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Abstract—In mission-based mobile environments such as
airplane maintenance, workflow-based mobile sensor networks
emerge, where mobile users (MUs) with sensing devices visit
sequences of mission-driven locations defined by workflows, and
demand the gathering of sensory data within mission durations.
To satisfy this demand in a cost-efficient manner, mobile access
point (AP) deployment needs to be part of the overall solution.
Therefore, we study the mobile AP deployment in workflow-based
mobile sensor networks. We categorize MUs’ workflows according
to a priori knowledge of MUs’ staying durations at mission
locations into complete and incomplete information workflows.
In both categories, we formulate the cost-minimizing mobile AP
deployment problem into multiple (mixed) integer optimization
problems, satisfying MUs’ QoS constraints. We prove that the
formulated optimization problems are NP-hard and design ap-
proximation algorithms with guaranteed approximation ratios.
We demonstrate using simulations that the AP deployment cost
calculated using our algorithms is 50-60% less than the stationary
baseline approach and fairly close to the optimal AP deployment
cost. In addition, the run times of our approximation algorithms
are only 10-25% of those of the branch-and-bound algorithm
used to derive the optimal AP deployment cost.

I. INTRODUCTION

With the advances in mobile networks, we see the emer-
gence of mobile sensor networks [1–8] that enable flexible
and wide monitoring and collection of sensory data in diverse
indoor and outdoor environments. Furthermore, we observe a
wide spread of mobile sensor networks, where sensing devices
such as smartphones, tablets or other types of sensors are
carried by robots or people (MUs) that accomplish mission-
critical tasks, hence move according to predefined workflows.
Note that workflows define mobility patterns, i.e., sequences
of mission locations that MUs are scheduled to visit. Typical
examples of workflow-based mobile sensor networks are as
follows.

• Recent years have witnessed the growing trend of
utilizing handheld devices to facilitate the airline
ground operations at airports (see Boeing digital air-
line project [9]). The handheld devices carried by
airline workers, including mobile phones or tablets
equipped with multiple sensors, not only provide
instant access to technical and regulatory publications,
but also enable real-time data capture during aircraft
maintenance [10, 11]. These workers move according
to their own workflows around the aircrafts and collect
sensory data in form of images, text, audio or video

files for further statistical analysis about conditions of
the aircrafts.

• In infrastructure monitoring such as corrosion detec-
tion [12, 13] of water, petroleum or other chemical
pipelines, mobile sensors carried by people or robots
are usually deployed to monitor and collect data
about the pipeline conditions to detect pipeline leak.
These mobile sensors move along the monitored in-
frastructure following predefined trajectories and form
workflow-based mobile sensor networks.

• In military surveillance [14–18], groups of mobile sen-
sors carried by patrolling soldiers, unmanned vehicles
or aircrafts carry out the surveillance of a particular
area to detect enemy activities and intruders. These
mobile sensors also move according to predefined
trajectories and form similar workflow-based mobile
sensor networks as the previous two examples.

• Another example of workflow-based mobile sensor
networks exist in the scenario of industrial production
line management [19–21]. Recent advances in robotic
technology enable the deployment of mobile robots
equipped with various diagnostic sensors to carry out
the testing of product quality and the diagnosis of
potential malfunctioning of the production line. These
mobile diagnostic robots typically move along pre-
defined trajectories during their mission time, which
form workflow-based mobile sensor networks.

In other scenarios such as environmental monitoring, dis-
aster recovery and etc., similar workflow-based mobile sensor
networks also exist. The efficient and effective gathering of
sensory data in the aforementioned scenarios is of great impor-
tance. One possible solution is to utilize existing commercial
cellular networks to collect these data. However, in many of
the aforementioned scenarios such as infrastructure monitoring
and military surveillance, cellular network coverage is typically
not available. Even in scenarios where cellular coverage is
guaranteed, it is highly costly to purchase long-term unlimited
data plans for MUs because of the large amount of data that
need to be gathered. In this paper we consider a potentially
much more cost efficient alternative that deploys wireless
access points working as sink nodes to gather data from MUs.
Thus, it is necessary to study the efficient deployment of APs
for data collection from sensor nodes.

The problems of deploying stationary and mobile wireless
APs for data collection in sensor networks have been widely
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studied. The stationary AP deployment problem has been
extensively studied in several previous works [22–31] to pro-
vide coverage to both mobile and stationary sensor nodes in
a cost and energy efficient manner. However, stationary AP
deployment, supporting mobile users, leads to AP-resource
overprovisioning, hence great inefficiencies since when mobile
devices move out of APs’ coverage regions, those station-
ary APs become heavily underutilized. Therefore, the idea
of placing APs on vehicles or mobile robots to make APs
mobile so as to alleviate such underutilization has already
been introduced by [32–36]. Among them [36] has built a
prototype of mobile APs carried by mobile robots called
WiFibots. However, different from the existing mobile AP
deployment schemes that minimize data collection latency
[32], maximize throughput of the sensor network [33, 35]
and minimize energy consumption [34], our work takes a very
different perspective on the mobile AP deployment problem.
We take into consideration MUs’ workflows and explore the
cost-minimizing mobile AP deployment problem in workflow-
based mobile sensor networks. Note that such a cost consists of
the AP purchasing cost and the movement-incurred cost (e.g.
gas or maintenance of an AP mobile carrier) proportional to
the distance that APs travel. The major impact of this work
is that it will bring significant saving in deployment cost for
the entities that deploy APs to collect the sensory data. The
contributions of this paper are as follows.

• Our work is the first one to study the cost-minimizing
mobile AP deployment problem in workflow-based
mobile sensor networks.

• We formulate the cost-minimizing mobile AP de-
ployment problem as meaningfully solvable (mixed)
integer optimization problems and prove that the for-
mulated optimization problems are NP-hard. Further,
we design efficient approximation algorithms with
guaranteed approximation ratios.

• We show through our simulation results that the
mobile AP deployment cost, calculated using our
algorithms, is 50-60% less than that of the stationary
AP baseline approach and fairly close to the optimal
AP deployment cost. In addition, the run times of our
approximation algorithms are only 10-25% of those
of the branch-and-bound algorithm used to derive the
optimal AP deployment cost.

The rest of this paper is organized as follows. Section
II discusses the related work. Section III states the prob-
lem description and the system model. Section IV gives a
detailed explanation of the mathematical formulation of our
optimization problem. In Section V, we describe the solution
techniques and analysis of our proposed algorithms. In Section
VI, we elaborate on the incomplete information scenario. After
describing our simulation results in Section VII, we conclude
this paper in Section VIII.

