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Abstract

Knowledge graph embedding (KGE) is a technique
for learning continuous embeddings for entities and
relations in the knowledge graph. Due to its benefit
to a variety of downstream tasks such as knowledge
graph completion, question answering and recom-
mendation, KGE has gained significant attention
recently. Despite its effectiveness in a benign envi-
ronment, KGE’s robustness to adversarial attacks is
not well-studied. Existing attack methods on graph
data cannot be directly applied to attack the embed-
dings of knowledge graph due to its heterogeneity.
To fill this gap, we propose a collection of data poi-
soning attack strategies, which can effectively ma-
nipulate the plausibility of arbitrary targeted facts
in a knowledge graph by adding or deleting facts
on the graph. The effectiveness and efficiency of
the proposed attack strategies are verified by exten-
sive evaluations on two widely-used benchmarks.

1 Introduction
Knowledge graphs have become a critical resource for a large
collection of real world applications, such as information ex-
traction [Mintz et al., 2009], question answering [Yih et al.,
2015] and recommendation system [Zhang et al., 2016]. Due
to its wide application domains, both academia and indus-
try have spent considerable efforts on constructing large-scale
knowledge graphs, such as YAGO [Hoffart et al., 2013], Free-
base [Bollacker et al., 2008], and Google Knowledge Graph1.
In knowledge graphs, knowledge facts are usually stored as
(head entity, relation, tail entity) triples. For instance, the
fact triple (Albert Einstein, Profession, Scientist) means that
Albert Einstein’s profession is a scientist.

Although such triples can effectively record abundant
knowledge, their underlying symbolic nature makes them dif-
ficult to be directly fed to many machine learning models.
Hence, knowledge graph embedding (KGE), which projects
the symbolic entities and relations into continuous vector
space, has quickly gained significant attention [Nickel et al.,
2011; Lin et al., 2015; Bordes et al., 2013; Yang et al., 2014b;

1https://developers.google.com/knowledge-graph/

Trouillon et al., 2016]. These compact embeddings can pre-
serve the inherent characteristics of entities and relations
while enabling the use of these knowledge facts for a large
variety of downstream tasks such as link prediction, question
answering, and recommendation.

Despite the increasing success and popularity of Knowl-
edge graph embeddings, their robustness has not been fully
analyzed. In fact, many knowledge graphs are built upon un-
reliable or even public data sources. For instance, the well
known Freebase harvests its data from various sources in-
cluding individual, user-submitted wiki contributions2. The
openness of such data unfortunately would make KGE vul-
nerable to malicious attacks. When being attacked, substan-
tial unreliable or even biased knowledge graph embeddings
would be generated, leading to serious impairment and finan-
cial loss of many downstream applications. For instance, a
variety of recommendation algorithms (e.g., [Zhang et al.,
2016; Wang et al., 2018]) utilize KGEs of products as ex-
ternal references. If KGEs are manipulated, the recommen-
dation results will be biased. This phenomenon can largely
hurt user experiences. Therefore, there is a strong need for
the analysis of the vulnerability of knowledge graph embed-
dings.

In this paper, for the first time, we systemically investi-
gate the vulnerability of KGE, through designing efficient ad-
versarial attack strategies. Due to the unique characteristics
of knowledge graph and its embedding models, existing ad-
versarial attack methods on graph data [Zügner et al., 2018;
Sun et al., 2018; Bojcheski and Günnemann, 2018] cannot
be directly applied to attack KGE methods. First, they are
all designed for homogeneous graphs, in which there is only
a single type of nodes or links. However, in a knowledge
graph, both the entities (nodes) and the relations (links) be-
tween entities are of different types. Second, existing attack
methods for homogeneous graphs usually have strict require-
ments on the formulation of the targeted methods. For in-
stance, the attack strategies proposed in [Sun et al., 2018;
Bojcheski and Günnemann, 2018] can only work for the em-
bedding methods that can be transformed into matrix factor-
ization. However, the KGE methods are diverse and may not
be able to be transformed into matrix factorization problems.

