs of the multicast trees)
of 5 different algorithms. As expected, oCast has the best
performance. We can also see that MST outperforms SPT, and
both protocols perform better on G’ than on G. As previously
discussed, this is because G’ can reflect the wireless multicast
advantage.

C. Performance Evaluation of oCast with Scheduling Proto-
cols

In this subsection, the network is intermittently connected.
Therefore, we only compare SPT and MST on G’ with oCast.
In the simulation, the length of each round is 7;.=500 slots,
and the working period (7’,) of each node varies between 100
slots and 300 slots with a mean of 200 slots. Without loss
of generality, each node randomly selects the start time of its
working period.
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Performance Evaluation of oCast with Scheduling Protocols

Fig. 15(a) and (b) show the energy consumption of the
three algorithms, and oCast has the best performance under
either parameter setting. Fig. 15(c) compares the average path
lengths of the multicast trees identified by the three algorithms.
Intuitively, SPT-G’ is the best one since it is actually composed
of the shortest paths to each destination. On the contrary,
MST-G’ is the worst one since it tends to find the trees
with relatively large heights. The packet delivery delays with



different multicast ranges are shown in Fig. 15(d). As can be
seen, the algorithm which has shorter path length performs
better.

D. Performance Evaluation of DB-oCast
In this subsection, we evaluate the performance of DB-

oCast. We first set the maximum delay bound 7 to be 500 slots
and the delay granularity to be 1 slot, and then test DB-oCast
under 40% working percentage (71,.=100 slots). As illustrated
in Table II, 8 different optimal DB Steiner trees are identified.
The algorithm starts with zero delay bound, and finds the first
tree (shown in the leftmost column) when the delay bound
reaches 83 slots. This tree has a delay of 83 and a cost of 24.
It remains optimal until the delay bound is further increased to
97. This implies that the calculations between bound 84 and
96 are redundant because no change is recognized.

TABLE I
MULTICAST TREES WITH 1-SLOT-GRANULARITY

[ Delay Bound ][ 83 | 97 | 175 | 256 | 302 | 378 | 423 | 478 |
[ TreeCost || 24 | 22 | 21 | 20 | 18 | 17 | 15 | 13 |

Fig. 16(a) shows the cost of the DB-oCast as a function of
the delay bound. As can be seen, as the delay bound increases,
the cost of DB-oCast drops. Eventually, at delay bound of
478, the cost of the multicast tree reaches 13. We compare
DB-oCast with SPT in terms of cost and delay. As mentioned
in the last subsection, SPT has smaller delay than oCast and
MST. However, DB-oCast can provide trees with better cost
and delay than SPT. In Fig. 16(a), the average delay and cost
of SPT under the same simulation setting are shown. As we
can see, when the delay bound is set to be smaller than the
delay of SPT, the trees provided by DB-oCast have smaller
costs than SPT.

TABLE III
MULTICAST TREES WITH 50-SLOT-GRANULARITY

[ Delay Bound [ 100 [ 200 | 300 [ 350 [ 400 | 450 [ 500 |
| TreeCost || 22 | 21 [ 20 | 18 [ 17 | 15 [ 13 |

In the last experiment, the tree operations are iterated for
7 = 500 times, and only 8 different trees are found. To
reduce the computational complexity, we increase the delay
granularity to 50, and run DB-oCast again on the same
topology. The final multicast trees are illustrated in Table III.
This time, 7 trees are identified. Compared with the experiment
with 1-slot-granularity, one multicast tree (the tree shown in
the leftmost column of Table II) is missed. This is because
there are two trees (whose delays are 83 and 97 respectively)
from slot 51 to 100, and DB-oCast with 50-slot-granularity
only picks the one with lower cost. We believe this level
of accuracy loss can be tolerated in most applications. The
cost curve of the trees found in this experiment is shown
in Fig. 16(b). It can be seen that DB-oCast with 50-slot-
granularity can still outperform STP in terms of both delay
and cost.

IX. CONCLUSIONS
In this paper, we propose an effective multicast algorithm
called oCast, which can construct optimal multicast trees in
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sensor networks. To achieve bounded delay, we propose DB-
oCast, which can discover optimal multicast trees under a
predefined delay bound.
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