II. RELATED WORK

Sensor Deployment. Sensor deployment is an important
issue in wireless sensor networks, since efficient sensor de-
ployment is highly needed to ensure the coverage of the area of
interest and connectivity among sensors. Furthermore, sensor
deployment is closely related to AP deployment because the

deployment of APs highly depends on the sensor topologies.
[28, 37, 38] consider the deployment of stationary wireless
sensors to achieve both coverage and connectivity. [39] tackles
the problem of optimal sensor deployment on 3D surfaces
which aims to achieve the highest overall sensing quality.
[40] studies sensor deployment that minimizes the number of
sensor nodes in network-structured environments. [41] studies
the sensor reclamation and replacement for long-lived sensor
networks. [42, 43] leverage on the mobility of mobile sensors
to ensure connectivity, coverage and load balancing of the
sensor network.

Stationary AP Deployment. Typically a hierarchical ar-
chitecture is utilized for data collection in sensor networks,
where sensory data are aggregated to APs working as sink
nodes. The problem of stationary AP deployment has been
extensively studied in previous literatures. [22, 25–27] ex-
plore AP placement to offer coverage to stationary devices.
[22, 26, 27] explore AP deployment schemes that satisfy the
connectivity requirement of the sensor nodes. [25] minimizes
the deployment cost of stationary APs that cover stationary
devices. [23, 24] explore the problem one step further and
study AP placement to cover mobile devices. [30, 31] provide
AP deployment algorithms to minimize sensor nodes’ energy
consumption and prolong their network life-time. [44] stud-
ies distributed placement of APs which serve as in-network
processing operators and data caches in sensor networks.

Mobile AP Deployment. Due to the the AP-resource over-
provisioning of stationary AP deployment, [32–35] propose
to deploy mobile APs for data collection in sensor networks.
[32] proposes a rendezvous based data collection approach that
balances the energy consumption and data collection delay.
[33, 35] provide theoretical results about the optimal AP
movement that maximizes the overall lifetime. [34, 45] bundle
data collection and wireless energy transfer and minimizes the
energy consumption of the entire system.

Our paper is primarily different from the aforementioned
related work in the following two aspects. Firstly, we take into
consideration MUs’ workflow information, which is readily
available in the scenario of mission-driven mobile sensor
networks studied in this paper. Based on such information,
we are able to make better decisions about the AP movement
and data collection schedules. Secondly, we seek to minimize
a different objective function compared to the related work.
Previous work minimizes the number of deployed APs, max-
imizes the network lifetime, minimizes data collection delays
and so forth. However, our work minimizes the overall AP
deployment cost consisting of the AP purchasing cost and
the movement-incurred cost, which will bring significant cost
saving for the entities that deploy the APs and collect the
sensory data. Moreover, the mobile AP deployment scheme
designed in this paper can be readily integrated with existing
mechanisms and protocols that deal with routing [46–48]
and data aggregation [49, 50] in wireless sensor networks to
constitute a complete mobile sensing system.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. Problem Description

We consider a set of P (P ∈ Z
+) mobile users (MUs),

P = {1, · · · , P} carrying out particular missions in a 2D
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TABLE I. NOTATIONS

P MU set
A AP set
T Sequence of time slots
N Candidate AP deployment location set
cs Unit cost of purchasing one stationary AP
cm1 Unit cost of purchasing one mobile AP
cm2 Unit cost for one AP moving one unit distance
Δt Duration of one time slot
tm APs’ moving duration in one time slot
ts APs’ stationary duration in one time slot
R APs’ coverage radius
Bp MU p’s QoS requirements along the time line
Mt

p MU p’s possible positions in time slot t
Θi APs’ coverage region at candidate location i

Gt Network topology graph in time slot t
G AP position transition graph
Γi Reachable position set for an AP at location i

vp Moving speed for MU p

vap Moving speed for APs
dij An AP’s moving distance from location i to j

mission space with obstacles. Each of them carries a mobile
sensing device to collect sensory data about the environment.
The mobility of MUs follows predefined workflows, which
define sequences of mission locations that MUs are scheduled
to visit during their mission periods. A set of mobile APs, A
is sent out from the beginning of the mission time line into
the mission space to gather the sensory data from the MUs.
The entire movement and data collection schedules of APs
are computed offline before they are sent out. Our objective
is to minimize the overall AP deployment cost consisting of
two parts, namely the AP purchasing cost and AP moving
cost. We denote the unit cost of AP purchasing as cm1 ($)
and the unit cost of AP moving as cm2 ($/km). The moving
cost of an AP which is proportional to the distance that it
travels is incurred by the gas and maintenance cost, necessary
to maintain the AP’s regular service. Note that the cost incurred
by the communication between APs and MUs are negligible
compared to the purchasing cost and moving cost. Thus, the
communication cost is not taken into consideration in our
objective function.

One of the major constraints that we take into consideration
is MUs’ QoS requirements. MUs have data transmission re-
quirements not only at their mission locations, but also between
any two consecutive mission locations during their movement.
Therefore, by dividing the overall time line into a sequence
of T (T ∈ Z

+) time slots, T = {1, · · · , T}, we define
MU p’s (∀p ∈ P) QoS requirements over the time line as
Bp = {B

1
p , · · · , B

T
p }, where Bt

p (∀t ∈ T ) is MU p’s average
bandwidth requirement in time slot t.

Therefore, our overall goal is planning the number and
movement of APs to minimize the mobile AP deployment cost
such that MUs’ QoS requirements are satisfied. Furthermore,
we compare the cost of mobile AP deployment with the
baseline case proposed in [24] which is a typical stationary
AP deployment to provide coverage to MUs. We introduce
the formal mathematical formulation in Section IV.