In this paper, we introduce the first study on the vulnerabil-

2https://www.nytimes.com/2007/03/09/technology/09data.html
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ity of KGE and propose a family of effective data poisoning
attack strategies against KGE methods. Our proposed attack
strategies can guide the adversary to manipulate the training
set of KGE by adding and/or deleting some specific facts to
promote or degrade the plausibility of specific targeted facts,
which can potentially influence a large variety of applications
that utilize the knowledge graph. The proposed strategies in-
clude both direct scheme which directly manipulates the em-
beddings of entities involved in the targeted facts and indirect
scheme which utilizes other entities as proxies to achieve the
attack goal. Empirically, we perform poisoning attack experi-
ments against three most representative KGE methods on two
common KGE datasets (FB15K, WN18), and verify the ef-
fectiveness of the proposed adversarial attack. Results show
that the proposed strategies can dramatically worsen the link
prediction results of targeted facts with only a small amount
of changes to the graph needed.

2 Related Work
Knowledge Graph Embeddings. KGE as an emerging re-
search topic has attracted tremendous interest. A large num-
ber of KGE models have been proposed to represent entities
and relations in a knowledge graph with vectors or matrices.
RESCAL [Nickel et al., 2011], which is based on bi-linear
matrix factorization, is one of the earliest KGE models. Then
[Bordes et al., 2013] introduces the first translation-based
KGE method TransE. Given a fact (h, r, t), composed of a
relation (r) and two entities (h and t) in the knowledge graph,
TransE learns vector representations of h, t, and r (i.e., h, t
and r) by compelling h + r ≈ t. Later, a large collection
of variants, such as TransH [Wang et al., 2014], TransR [Lin
et al., 2015], TransD [Ji et al., 2015] and TransA [Xiao et
al., 2015], extend TransE by projecting the embedding vec-
tor into various spaces. On the other hand, DistMult [Yang et
al., 2014a] simplifies RESCAL by only using a diagonal ma-
trix, and ComPlex [Trouillon et al., 2016] extends DistMult
into the complex number field. [Wang et al., 2017] provides
a comprehensive survey on these models. The attack strat-
egy proposed in this paper can be used to attack most of the
existing KGE models.
Data Poisoning Attack v.s. Evasion Attack. Data poi-
soning attacks, such as those in [Biggio et al., 2012; Stein-
hardt et al., 2017] are a family of adversarial attacks on ma-
chine learning methods. In these works, the attacker can ac-
cess the training data of the learning algorithm, and has the
power to manipulate a fraction of the training data in order
to make the trained model meet certain desired objectives.
Evasion attacks such a those in [Goodfellow et al., 2014;
Kurakin et al., 2016] are another prevalent type of attack that
may be encountered in adversarial settings. In the evasion set-
ting, malicious samples are generated at test time to evade de-
tection. In this paper, the proposed adversarial attack strate-
gies against KGE methods can be categorized into the data
poisoning attack setting.
Adversarial Attacks on Graphs. There are limited exist-
ing works on adversarial attacks for graph learning tasks:
node classification [Zügner et al., 2018; Dai et al., 2018],
graph classification [Dai et al., 2018], link prediction [Chen

et al., 2018] and node embedding [Sun et al., 2018; Bojch-
eski and Günnemann, 2018]. The first work, introduced by
[Zügner et al., 2018] linearizes the graph convolutional net-
work (GCN) [Kipf and Welling, 2016] to derive the closed-
form expression for the change in class probabilities for a
given edge/feature perturbation and greedily pick the top
perturbations that change the class probabilities. [Dai et
al., 2018] proposes a reinforcement learning based approach
where the attack agent interacts with the targeted graph/node
classifier to learn the policy of selecting the edge perturba-
tions that fool the classifier. [Chen et al., 2018] adopts the fast
gradient sign scheme to perform evasion attack against the
link prediction task with GCN. [Sun et al., 2018] and [Bojch-
eski and Günnemann, 2018] propose data poisoning attack
against factorization-based embedding methods on homoge-
neous graphs. They both formulate the poisoning attack as bi-
level optimization problems. The former exploits the eigen-
value perturbation theory [Stewart, 1990], while the latter di-
rectly adopts iterative gradient method [Carlini and Wagner,
2017] to solve the problem. To the best of our knowledge,
there is no existing investigation on adversarial attack for het-
erogeneous graphs, in which the links and/or nodes are of
different types, like knowledge graphs. This paper sheds first
light on this important problem that has not been studied yet.

