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Abstract

As an effective way to learn a distance metric be-
tween pairs of samples, deep metric learning (DML)
has drawn significant attention in recent years. The
key idea of DML is to learn a set of hierarchical non-
linear mappings using deep neural networks, and
then project the data samples into a new feature
space for comparing or matching. Although DML
has achieved practical success in many applications,
there is no existing work that theoretically analyzes
the generalization error bound for DML, which can
measure how good a learned DML model is able
to perform on unseen data. In this paper, we try
to fill up this research gap and derive the general-
ization error bound for DML. Additionally, based
on the derived generalization bound, we propose
a novel DML method (called ADroDML), which
can adaptively learn the retention rates for the DML
models with dropout in a theoretically justified way.
Compared with existing DML works that require
predefined retention rates, ADroDML can learn the
retention rates in an optimal way and achieve better
performance. We also conduct experiments on real-
world datasets to verify the findings derived from the
generalization error bound and demonstrate the ef-
fectiveness of the proposed adaptive DML method.

1 Introduction
Measuring the similarity between data samples plays an im-
portant role in many machine learning and data mining al-
gorithms. Although some simple metrics (e.g., Euclidean
distances) can be used to measure the similarity between sam-
ples, they have no capability to capture the statistical regu-
larities in the data, and thus largely degrade the performance
of the algorithms [Weinberger et al., 2006]. To address this
challenge, metric learning, whose goal is to learn a distance
metric that can capture the important relationships among data
samples, has drawn significant attention [Huai et al., 2018a;
Weinberger et al., 2006; Huang et al., 2015; St Amand
and Huan, 2017; Zadeh et al., 2016; Huai et al., 2018b;
Suo et al., 2018]. The basic idea of most metric learning meth-
ods is first to learn a Mahalanobis distance metric, which is a

linear mapping to project the original samples into a new fea-
ture space, and then determine the similarity of samples in the
new feature space. However, these conventional Mahalanobis-
based methods usually have inherent limits on their mapping
capability, and thus fail to achieve good performance when
handling data with nonlinear structures.

Given that deep learning has good capability of modeling
the nonlinearity of samples, there has been significant effort
[Huang et al., 2016; Law et al., 2017; Song et al., 2016;
Wang et al., 2017; Ni et al., 2017; Sohn, 2016] studying deep
metric learning (DML), which unifies deep learning and metric
learning into a joint learning framework. The key idea of DML
is to explicitly train a deep neural network and derive a set of
hierarchical nonlinear mappings, based on which the data sam-
ples can be projected into a new feature space for comparing.
The derived nonlinear mappings are capable of guaranteeing
that the distance between similar samples is close and the
distance between dissimilar samples is far in the new feature
space [Sohn, 2016]. Additionally, compared with the tradi-
tional metric learning methods, DML has shown better scaling
properties when handling massive data. Although DML has
achieved practical success in many applications, there is no
existing work that theoretically analyzes the generalization
error of DML, which is the difference between the empirical
and expected errors, and it can measure how good a learned
model is able to perform on unseen data. A comprehensive
theoretical generalization analysis is essential for DML as it
can not only provide much important information about the
practical performance of DML but also guide the design of
effective network architectures for DML.

In this paper, we try to fill up this research gap and derive
the generalization bound for DML. Here we consider a general
case where the DML models adopt the dropout strategies, in
which each connection is kept in the neural network with a
predefined retention rate during the training process. In partic-
ular, when these retention rates are set to ones, it reduces to
the generalization bound of the DML model without dropout.
Based on the derived generalization bound, we can have a
good understanding of the generalization properties of DML
in many applications, especially in the settings where dropout
is used to train DML models with the goal of achieving good
generalization performance [Qian et al., 2014]. In practice,
specifying these predefined retention rates for dropout is usu-
ally difficult as it requires significant levels of experience and
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domain knowledge. However, the derived generalization error
bound for DML can be treated as a function related to the
weight parameters of the neural networks and the retention
rates for dropout. Based on this fact, we propose a novel
Adaptive Dropout based DML method (ADroDML) by incor-
porating the obtained generalization bound to the objective
function of DML models as a regularizer. The goal of incor-
porating the bound-based regularizer is to reduce the model
complexity for DML to give a lower error on future unseen
data. ADroDML allows us to jointly learn the weight parame-
ters and the retention rates for DML in a theoretically justified
way, and it can achieve better performance compared with
existing DML works that require predefined retention rates.
Extensive experiments on real-world datasets verify the find-
ings derived from the error bound and show the effectiveness
of the proposed ADroDML.