B. Mobility Model

In this subsection, we introduce MUs’ and APs’ mobility
models. As mentioned earlier, the mobility of MUs follows
predefined workflows. A workflow for MU p (∀p ∈ P) defines
a sequence of mission locations the MU is scheduled to visit

(a) Time slot t (b) Time slot t+ 1

Fig. 1. An example of MUs’ trajectories and APs’ positions and coverage
regions in two consecutive time slots t and t+ 1

and the corresponding durations the MU remains stationary
at mission locations. Also, we assume that MU p (∀p ∈ P)
moves between any two consecutive mission locations with
constant speed known vp on the straight line segment connect-
ing the two mission locations. Then, we define the trajectory of
MU p (∀p ∈ P) as Qp consisting of the sequence of mission
locations defined in the workflow and the line segments con-
necting every two consecutive mission locations. For example,
in Fig. 1 the MU set is P = {1, 2, 3, 4}. MU 3’s workflow
defines the mission location sequence that the MU is scheduled
to visit, {A,B,C,D,E} and the corresponding duration that
MU 3 stays at every mission location, {TA, TB , TC , TD, TE}.
Hence, the trajectory for MU 3, Q3 consists of the five mission
locations and the line segments {AB,BC,CD,DE}. The
aforementioned workflow is a complete information workflow
since the durations that MUs stay at mission locations are
known a priori. One way to obtain such knowledge is to
carry out statistical analysis of MUs’ working histories and
predict with high accuracy the duration a MU takes to work
at every mission location. Incomplete information workflows
with predefined MUs’ mission locations but unknown staying
durations at these locations are defined in Section VI.

APs follow a periodically move-and-stay mobility model,
i.e., in every time slot APs move in the first tm duration with
constant speed vap and remain stationary in the remaining
ts time duration (tm � ts). Thus, the duration of one
time slot is Δt = tm + ts. APs can only remain stationary
at a set of N (N ∈ Z

+) candidate deployment locations,
N = {1, · · · , N} and we use N t to denote the candidate
deployment location set in time slot t, which has the same
elements as N . We divide the overall mission space into equal-
sized grids and define candidate deployment locations as grid
intersections which are not covered by obstacles. Furthermore,
we assume that APs move along the grids which serve as APs’
dedicated moving lanes between candidate deployment loca-
tions i and j (∀i, j ∈ N ) in the corresponding shortest path.
During the tm duration, the maximum distance an AP travels
is vaptm. Then, the reachable location set for an AP placed at
location i (∀i ∈ N ) is Γi = {j|∀j ∈ N and dij ≤ vaptm}
which contains the candidate deployment locations that an AP
at candidate deployment location i (∀i ∈ N ) is able to reach
during the tm duration within every time slot. In the example
illustrated in Fig. 2 the 4 candidate deployment locations that
the AP stays in the 4 times slots are candidate deployment
locations 118, 94, 97 and 100. Since vaptm equals to 4 times
the grid size in this example, the reachable locations for the
AP at candidate deployment locations 118 and 100 are the grid
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intersections inside Γ118 and Γ100.

Fig. 2. An example of an AP’s mobility in four consecutive time slots

We define the AP position transition graph as an undirected
graph G = (V,E), in which the vertex set V =

⋃T
t=1N

t and
the edge set E = {îj|∀i ∈ N t, ∀j ∈ N t+1

⋂
Γi and ∀t ∈

T \{T}}. The vertex set is the combination of all the candidate
location sets of all time slots and an edge îj exists if and only
if candidate deployment location j (∀j ∈ N t+1) belongs to
the reachable location set of location i (∀i ∈ N t) for any
two consecutive time slots t and t + 1. An example of an
AP transition graph is shown in Fig. 3. Let’s take the edges
between N 1 and N 2 . Since Γ1 = Γ2 = {1, 2}, edges 1̂1, 1̂2,
2̂2 and 2̂1 exist between N 1 and N 2.

Fig. 3. An example of AP position transition graph G

C. Coverage Model

In this subsection, we first introduce the coverage model
for one single AP. We assume all the communication devices
use omnidirectional antennas and the transmission region in 2D
open space can be regarded as circles. We define APs’ coverage
radius as R, which is the minimum between an AP’s and a
MU’s transmission distance. The coverage region for an AP
at location i (∀i ∈ N ), Θi is defined as the region inside the
radius-R circle centered at candidate deployment location i and
within the line-of-sight region of the AP placed at location i.
Note that the issue of channel allocation is beyond the scope of
this paper. As long as APs with overlapping coverage regions
operate on different channels, interference among APs can be
minimized or avoided, which can be realized using existing
channel allocation and access schemes [51–53].

Within every time slot, the trajectory of MU p (∀p ∈ P)
is either a line segment (moving) or a point (stationary). To
make the problem more tractable, we further divide the line
segment that any MU p travels within the ts portion of the
time slot into series of shorter equal-length line segments if

the MU is moving in the time slot, illustrated in Fig. 1(a).
In this example, the line segment 14 on MU 1’s trajectory
is the line segment that MU 1 travels within the ts duration
in time slot t. And this line segment is further divided into
line segments 12, 23 and 34. We construct an index set Mt

containing indices of all end points of these line segments and
those of the corresponding mission locations if the particular
MUs are stationary in the time slot. Thus, MU p (∀p ∈ P)
has a set of possible positions denoted as Mt

p in time slot
t. And within every time slot t, we deploy APs to provide
coverage to every position in Mt =

⋃P
p=1M

t
p. Based on

the previous definition, in Fig. 1(a) Mt
1 = {1, 2, 3, 4},M

t
2 =

{5, 6, 7, 8}, Mt
3 = {9} and Mt

4 = {10} and in Fig. 1(b)
Mt+1

1 = {1, 2, 3, 4},Mt+1
2 = {5}, Mt+1

3 = {6, 7, 8, 9} and
Mt+1

4 = {10}. In time slot t, AP 1 covers {2,3,4}, AP 2
covers {1, 9}, AP 3 covers {5, 6, 7, 8} and AP 4 covers {10}.
Then in time slot t+ 1, the four APs move to new candidate
deployment locations and cover {1, 2, 3, 4}, {5}, {6, 7, 8, 9}
and {10}.

Fig. 4. One example of the network topology graph Gt in time slot t

We define the network topology graph in time slot t
as a bipartite undirected graph Gt = (V t, Et), in which
V t = N t

⋃
Mt is the vertex set and Et = {îj|∀i ∈ N t, ∀j ∈

Mt and position j belongs to Θi} is the edge set. Gt is a
graph between N t and Mt and an undirected edge îj exists
between vertex i (∀i ∈ N t) and vertex j (∀j ∈ Mt) if
candidate deployment location j (∀j ∈ Mt) belongs to the
coverage region of an AP staying at candidate deployment lo-
cation i (∀i ∈ N t). An example of the bipartite representation
of Gt in time slot t in Fig. 1(a) is shown in Fig. 4.

IV. MATHEMATICAL FORMULATION

In this section, we describe in detail our mathematical for-
mulation of the cost-minimizing AP deployment problem for
complete information workflows. We formulate the problem
as a global optimization problem along the time line with two
subproblems including minimum AP deployment (MinAD)
and cost minimization for complete information workflows
(CMinC). For every time slot t (∀t ∈ T ), we carry out the Mi-
nAD to derive the minimum AP deployment while satisfying
MUs’ QoS constraints. Then, we use the outputs of the MinAD
problem in all time slots as inputs to the CMinC problem to
derive the cost-minimizing AP deployment. An illustration of
the overall optimization framework is demonstrated in Fig. 5.