3 Data Poisoning Attack against Knowledge
Graph Embedding (KGE) Methods

Let us consider a knowledge graph KG, with a training
set denoted as {(ehn, rn, etn)}Nn=1 and a targeted fact triple
(eh,targetx , rtargetx , et,targetx ) that does not exist in the train-
ing set. The goal of the attacker is to manipulate the learned
embeddings, which would degrade (or promote) the plausi-
bility of (eh,targetx , rtargetx , et,targetx ) measured by a specific
fact plausibility scoring function f . Without loss of general-
ity, we focus on degrading the targeted fact. We also assume
that the attacker has a limited attacking budget. In this pa-
per, the attacking budget is the number of perturbations per
target. Formally, the attack task is defined as follows:
Definition 1 (Problem Definition). Consider a targeted fact
triple (eh,targetx , rtargetx , et,targetx ) that does not exist in the
training set, we use eh,targetx to denote the embedding of the
head entity eh,targetx , et,targetx to denote the embedding of the
tail entity et,targetx and rtargetx to denote the embedding of
the relation rtargetx from the original training set. Our task
is to minimize the plausibility of (eh,targetx , rtargetx , et,targetx ),
i.e., f(eh,targetx , rtargetx , et,targetx ), by making perturbations
(i.e., adding/deleting facts) on the training set. We assume
the attacker has a given, fixed budget and is only capable of
making M perturbations.

Due to the discrete and combinatorial nature of the knowl-
edge graph, solving this problem is highly challenging. In-
tuitively, in order to manipulate the plausibility of a specific
targeted fact, we need to shift either the embedding vectors re-
lated to its entities or the embedding vectors/matrices related
to its relations. However, in a knowledge graph, the number
of facts that a relation type involves is much larger than the
number of facts that an entity type involves. For instance,
in the well-known knowledge graph Freebase, the number of
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entities is over 30 million, while the number of relation types
is only 1345. This leads to the fact that the innate charac-
teristics of each relation type is far more stable than that of
entities and is difficult to be manipulated via a small number
of modifications. Hence, in this paper, we focus on manip-
ulating the plausibility of targeted facts from the perspective
of entities. To achieve the attack goal, in the rest of this sec-
tion, we propose a collection of effective yet efficient attack
strategies.

3.1 Direct Attack
Given the uncontaminated knowledge graph, the goal of di-
rect attack is to determine a collection of perturbations (i.e.,
fact adding/deleting actions) to shift the embeddings of the
entities involved in the targeted fact to minimize the plausi-
bility of the targeted fact. First, we determine the optimal
shifting direction that the entity’s embedding should move
towards. Then we rank the possible perturbation actions by
analyzing the training process of KGE models and design-
ing scoring functions, which estimate the benefit of a pertur-
bation, i.e., how much shifting can be achieved by this per-
turbation along the desired direction. We name the score as
perturbation benefit score and calculate such score for every
possible perturbation. Finally, we conduct the Top-M pertur-
bations with highest perturbation benefit scores, where M is
the attack budget.

Suppose we want to degrade the plausibility of the
fact (eh,targetx , rtargetx , et,targetx ). For simplicity, let’s fo-
cus on shifting the embedding of one of the entities in
(eh,targetx , rtargetx , et,targetx ), say head entity eh,targetx , from
eh,targetx to eh,targetx + ε∗x, without loss of generality. Here,
ε∗x denotes the embedding shifting vector. The fastest direc-
tion of decreasing f(eh,targetx , rtargetx , et,targetx ) is opposite
to its partial derivative with respect to eh,targetx . Let εh be the
perturbation step size, the optimal embedding shifting vector
is:

ε∗x = −εh ·
∂f(eh,targetx , rtargetx , et,targetx )

∂eh,targetx

. (1)

As mentioned in the problem definition, in order to shift
eh,targetx by ε∗x, the adversary is allowed to add perturbation
facts to the knowledge graph or delete facts from the knowl-
edge graph. Given the optimal embedding shifting vector
ε∗x, we then find a ranking of the all the perturbation (add
or delete) candidates. We discuss the two schemes in detail
as follows.

Direct Deleting Attack. Consider the uncontaminated
training set, under the direct adversarial attack scheme, in
order to shift the embedding of eh,targetx to eh,targetx + ε∗x,
we need to select and delete one or more facts that directly
involve entity eh,targetx . Intuitively, the fact to delete should
have a great influence on the embedding of eh,targetx , while at
the same time not hinder the process of shifting the embed-
ding of eh,targetx to eh,targetx + ε∗x. To design a scoring crite-
rion that captures these intuitions, let us look into the training
process of KGE model. Consider the specific deletion candi-
date (eh,targetx , ri, e

t
i) that involves eh,targetx . During training,

the sum of the fact plausibility scores of the observed train-
ing samples is maximized. On one hand, the more plausi-

ble the fact (eh,targetx , ri, e
t
i) is, the more it contributes to the

final embedding of eh,targetx . Hence, the perturbation bene-
fit score of deleting (eh,targetx , ri, e

t
i) should be proportional

to f(eh,targetx , ri, e
t
i). On the other hand, if the plausibility

of fact (eh,targetx , ri, e
t
i) is large after eh,targetx is shifted to

eh,targetx +ε∗x (i.e., f(eh,targetx +ε∗x, ri, e
t
i) is large), it means

that the fact (eh,targetx , ri, e
t
i) has a great positive impact on

the embedding shifting and should not be deleted. Hence,
the perturbation benefit score of deleting (eh,targetx , ri, e

t
i)

should be inversely proportional to f(eh,targetx + ε∗x, ri, e
t
i).

Formally, let the set of all the delete candidates be: DD =
{(ehi , ri, eti) | ehi = eh,targetx and (ehi , ri, e

t
i) ∈ KG}, which

intuitively denote the set of facts that involve eh,targetx as the
head entity in the training set. The perturbation benefit score
of deleting a specific perturbation fact (eh,targetx , ri, e

t
i) can

be estimated as:

η−(eh,targetx , ri, e
t
i) =f(e

h,target
x , ri, e

t
i)

− λ1f(eh,targetx + ε∗x, ri, e
t
i),

(2)

where eh,targetx , ri, and eti denote the embeddings of
eh,targetx , ri and eti on the uncontaminated training set.
Direct Adding Attack. Now we discuss how to conduct di-
rect adding perturbation. To shift the embedding of exh,target

by ε∗, we just need to add new facts that involve eh,targetx
to make f(eh,targetx , rj , e

t
j) less plausible. The set of all

the possible adding candidates can be denoted as DA =
{eh,targetx } × {(rj , etj) | ∀rj ∈ KG and etj ∈ KG}, where
{(rj , etj) | ∀rj ∈ KG and etj ∈ KG} denotes all the possible
“relation-tail entity” combinations in the knowledge graph
and × stands for Cartesian product. In practice, for better
efficiency, we can downsample a subset from all the pos-
sible “relation-tail entity” combinations. Formally, the per-
turbation benefit score of a specific candidate to add (i.e.,
(eh,targetx , rj , e

t
j)) can be estimated as:

η+(eh,targetx , rj , e
t
j) =λ2f(e

h,target
x + ε∗x, rj , e

t
j)

− λ3f(eh,targetx , rj , e
t
j),

(3)

where eh,targetx , rj , and eti denote the embeddings on the
uncontaminated training set.

3.2 Indirect Attack
Although the direct attack strategy is intuitive and effective,
it is possible to be detected by data sanity check. In this sec-
tion, we move on to introduce a more complicated yet more
stealthy adversarial attack scheme, i.e., indirect attack. Sup-
pose a KGE user want to query the plausibility of a potential
fact (h, r, t). Due to the huge scales of real-world knowledge
graphs, even in the most optimistic situation, we may merely
carry data sanity test on the facts related to h and t. However,
for indirect attack, instead of adding or deleting the facts that
involve the entities in the targeted fact, we propose to perturb
the facts that involve other entities in the knowledge graph
and let the perturbation effect propagate to the targeted fact.
Thus, detecting these perturbations requires data sanity tests
on facts that involves every entity that are hops away from h
and t. When the number of hops increases linearly, the data
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sanity cost will have a exponential growth. Even though there
is an Oracle that can find these anomalous facts effectively,
defenders cannot determine the targeted fact(s) of these per-
turbations. For a better description, we provide the following
toy example, which is used throughout this section.