A. Subproblem I: Minimum AP Deployment (MinAD)

Given MUs’ workflows, we can derive the network topol-
ogy graph Gt at every time slot t. For every time slot t,
we use Gt as an input to the MinAD problem to get the
AP deployment that minimizes the number of deployed APs
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Fig. 5. Optimization framework for complete information workflows

while MUs’ QoS constraints and APs’ bandwidth constraints
are satisfied. Therefore, in every time slot t (∀t ∈ T ), the
MinAD problem is formulated as follows.

Optimization Problem I (MinAD):
min

∑
i∈N t

xt
i (1)

s.t.
∑

j∈Mt
p

∑
i:îj∈Et

ytij ≥ Bt
pts, ∀p ∈ P (2)

∑
j:îj∈Et

ytij ≤ xt
iBapts, ∀i ∈ N

t (3)

ytij ∈ [0,+∞), ∀i ∈ N t, j ∈Mt, îj ∈ Et (4)

xt
i ∈ {0, 1}, ∀i ∈ N

t (5)

Variables: MinAD is a mixed integer programming prob-
lem, which has real positive variables {ytij |∀i ∈ N t, ∀j ∈

Mt, and îj ∈ Et} and binary variables X t = {xt
i|∀i ∈ N

t}.
ytij denotes the amount of data (Bytes) that a MU at candidate
deployment location j (∀j ∈Mt) transmits to the AP placed
at candidate deployment location i (∀i ∈ N t). Binary variable
xt
i (∀i ∈ N

t) represents whether it is necessary to place an
AP at candidate deployment location i (∀i ∈ N t). xt

i = 1
represents that it is necessary that an AP placed at candidate
deployment location i (∀i ∈ N t) in time slot t and xt

i = 0
indicates that an AP is not necessary to be placed at location
i (∀i ∈ N t) in time slot t.

Constants: ts is APs’ stationary duration within time slot
t, Bt

p is the QoS (average bandwidth) requirement of MU
p (∀p ∈ P) within time slot t and Bap is the maximum
bandwidth that an AP can support within a single time slot.

Objective function: In MinAD, the objective function to
minimize is the number of necessarily deployed APs within
time slot t represented by the summation of all the decision
variables in X t.

Constraints: The MUs’ QoS constraint (2) means that
MU p’s (∀p ∈ P) average bandwidth is no less than its
minimum average bandwidth requirement within time slot t.
The APs’ bandwidth constraint (3) indicates that if an AP is
placed at candidate deployment location i (∀i ∈ N t), the total
bandwidth requirement from all the MUs serviced by the AP
should not be larger than its maximum allowable bandwidth.

B. Subproblem II: Cost Minimization for Complete Informa-
tion Workflows (CMinC)

After we carry out the MinAD optimization in every time
slot, we get series of solutions {X 1, · · · ,X T }. Then we use

⋃T
t=1 X

t as inputs to the CMinC problem to construct the
MUs’ QoS constraints. In fact, the solution of the CMinC
problem indicates the location transition of any deployed AP
between any two consecutive time slots.

Optimization Problem II (CMinC):

min

(
cm1

∑
i∈N 1

∑
j:îj∈E

z1ij + cm2

T−1∑
t=1

∑
i∈N t

∑
j:îj∈E

dijz
t
ij

)
(6)

s.t.
∑

j:îj∈E

ztij ≥ xt
i, ∀i ∈ N

t, t ∈ T \ {T} (7)

∑
i:îj∈E

zT−1ij ≥ xT
j , ∀j ∈ N

T (8)

∑
j:îj∈E

ztij ≤ 1, ∀i ∈ N t, t ∈ T \ {T} (9)

∑
i:îj∈E

zt−1ij =
∑

k:ĵk∈E

ztjk, ∀j ∈ N
t, t ∈ T \ {1, T} (10)

∑
i:îj∈E

zT−1ij ≤ 1, ∀j ∈ N T (11)

ztij ∈ {0, 1}, (12)

∀i ∈ N t, j ∈ N t+1, t ∈ T \ {T}, îj ∈ E

Variables: CMinC is an integer programming problem
with binary decision variables Z = {ztij |∀i ∈ N t, ∀j ∈

N t+1, ∀t ∈ T \ {T}, and îj ∈ E} and ztij = 1 if and
only if an AP stays at candidate deployment location i in the
ts interval of time slot t and transits to candidate deployment
location j in time slot t + 1. Hence, with the AP position
transition variables within Z , we are able to calculate the
values of another set of binary variables X̃ t = {x̃t

1, · · · , x̃
t
N}.

The definition of x̃t
i (∀i ∈ N

t, ∀t ∈ T ) is shown in equation
(13), in which x̃t

i = 1 if and only if there is an AP staying at
candidate deployment location i during the ts time duration in
time slot t.

x̃t
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

j:îj∈E

ztij , if t ∈ T \ {T}

∑
j:îj∈E

zT−1ij , if t = T
(13)

Note that X t derived from the MinAD problem is the
minimum-number AP deployment that is able to satisfy MUs’
QoS constraints in time slot t. Therefore, to ensure that mobile
APs reach the locations specified by X t in every time slot t,
the actual number of deployed mobile APs specified by X̃ t

should be larger than or equal to the largest number of APs
specified by X t along the time line.

Constants: As mentioned in Section III, cm1 is the cost
of purchasing one AP and cm2 is the cost incurred if one
AP travels one unit distance. The weight constant dij is the
distance that an AP travels from candidate deployment location
i to j. Constants X =

⋃T
t=1 X

t = {xt
i|∀i ∈ N

t, ∀t ∈ T }, are
the outputs of the MinAD problem from time slot 1 to time
slot T .

Objective function: In the CMinC problem, we aim at
minimizing the overall cost of mobile AP deployment, which
consists of two parts, namely AP purchasing cost proportional
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to the number of purchased APs and AP moving cost pro-
portional to the overall distance that all the APs travel along
the time line. Since

∑
i∈N 1

∑
j:îj∈E z1ij represents the number

of deployed APs and
∑T−1

t=1

∑
i∈N t

∑
j:îj∈E dijz

t
ij represents

the overall distance that APs travel, by multiplying them with
related unit cost cm1 amd cm2 we get the objective function
(6) which is the overall cost of mobile AP deployment.