Example 1. Suppose we want to degrade the plausibility of
the targeted fact (eh,targetx , rtargetx , et,targetx ) via shifting the
embedding of the targeted entity eh,targetx by ε∗x, without loss
of generality. Under indirect attack scheme, we perturb the
facts that involve the K-hop neighbors of eh,targetx . These K-
hop neighbors are called proxy entities. Then the entities be-
tween the K-hop neighbors (proxy entities) and eh,targetx are
intermediate entities to propagate the influence of the pertur-
bations to eh,targetx . The propagation path can be illustrated
as follows:

eh,targetx

rx,1←−→ ex,1
rx,2←−→ ex,2 · · ·

rx,K←−−→ ex,K

where we use
rx,·←−→ to denote the directional relation and

use notation ex,· to denote the entities on the path. A specific
ex,· can work as both the head entity and the tail entity. The
notations in the path above are adopted in the rest of this
section.

When the perturbations on the proxy entity cause an em-
bedding shift on itself, the embeddings of its neighboring en-
tities will also be influenced. The influence will propagate
back to the embedding of the targeted entity ultimately.

However, finding the effective perturbations on the proxy
entities, which are K-hop away from the targeted entity, is
indeed a challenging task. The task involves two key prob-
lems: (1) Given a specific propagation path, how can we de-
termine the desired embedding shifting vectors on its interme-
diate entities and its proxy entity, in order to accomplish the
embedding shifting goal on the targeted entity? (2) How do
we select the propagation paths to propagate the influence of
perturbation to the targeted entity? In the rest of this section,
we discuss strategies to solve these key problems and propose
a criterion to evaluate the benefit of an indirect perturbation
(i.e., the perturbation benefit score).

For the first problem, given a specific path, in order to con-
duct a perturbation that makes the embedding of eh,targetx
shift towards the desired direction (i.e., the direction of ε∗x),
we decide the shifting goal for each entity on the path in a re-
current way. Suppose we want to shift eh,targetx by ε∗x via the
intermediate entities along the path specified in Example 1.
The entity that directly influences eh,targetx is its neighbor
ex,1 and what we need to do is to determine the ideal embed-
ding shifting vector ε∗x,1 on ex,1, so that the desired embed-
ding shift on eh,targetx (i.e., ε∗x) is approached to the greatest
extent. Formally, ε∗x,1 should satisfy:

ε∗x,1 = argmax
ε

f(eh,targetx + ε∗x, rx,1, ex,1 + ε)

− f(eh,targetx , rx,1, ex,1 + ε)

s.t. ||ε||2 = εh,

(4)

where εh is the perturbation step size, ex,1 denotes the em-
bedding of ex,1, and rx,1 denotes the embedding of rx,1. As

Algorithm 1 Indirect Attack

Require: Targeted fact (eh,targetx , rtargetx , et,targetx ), Neigh-
bor hop K, Targeted entity eh,targetx .

1: Exhaust all the K-hop paths originating from eh,targetx
2: Exhaust all the possible perturbation candidates on the

proxy entities of these K-hop paths.
3: Calculate ε∗x for eh,targetx according to Eq. (1).
4: for each path k do
5: for each intermediate entity / proxy entity ex,i in path
x do

6: Calculate ε∗x,i according to Eq. (4).
7: end for
8: Calculate the score ψ for each perturbation on the

current proxy entity according to Eq. (2), Eq. (3) and (5).
9: end for

10: Select M perturbations with highest scores (i.e., ψ) and
conduct the attack.

a result, the embedding of eh,targetx will have a larger ten-
dency to move towards eh,targetx + ε∗x than towards eh,targetx ,
during the training process on the contaminated training data.
When ε∗x,1 is determined, we can further get the embed-
ding shifting vector for ex,2, · · · , ex,K , which are denoted as
ε∗x,2, · · · , ε∗x,K , respectively. This process is similar as above.

With the embedding shifting vectors on the proxy entities
of each path determined, we calculate the scores η− and η+,
defined in Eq. (2) and (3) for all the possible add/delete per-
turbations. These scores are later used to calculate the pertur-
bation benefit score under indirect attack schemes.

For the second problem, we look into the training ob-
jective function. Suppose we want to shift the embed-
ding of ex,k−1 via its neighbor ex,k, when the embed-
ding shift on ex,k is ε∗x,k. To estimate the influence
of such embedding shift on ex,k−1, we isolate all the
facts that involve ex,k−1 in the training objective func-
tion, force a embedding shift εx,k on ex,k and ignore the
negative sampling terms. Formally, the objective function
becomes: mineex,k−1

∑
(ehi ,ri,e

t
i)∈D

\ex,k
ex,k−1

L(ehi , ri, eti) +

L(ex,k−1, rx,k, ex,k + εx,k), where D\ex,k
ex,k−1 stands for the

set of all the observed facts, which involve ex,k−1 ex-
cept the fact (ex,k−1, rx,k, ex,k), in the training set. L de-
notes the loss function for a single fact. ex,k + εx,k in
L(ex,k−1, rx,k, ex,k + εx,k) indicates that the embedding of
ex,k is already shifted. Clearly, if we fix the embeddings of all
the relations and entities except ex,k−1, the impact of shifting
ex,k to ex,k + εx,k is highly correlated with the number of
facts that involves ex,k−1, i.e., |Dex,k−1

|. That is to say, the
more neighbors an entity has, the less it will be influenced by
a specific perturbation on one of its neighbors.

Based on above discussions, we propose an empirical scor-
ing function to evaluate the perturbation benefit score of every
possible perturbation. We still consider the scenario specified
in Example 1. Suppose we conduct an add/delete perturbation
(ex,K , rx,K , ex,K+1) on the proxy entity ex,K . The perturba-
tion benefit score of this indirect perturbation is defined as:
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ψ(ex,K , rx,K , ex,K+1)

= η(ex,K , rx,K , ex,K+1)− λ log
( 1
K

K−1∑
k=1

|Dex,k−1
|

+max({|Dex,k−1
|}K−1k=1 )

)
,

(5)

where max({|Dex,k−1
|}K−1k=1 ) stands for the maximum num-

ber of facts that involves each entity k on the path. η is the
same as η+ under add perturbation scheme and is the same
as η− under delete perturbation scheme. λ is a trade-off pa-
rameter. The first term estimates the direct perturbation ben-
efit of the perturbation in terms of shifting the proxy entity
as desired. The second term evaluates the capability of the
intermediate entities on the path in terms of propagating the
influence to the targeted entity. As the influence may be di-
luted by the facts that involve each entity ex,k on the path.
A smaller averaged number of facts that involves each entity
ex,k on the path indicates a larger capability of the path in
terms of propagating the influence. Moreover, we also con-
sider the maximum number of facts that involves each entity
ex,k on the path. This is to avoid the case when some interme-
diate entities, whose embedding is difficult to shift, “block”
the propagation path. In practices, we can first utilize the
second term to determine the best P paths in terms of propa-
gating the influence from proxy entities to the targeted entity
and then choose what facts to add or delete upon these proxy
entities in the best P paths. 3 The overall workflow of indirect
attack is illustrated in Algorithm 1.

4 Experiments
4.1 Datasets and Settings
Datasets. In this paper, we use two common KGE bench-
mark datasets for our experiment: FB15k and WN18. FB15k
is a subset of Freebase, which is a large collaborative knowl-
edge base consisting of a large number of real-world facts.
WN18 is a subset of Wordnet 4, which is a large lexical
knowledge graph. Both FB15k and WN18 are first introduced
by [Bordes et al., 2013]. The training set and the test set of
these two datasets are already fixed. We randomly sample 100
samples in the test set as the targeted facts for the proposed
attack strategies.