Constraints: Constraints (7) and (8) ensure that feasible
solutions of CMinC satisfy MUs’ QoS and APs’ bandwidth
constraints specified in the MinAD problem, because con-
straints (7) and (8) ensure that there is an AP staying at
candidate deployment location i (∀i ∈ N t, ∀t ∈ T ) if xt

i = 1.
Constraint (9) ensures that one AP can only transits to one
candidate deployment location in one transition and constraint
(10) ensures that the number of deployed APs is the same
in different time slots. Constraints (10) and (11) as a whole
ensure that there is at most one AP staying at one candidate
deployment location in every time slot.

V. SOLUTION AND ANALYSIS

A. Computational Complexity of MinAD and CMinC

In this subsection, we prove that the MinAD and the
CMinC problems are both NP-hard in Theorems 1 and 2.

Theorem 1. The MinAD problem is NP-hard.

Proof: We prove that the set cover problem (SCP)
which has already been proved to be NP-Complete is
polynomial-time reducible to the MinAD problem. We set
Bt

pts = Bapts = 1 in constraints (2) and (3) to get a special
instance of the MinAD problem. Then, by taking summation
over i : îj ∈ Et on both sides of constraint (3), we have:∑

i:îj∈Et

xt
i ≥

∑
i:îj∈Et

∑
j:îj∈Et

ytij ≥
∑

j∈Mt
p

∑
i:îj∈Et

ytij ≥ 1.

Thus, we get an optimization problem from the MinAD
problem represented by (14), (15) and (16):

min
∑
i∈N

xt
i (14)

s.t.
∑

i:îj∈Et

xt
i ≥ 1 (15)

xt
i ∈ {0, 1}, ∀i ∈ N (16)

(14), (15) and (16) represent the integer programming
formulation of a SCP, where the universe of elements is
U = {j|∀j ∈ Mt}, subsets S = {S1, · · · , SN} satisfy that
Si = {j|îj ∈ Et} (∀i ∈ N t) and the objective is to select the
minimum number of subsets from S such that all elements in
U are contained in the union of the selected subsets. Hence,
the NP-complete problem SCP is polynomial-time reducible to
the MinAD problem. Thus, the MinAD problem is NP-hard.

Theorem 2. The CMinC problem is NP-hard when the number
of time slots T ≥ 3.

Proof: We prove that the minimum cost 3 dimensional
perfect matching problem (MC3DPM) which has already been

proved to be NP-complete [54] is polynomial-time reducible
to the CMinC problem. An instance of the MC3DPM problem
consists of 3 sets B, C and D of the same cardinality and a
cost function f : B × C ×D → R

+. An assignment A, such
that A ⊆ B×C×D and each element of B

⋃
C
⋃
D belongs

to exactly one triple in the assignment A. Thus, the objective is
to find the assignment that minimizes the cost which is defined
as
∑

(b,c,d)∈B×C×D f(b, c, d). In our CMinC problem, we set
the number of time slots to be T = 3 and relax constraints
(7) and (8) by setting xt

i = 0 (∀i ∈ N t, ∀t ∈ {1, 2, 3}). Then,
the CMinC problem formulation can be represented by the
following optimization problem:

min
∑
j∈N 2

∑
i:îj∈E

∑
k:ĵk∈E

((
cm1 + cm2dij

)
z1ij + cm2djkz

2
jk

)
(17)

s.t.
∑

j:îj∈E

ztij ≤ 1, ∀i ∈ N t, t ∈ {1, 2} (18)

∑
i:îj∈E

z1ij =
∑

k:ĵk∈E

z2jk, ∀j ∈ N
2 (19)

∑
i:îj∈E

z2ij ≤ 1, ∀j ∈ N 3 (20)

ztij ∈ {0, 1}, (21)

∀i ∈ N t, j ∈ N t+1, t ∈ {1, 2}, îj ∈ E

(17), (18), (19), (20) and (21) represent the integer pro-
gramming formulation of a MC3DPM problem defined on
sets N 1, N 2 and N 3 with cost function f(i, j, k) = cm1 +

cm2(dij + djk) (∀j ∈ N
2, îj ∈ E, ĵk ∈ E). Thus the NP-

complete MC3DPM problem is polynomial-time reducible to
a special case of the CMinC problem when T = 3, which is a
special case of the CMinC problem when T ≥ 3. Hence, the
CMinC problem is NP-hard when T ≥ 3.

B. Solution Techniques

Since the MinAD problem is a mixed-integer program-
ming problem and the CMinC problem is a binary integer
programming problem, we are unable to use standard linear
programming techniques to derive solutions of these problems.
Utilizing the branch-and-bound approach [55], we can get
optimal solutions of these problems. However, the branch-and-
bound algorithm takes an exponential number of iterations
indicating excessively high computational complexity. Even
though the optimization problems MinAD and CMinC are
computed off-line, it still takes tremendous amount of time to
obtain optimal solutions using the branch-and-bound algorithm
if the input sizes are large. Thus, efficient approximation
algorithms are highly necessary to derive near-optimal results
with less number of iterations. We take the approach of
linear relaxation based iterative rounding (LR-IR) [56] to
derive approximate solutions of the aforementioned optimiza-
tion problems. In such approaches, we first relax the integral
constraints of a (mixed) integer optimization problem and
round a subset of the fractional solution to integers. Then, we
solve the residual problem iteratively until all variables take
integral values. Based on this idea, we design Algorithm 1 and
Algorithm 2 to tackle the MinAD and the CMinC problems.

Algorithm 1 returns approximate solutions for the MinAD
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Algorithm 1: LR-IR for MinAD

Input: Gt, Bp, B
Output: AP placement solution {xt

1, · · · , x
t
N}

while true do1

solve the linear programming relaxation of MinAD2

with xt
i ∈ [0, 1] and get optimal solution

{x∗1, · · · , x
∗
N};

round the largest fractional solution within3

{x∗1, · · · , x
∗
N} to 1;

if x∗i ∈ {0, 1} (∀i ∈ N
t) then4

return {x∗1, · · · , x
∗
N};5

end6

end7

Algorithm 2: LR-IR for CMinC

Input: G, {X 1, · · · ,X T }
Output: AP position transition solution Z
while true do1

solve the linear programming relaxation of CMinC2

with ztij ∈ [0, 1] and get optimal solution Z∗;
round the largest fractional solution zt∗ij within Z∗3

to 1 and round other variables with same t and i
indices or the same t and j indices to 0;
if zt∗ij ∈ {0, 1} (∀i ∈ N

t, j ∈ N t+1, t ∈ T \ {T})4

then
return Z∗;5

end6

end7

problem. In every iteration we round the largest fractional so-
lution to 1 until all variables take the value 0 or 1. Furthermore,
using Algorithm 2 we can derive approximate solutions for the
CMinC problem. To ensure the feasibility of the approximate
solutions, apart from rounding the largest fractional solution
to 1 in every iteration, we also round other variables with the
same t and i or t and j indices to 0.