Baseline & Targeted Models. Since there are no exist-
ing methods that can work under the setting of this pa-
per, we compare the proposed attack schemes with several
naive baseline strategies. Specifically, we design random-dd
(random direct deleting), random-da (random direct adding),
random-id (random indirect deleting), random-ia (random in-
direct adding) as comparison baselines for our proposed di-
rect deleting attack, direct adding attack, indirect deleting at-
tack, indirect adding attack, respectively. The difference be-
tween the baseline and its corresponding proposed methods
is that the perturbation facts to add/delete are randomly se-
lected. For the targeted KGE models, we choose three most

3This strategy is used in the experiments of this paper.
4https://wordnet.princeton.edu/

Clean random-da Direct Add
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.24 0.46 0.24 0.42
FB15K TransR 0.24 0.52 0.23 0.42 0.21 0.41

RESCAL 0.19 0.42 0.20 0.40 0.17 0.39
TransE 0.39 0.70 0.30 0.68 0.21 0.53

WN18 TransR 0.44 0.73 0.41 0.71 0.22 0.51
RESCAL 0.41 0.72 0.44 0.69 0.30 0.57

Table 1: Overall Results of Direct Adding Attack

Clean random-dd Direct Delete
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.26 0.54 0.19 0.37
FB15K TransR 0.24 0.52 0.25 0.49 0.18 0.41

RESCAL 0.19 0.42 0.19 0.38 0.13 0.30
TransE 0.39 0.70 0.36 0.71 0.11 0.26

WN18 TransR 0.44 0.73 0.43 0.68 0.11 0.24
RESCAL 0.41 0.72 0.40 0.67 0.02 0.05

Table 2: Overall Results of Direct Deleting Attack

representative TransE [Bordes et al., 2013], TransR [Lin et
al., 2015] and RESCAL [Nickel et al., 2011] as attack targets.

Metrics. In order to evaluate the effectiveness of the pro-
posed attack strategies. We compare the plausibility change
of the targeted fact before and after the adversarial attack.
Specifically, we follow the evaluation protocol of KGE mod-
els described in the previous works like [Bordes et al., 2013].
Given a targeted fact (eh, r, et), we remove the head or tail
entity and then replace it with all the possible entities. We
first compute plausibility scores of those corrupted facts and
then rank them by descending order; the rank of the correct
entity is stored. After that, we use MRR (Mean Reciprocal
Rank of all the ground truth triples) and H@10 (the propor-
tion of correct entities ranked in top 10, for all the ground
truth entities.) as our evaluation metrics. The smaller MRR
and H@10 are on the contaminated dataset, the better the
attack performance is.

Experiment Settings. For the targeted KGE models, we
use the standard implementation provided by THUNLP-
OpenKE 5 [Han et al., 2018]. The embedding dimension d
is fixed to 50. Other parameters of baseline methods are set
according to their authors’ suggestions. For the proposed at-
tack strategies, the parameter K for indirect attack is fixed
to 1. During the experiment all the perturbations are injected
into the dataset at the same time. The attack models in this
paper are all implemented via Numpy and Python 3.7. The
attack models are run on a laptop with 4 GB RAM, 2.7 GHz
Intel Core i5 CPU.

4.2 Results and Analysis
In this section, we report and analyze the attack results of the
proposed attack strategies under different settings. To avoid
confusion, the performance of direct adding attack, direct
deleting attack, indirect adding attack, and indirect deleting
attack are reported separately in Table 1, 2, 3 and 4.

Overall Attack Performance. Let us first discuss the per-
formances of the direct attack schemes on two datasets. For

5https://github.com/thunlp/OpenKE
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Clean random-ia Indirect Add
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.25 0.50 0.23 0.47
FB15K TransR 0.24 0.52 0.25 0.51 0.22 0.49

RESCAL 0.19 0.42 0.19 0.40 0.17 0.36
TransE 0.39 0.70 0.42 0.71 0.32 0.67

WN18 TransR 0.44 0.73 0.40 0.73 0.34 0.69
RESCAL 0.41 0.72 0.41 0.69 0.39 0.63

Table 3: Overall Results of Indirect Adding Attack

Clean random-id Indirect Delete
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.27 0.50 0.22 0.44
FB15K TransR 0.24 0.52 0.25 0.53 0.21 0.48

RESCAL 0.19 0.42 0.20 0.36 0.16 0.34
TransE 0.39 0.70 0.44 0.74 0.35 0.68

WN18 TransR 0.44 0.73 0.45 0.74 0.41 0.71
RESCAL 0.41 0.72 0.42 0.70 0.38 0.64

Table 4: Overall Results of Indirect Deleting Attack

the direct deleting attack scheme, we set the attack budget for
each targeted fact to 4 and 1 on FB15K and WN18 dataset,
respectively. For the direct attacking attack scheme, the at-
tack budgets for each targeted fact are 8 and 6 for FB15K and
WN18 dataset, respectively. These budgets are low enough
to make the whole attack process unnoticeable. From the re-
sults, we can clearly see that the plausibilities of these tar-
geted facts significantly degrade as desired. We can conclude
that these KGE models are quite vulnerable to even a small
number of perturbations generated by well-designed attack
strategies. For comparison, we have also tested the baseline
methods random-da and random-dd, which cannot achieve
satisfactory attack performances. This demonstrates the ef-
fectiveness of the proposed strategies. Moreover, we observe
that the effectiveness of the proposed strategies is more sig-
nificant on WN18 dataset than on FB15K dataset. This is
because the average number of facts that each entity involves
in WN18 dataset is significantly smaller than that in FB15K
dataset. Hence, the graph structure of FB15K is more stable
and robust. Then, let us move on to the discussion of indi-
rect attack schemes. For the indirect adding attack, we set the
attack budget for each targeted fact to 60 and 20 for FB15K
and WN18 dataset, respectively. For the indirect deleting at-
tack, the attack budgets for each targeted fact are set to 20 and
5 for FB15K and WN18 dataset, respectively. The reason
why indirect attacks need more attack budgets to get com-
parable results is that only a small portion of the influence
caused by the perturbations on proxy entities is propagated to
the targeted entity. In contrast, nearly all of the influence of
the perturbation is exerted on the targeted entity under direct
attack schemes. Like direct attack schemes, these indirect
attack schemes also demonstrate their effectiveness. For in-
stance, under the indirect deleting attack scheme, the H@10
and MRR metrics of the targeted facts decrease by approxi-
mate 0.03 on FB15K dataset. Thus, the indirect deleting at-
tack schemes can also be used in practices to make the attack
process more stealthy.

Analysis of the Number of Perturbations. When conduct-
ing the data poisoning attack, one of the most important fac-
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Figure 1: Analysis of the Number of Perturbations

tors is the number of perturbations (i.e. attack budget). Due
to space limit, we merely plot performances of direct attack
schemes against TransE w.r.t. the number of perturbations
(i.e., attack budgets) on WN18 dataset in Figure 1. From Fig-
ure. 1, we can clearly see that the proposed attack strategies
consistently degrade the plausibility of the targeted facts un-
der both setting. When the number of perturbations keeps
increase, the growth of attack performance becomes slower.
This is because when the number of perturbations is small,
the selected perturbations are usually of high value in terms
of manipulating the plausibility of the targeted facts. When
the number of perturbations keeps increase, the high-value
perturbations are used up. Hence, the performances become
stable.

Efficiency Analysis. Finally, let us discuss the efficiency
of the proposed attack strategies. Here we report the time
consumption for the proposed attack strategies to generate
the perturbations for a single targeted fact on average. The
time consumption of Direct Adding, Direct Deleting, Indi-
rect Adding and Indirect Deleting scheme are 3.36s, 0.13s,
14.04s, and 1.22s, respectively. 6 As one can see, the pro-
posed model takes less than 15 seconds on average to gener-
ate the perturbations for a single targeted fact. For the direct
deleting attack scheme, the time cost is less than 1 second on
average. These results show that the proposed attack strate-
gies are quite efficient.

5 Conclusions
We present the first study on the vulnerability of existing
KGE methods and propose a collection of data poisoning
attack strategies for different attack scenarios. These attack
strategies can be efficiently computed. Experiment results on
two benchmark dataset demonstrate that the proposed strate-
gies can effectively manipulate the plausibility of arbitrary
facts in the knowledge graph with limited perturbations.
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