C. Performance Analysis

For Algorithms 1 and 2, the number of iterations cannot
be larger than the number of variables. Thus in terms of
the number of iterations, Algorithms 1 and 2 are both O(n)
in which n is the number of variables. Since within each
iteration, the simplex algorithm [55] is utilized to derive the
optimal solution of the linear relaxation of the MinAD or
CMinC problem, we cannot guarantee Algorithms 1 and 2 have
polynomial time complexity in the worst case. However, our
algorithms are actually efficient in practice as shown in our
simulation in Section VII. Next, we introduce the analysis of
the approximation ratios of Algorithms 1 and 2. Recall that
Bap denotes the maximum average bandwidth supportable by
one AP in one time slot, Bt

p is the average QoS (bandwidth)
requirement for MU p (∀p ∈ P). We define the number of
edges that have j ∈Mt as one of the end points in graph Gt

as Λt
j .

Theorem 3. Algorithm 1 is a factor γ
α

approximation algo-

rithm in which α =
∑

p∈P
Bt

p

Bap
and γ = maxj∈Mt Λt

j .

Proof: We prove that in every iteration there is at least
one fractional variable xt

i ≥
α
N
. By taking summation on both

sides of constraint (3) over i : îj ∈ Et and on both sides of
constraint (2) over p ∈ P , we have:∑

i:îj∈Et

xt
i ≥

1

Bapts

∑
i:îj∈Et

∑
j:îj∈Et

ytij (22)

≥
1

Bapts

∑
p∈P

∑
j∈Mt

p

∑
j:îj∈Et

ytij

≥

∑
p∈P Bt

p

Bap

In our formulation, we have
∑

p∈P Bt
p ≥ Bap. Therefore,

when the number of iterations m ≥
∑

p∈P
Bt

p

Bap
, the algorithm

terminates and we get a set of approximate solutions for the
MinAD problem. Thus, we consider mth round iteration with

1 ≤ m <
∑

p∈P
Bt

p

Bap
. Then in the previous m−1 iterations, m−

1 variables have been rounded to 1. Therefore, from constraint
(22) we have at least one xt

i such that

xt
i ≥

∑
p∈P

Bt
p

Bap
− (m− 1)

Λt
j − (m− 1)

≥

∑
p∈P Bt

p

Λt
jBap

≥

∑
p∈P Bt

p

Bapmaxj∈Mt Λt
j

Since α =
∑

p∈P
Bt

p

Bap
, γ = maxj∈Mt Λt

j , then at every
iteration at least one fractional variable xt

i ≥
α
γ
, which implies

that Algorithm 1 is a factor γ
α
approximation algorithm.

Next, we introduce the conclusion of the approximation
ratio of Algorithm 2. Recall that Γi is the reachable position
set for an AP staying at candidate location i (∀i ∈ N )
with |Γi| being its corresponding cardinality. Then, we have
the following Theorem 4 about the approximation ratio of
Algorithm 2.

Theorem 4. Algorithm 2 is a factor maxi∈N |Γi| approxima-
tion algorithm.

Proof: We prove that in every iteration there are at least
one fractional variable ztij ≥

1
maxi∈N |Γi|

in the basic feasible
solution of the linear relaxation of the CMinC problem.
1). In the first iteration, we suppose that a particular
xt
i = 1 (i ∈ N t, t ∈ T \ {T}). Then from constraint (7),

we have at least one ztij ≥
1
|Γi|

(∀j : îj ∈ E). Otherwise,∑
j:îj∈E ztij <

∑
j:îj

1
|Γi|

= 1. For the same reason, if there
exists at least one xT

i = 1(∀i ∈ N T ), from constraint (8), we
have at least one zT−1ij ≥ 1

|Γj |
.

2). In the following iterations, since we have rounded at least
one variable ztij = 1 in previous iterations, either constraint
(10) or constraints (7) and (8) will result in at least one
fractional variable ztij ≥

1
|Γi|

(∀t ∈ T \ {T}) or zT−1ij ≥ 1
|Γj |

.

From |Γi| ≤ maxi∈N |Γi|, we arrive at the conclusion
that in every iteration there exists at least one fractional
ztij ≥

1
maxi∈N |Γi|

. This implies that Algorithm 2 is a factor
maxi∈N |Γi| approximation algorithm.
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VI. INCOMPLETE INFORMATION WORKFLOWS

Fig. 6. Optimization framework for incomplete information workflows

In this section, we extend our analysis to the scenario with
incomplete information workflows where the durations that
MUs stay at mission locations are not a priori known informa-
tion. The challenge to deal with this scenario is that the exact
mapping between MUs’ positions and their corresponding time
instances is not known beforehand. Hence, it is impossible to
carry out a global optimization along the time line to minimize
the AP deployment cost. However, in this scenario we still have
information including MUs’ trajectories and MUs’ moving
speeds between consecutive mission locations. To address this
problem, we divide any MU’s trajectory into dedicated-AP
trajectory segments and shared-AP trajectory segments. On the
former the MU does not share APs with others, whereas on
the latter the MU shares APs with others. We develop a hybrid
approach to deploy stationary APs using existing algorithm
[24] on shared-AP trajectory segments and deploy mobile
APs on dedicated-AP trajectory segments. On dedicated-AP
trajectory segments, it is possible that due to the limited AP
speeds and the large QoS requirements of MUs, multiple APs
might be needed to provide coverage for one MU. Therefore,
we formulate the problem as a combination of optimization
problems defined on every dedicated-AP trajectory segment.
The overview of the optimization framework in this case is
illustrated in Fig. 6.

A. Trajectory Selection

The first stage of the cascaded optimization framework is
also the MinAD problem formulated in Section IV-A. How-
ever, the inputs to the MinAD problem in this scenario are the
series of network topology graphs constructed on dedicated-
AP trajectory segments. In this subsection, we introduce the
trajectory selection process.

On dedicate-trajectory segments, MUs do not share APs
with others. Therefore, we realize the trajectory selection pro-
cess by drawing circles with radius R (APs’ coverage radius)
on every point of every trajectory in {Q1, · · · , QP }. Then we
select the trajectory segments that do not have overlapping
circles with other trajectories. One example of trajectory
selection is demonstrated in Fig. 7. We draw circles with radius
R centered on the four MUs’ trajectories {Q1, Q2, Q3, Q4}.
For MU 4, since it does not have overlapping circles with
other trajectories, MU 4’s overall trajectory is its dedicate-AP
trajectory segment. For MU 3, Q̃1 and Q̃2 are its dedicated-AP
trajectory segments because they do not share APs with other
MUs’ trajectories.

Fig. 7. An example of trajectory selection

Fig. 8. An example of virtual time
line construction

Fig. 9. An example of AP transition
graph

B. Network Topology Graph and AP Position Transition
Graph

In this subsection, we introduce the construction of the
network topology graphs and AP position transition graph
for every dedicated-AP trajectory segment. We denote the
index set of dedicated-AP segments as S. Since for incomplete
information workflows, the duration that MU p (∀p ∈ P) stays
in mission locations are not known a priori, it is impossible to
get the real time line for selected trajectory segments before-
hand. However, we construct a virtual time line corresponding
to every dedicated-AP trajectory segment Q̃n (∀n ∈ S) by
setting the duration that one MU stays at one mission location
to be one time slot. One example of such virtual time line
construction is illustrated in Fig. 8. On the trajectory segment
Q̃1, MU 3 moves for 1 time slot, stays at mission location D
for KD (KD ∈ Z

+) time slots, moves for 1 time slot and then
stays at mission location E for KE (KE ∈ Z

+) time slots.
Although KD and KE are not known a priori, we set KD

and KE to be 1 and obtain a virtual time line consisting of 4
time slots shown in Fig. 8. The constructed virtual time line
will yield the same result in terms of the number of deployed
mobile APs and the overall distance the APs travel.

Then w.r.t. trajectory segment Q̃n (∀n ∈ S), we construct
a set of Tn network topology graph {G1

n, · · · , G
Tn
n } on the

virtual time line using the method introduced in Section
III-C. Furthermore, an AP position transition graph Gn =
(Vn, En) (∀n ∈ S) can also be constructed w.r.t. the virtual
time line of trajectory segment Q̃n (∀n ∈ S) consisting of
vertices

⋃Tn

t=1N
t and the edges between vertices in

⋃Tn

t=1N
t

in the AP position transition graph G defined Section III-B.
In Fig. 9, we show an example of the AP position transition
graph corresponding to the virtual time line constructed in Fig.
8. Since the virtual time line has 4 time slots, the AP position
transition graph has vertices

⋃4
t=1N

t and edges between N t

and N t+1 (t ∈ {1, 2, 3}).
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C. Mathematical Formulation, Solution Techniques and Anal-
ysis

In this subsection, we first introduce the mathematical
formulation of the cost-minimizing mobile AP deployment
problem for incomplete information workflows. Shown in Fig.
6, the first stage of the optimization is also the MinAD
formulation defined in Section IV-A. In this scenario, for
trajectory segment Q̃n (∀n ∈ S) MinAD is calculated w.r.t. all
time slots along the corresponding virtual time line and derive
the solution sets {X 1

n , · · · ,X
Tn
n }. The solution sets together

with the AP position transition graph Gn (∀n ∈ S) are used
as inputs to the cost minimization problem for incomplete
information workflows (CMinInc) defined on dedicated-AP
trajectory segment Qn (∀n ∈ S).

Optimization Problem III (CMinInC):

min cm1

∑
i∈N 1

∑
j:îj∈El

zn1ij + cm2

Tn−1∑
t=1

∑
i∈N t

∑
j:îj∈El

dijz
nt
ij

(23)

s.t.
∑

j:îj∈En

zntij ≥ xnt
i , ∀i ∈ N t, t ∈ Tn \ {Tn} (24)

∑
i:îj∈En

z
n(Tn−1)
ij ≥ xnTn

j , ∀j ∈ N Tn (25)

∑
j:îj∈En

zntij ≤ 1, ∀i ∈ N t, t ∈ Tn \ {Tn} (26)

∑
i:îj∈En

z
n(t−1)
ij =

∑
k:ĵk∈En

zntjk , (27)

∀j ∈ N t, t ∈ Tn \ {1, Tn}∑
i:îj∈En

z
n(Tn−1)
ij ≤ 1, ∀j ∈ N Tn (28)

zntij ∈ {0, 1}, (29)

∀i ∈ N t, j ∈ N t+1, t ∈ Tn \ {Tn}, îj ∈ En

Since CMinInC and CMinC share some constants and
constraints, we will only elaborate on the ones that are different
from those in CMinC. Note that constants that have the same
notations in CMinC and CMinInC have the same meanings.

Variables: CMinInC is a binary integer programming with
decision variables Z = {zntij |∀i ∈ N

t, ∀j ∈ N t, ∀t ∈ Tn \

{Tn}, îj ∈ En}, in which zntij = 1 if and only if an AP stays
at position i (∀i ∈ N t) in time slot t and transits to position
j ∈ N t+1 in time slot t+ 1.

Constants: Constants xnt
i (∀i ∈ N t, ∀t ∈ Tn) in

constraints (24) and (25) are the outputs of the MinAD problem
which uses network topology graphs Gt

n (∀n ∈ S, ∀t ∈ Tn)
as inputs.

Objective function: In CMinInC, we aim at minimizing
cost of mobile AP deployment on the trajectory segment
Q̃n (∀n ∈ S) represented by objective function (23).

Constraints: Similar to CMinC, constraints (24) and (25)
ensure the minimum AP deployment is satisfied along the
virtual time line, constraint (26) ensures that one AP can
only transits to one candidate location in one single transition,
constraint (27) ensures that the number of deployed APs for

the coverage of trajectory segment Q̃n (∀n ∈ S) is the same
in different time slots and constraints (27) and (28) ensure that
there is at most one AP staying at one location in every time
slot for the coverage of Q̃n (∀n ∈ S).

Corollary 5. The CMinInC problem is NP-hard when the
number of time slots of the virtual time line corresponding
to trajectory segment Qn (∀n ∈ S) Tn ≥ 3.

Proof: The CMinInc problem is equivalent to CMinC
with Tn, En and zntij corresponds to T , E and ztij . Based
on Theorem 2 the CMinC problem is NP-hard when Tn ≥ 3.

Since the CMinInc problem is equivalent to CMinC with
only minor modifications to several constants, the CMinInc
problem can also be solved using Algorithm 2.

VII. SIMULATION RESULTS

A. Experimental Settings

TABLE II. SCENARIOS FOR COMPLETE INFORMATION WORKFLOWS

Scenario Mission Space AP Candidate Positions Time Line MUs
I 500m×500m 34 3000s 2∼16
II 1000m×1000m 114 3000s 8∼30

For complete information workflows, we first carry out
our simulation in the two scenarios described in Table II. In
both scenarios we set the grid size to be 100m and APs can
only remain stationary at grid intersections. Thus, considering
obstacles, scenario I and scenario II has 34 and 114 AP
candidate positions respectively. In scenario I, we compare
the AP deployment cost and the number of deployed APs
calculated using our approximation algorithms, the branch-
and-bound (optimal) algorithm and the baseline stationary AP
deployment algorithm [24]. Furthermore, we also compare
the run times between our approximation algorithms and the
branch-and-bound algorithm in scenario I. To demonstrate that
our approximation algorithms are highly scalable in terms of
the size of inputs, we carry out simulation in scenario II in
which the branch-and-bound algorithm is unable to return a
solution in finite time. The run times of the algorithms are
measured on a machine with a 2.0GHz ∼ 2.5GHz CPU and
8GB memory.

TABLE III. PARAMETERS FOR COMPLETE INFORMATION WORKFLOWS

cs cm1 cm2 Δt tm R vp vap

6000$ 10000$ 1

11.035
$/km 60s 10s 100m 1.5m/s 10m/s

The value of other parameters used during the simulation
are demonstrated in Table III, from which we have cs < cm1.
We set the duration of a single time slot to be 60s and the
moving duration for an AP to be tm = 10s. Thus APs move for
at most 100m within every time slot and then remain stationary
for the remaining ts = 50s. We set the number of time slots
along the time line to be T = 50 and plan the AP deployment
for 52560 periodic recurring time lines. For an average vehicle,
its average cost per kilometer is 1

11.035$.

For incomplete information workflows, we carry out our
simulation in a 1000m×1000m mission space with 114 can-
didate AP locations. We set the number of MUs to be 8 and
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Fig. 10. Cost comparison for scenario I
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Fig. 11. Deployed AP number comparison for
scenario I
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Fig. 12. Algorithm 1 run time comparison for
scenario I
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Fig. 13. Algorithm 2 run time comparison for
scenario I
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Fig. 15. Cost comparison for incomplete infor-
mation scenario

study the benefit in the saving of the AP deployment cost
of our hybrid approach compared to the baseline approach.
The parameter that varies among groups is the percentage
of selected trajectory segments β defined as β =

∑
m∈S

Tm∑
8

p=1
T ′
p

in which T ′p (∀p ∈ {1, · · · , 8}) is the number of time slots
of the virtual time line constructed on trajectory Qp. In our
experiment, we study a group of 13 different topologies with
the same

∑8
p=1 T

′
p values but different β values shown in Table

IV.

TABLE IV. PERCENTAGE OF SELECTED TRAJECTORY SEGMENTS

Topology Index 1 2 3 4 5 6 7
β (%) 12.5 19.6 33.9 60.7 69.6 71.4 73.2

Topology Index 8 9 10 11 12 13
β (%) 80.4 83.9 85.7 87.5 98.2 100.0

B. Simulation Results and Discussions

In this subsection, we introduce the simulation results
and discussions. In Figs. 10 and 11, we compare the AP
deployment cost and the number of deployed APs among the
stationary case, our approximation algorithms and the brand-
and-bound (optimal) algorithm. Fig. 10 illustrates that when
we introduce mobility to APs, the cost of AP deployment can
be remarkably reduced compared to the baseline case in which
APs are stationary. And our approximation algorithms yield AP
deployment cost fairly close to the optimal cost derived using
the brand-and-bound algorithm. Fig. 11 shows by exploiting
APs’ mobility we can reduce the number of deployed APs

compared to the the baseline stationary AP scenario. Such
reduction in the number of APs is a major reason of the
decrease in the AP deployment cost when the overall moving
cost of all APs is much less than the AP purchasing cost which
is true in most practical scenarios.

In terms of the computational performance of our al-
gorithms, we measure and compare the run time of our
approximate algorithms and the branch-and-bound algorithm
on the same machine. Fig. 12 illustrates the run time of
Algorithm 1 used to solve the MinAD problem. we calculate
the average value and the standard deviations of the run time
of Algorithm 1 among the 50 time slots along the time line
with different number of MUs in scenario I. In Fig. 12, the
run time of the optimal algorithm increases exponentially as
the number of MUs increases. This is because the number of
variables increases linearly w.r.t. the number of MUs and the
branch-and-bound algorithm has to use exponential number of
iterations to reach the optimal solution. However, Algorithm
1 is able to converge in much less time than the optimal
algorithm and increases only linearly with small slope w.r.t.
the increasing of the number of MUs. In Fig. 13, the run
time of the branch-and-bound algorithm does not increase
exponentially w.r.t. the number of MUs because the number of
MUs does not affect the number of variables and constraints in
the CMinC problem. However, the Algorithm 2 still converges
in much less time than that of the optimal branch-and-bound
algorithm.

In Fig. 14, we demonstrate that our approximation al-
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gorithms still work in scenario II with a much larger input
size than scenario I, in which the optimal branch-and-bound
algorithm is not able to return a solution in finite time. In Fig.
15, we plot the cost of mobile AP deployment, the cost of
stationary AP deployment and their difference w.r.t. different
percentages of selected trajectory segments β. In our hybrid
AP deployment approach, the difference of the AP deployment
cost on selected trajectory segments is the difference between
the cost of the baseline approach and that of our hybrid AP
deployment approach. From Fig. 15, we can arrive at the
conclusion that the difference between baseline cost and our
hybrid approach increases w.r.t. trected trajectory segments.

VIII. CONCLUSIONS

We study the cost-minimizing mobile AP deployment
problem in workflow-based mobile sensor networks, which
we formulate as multiple (mixed) integer optimization prob-
lems. We prove that the formulated optimization problems
are NP-hard and design efficient approximation algorithms
with guaranteed approximation ratios. We demonstrate through
our simulation results that the mobile AP deployment cost,
calculated using our algorithms, is 50-60% less than that of
the stationary AP baseline approach and fairly close to the
optimal AP deployment cost. In addition, the run times of
our approximation algorithms are only 10-25% of those of the
branch-and-bound algorithm used to derive the optimal AP
deployment cost.
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