2 Preliminary
In this section, we introduce the DML model that takes
dropout into account. Without loss of generality, we use
the widely adopted Siamese network [Huang et al., 2016;
Law et al., 2017; Sun et al., 2014] as our example. Sup-
pose z = {zi = (xi, yi)}ni=1 denote the labeled training
dataset, where xi ∈ Rd is a d dimensional feature vector
and yi ∈ {−1, 1} is the class label. DML aims to train a
L-layer neural network to predict whether two input samples
(i.e., two feature vectors) are similar or not. Assume that the
trainedL-layer neural network is parameterized by the weights
W = {W l ∈ Rhl∗hl−1}Ll=1 (note that the biases are included
in W with a corresponding fixed input of 1 for simplicity),
where hl represents the number of neurons in the l-th layer
of the network and h0 = d. We denote the retention rates for
dropout as ρ = {ρl}Ll=1, where ρl represents the retention rate
for the l-th layer. Then, given the input sample xi ∈ Rd, the
output of the l-th layer in the network can be written as

f l(xi;W
1:l,M1:l) (1)

= (W l �M l)σ(f l−1(xi,W
1:l−1,M1:l−1))

= (W l �M l)σ((W l−1 �M l−1)σ(· · ·σ((W 1 �M1)xi))),

where σ(·) denotes the activation function, M1:l =

{M1,M2, ...,M l}, and M l = {M l
ij}

hl,hl−1

i=1,j=1 ∈ Rhl∗hl−1

is a binary matrix where each element M l
ij ∈ {0, 1} is

drawn from the distribution Bern(ρl). The term (W l �
M l) corresponds to dropping each of the weight parame-
ters W l = {W l

ij}
hl,hl−1

i=1,j=1 independently with probability
1 − ρl. In particular, f1(xi,W

1,M1) = (W 1 �M1)xi.
Note that the most top level representation of the input
xi, i.e.,fL(xi;W

1:L,M1:L), is a random vector due to the
adopted Bernoulli random variableM . Thus, following [Ma
et al., 2016; Zhai and Wang, 2018; Wan et al., 2013], we use
the expected value fL(xi;W ,ρ) = EM [fL(xi;W ,M)] as
the deterministic output of the neural network with dropout.

Specifically, DML aims to seek the nonlinear embedding
function fL : Rd → RhL , which guarantees that the distance
between xi and xj is smaller than a pre-specified margin γ >
0 in the transformed space if xi and xj are similar, and larger

than γ in the transformed space if xi and xj are dissimilar.
To learn a good embedding function fL with such desirable
properties, the widely adopted method is to minimize the
following empirical risk with dropout over the given training
samples

Rz(W ) =
2

n(n− 1)

∑
i<j

g(1 + yij(D(fL(xi;W ,ρ),

fL(xj ;W ,ρ))− γ)), (2)

where yij = yiyj ∈ {−1, 1} is the similarity la-
bel, γ is the unit margin and g(·) is the hinge loss.
D(fL(xi,W ,ρ), fL(xj ;W ,ρ)) is defined as follows:

D(fL(xi,W ,ρ), fL(xj ;W ,ρ)) (3)

= (fL(xi;W ,ρ)− fL(xj ;W ,ρ))T (fL(xi;W ,ρ)

− fL(xj ;W ,ρ)) =

hL∑
k=1

(fLk (xi;W ,ρ)− fLk (xj ;W ,ρ))2,

where fLk (·) represents the output of the k-th neuron in the
L-th layer of the network. In practice, the deterministic
output fL(xi;W ,ρ) can be derived by introducing a de-
terministic scaling factor (i.e., E[M l]) for each layer to re-
place the random dropout variable [Zhai and Wang, 2018;
Srivastava et al., 2014]. Then, the empirical lossRz(W ) can
be easily computed since it only involves a single deterministic
network. Note thatRz(W ) is also known as the contrastive
loss and can measure how well fL is able to place similar
samples nearby and keep dissimilar samples separated.

3 Generalization Analysis for Deep Metric
Learning

In this section, we derive the generalization bound for DML,
which is the difference between the expected and empirical
risks. We derive the generalization bound by analyzing

the generalization bound , R(Wz)−Rz(Wz), (4)

where Wz = arg minW Rz(W ) denotes the empirical risk
minimizer and R(Wz) = Ez[Rz(Wz)] represents the ex-
pected risk of the trained model on the whole space of possible
data. Note that the empirical riskRz(Wz) is also known as a
U-statistic [Clémençon et al., 2005] in the statistic literature,
and is no longer an empirical average of independent random
samples from z as in the standard deep learning setting, but
rather an average of pairs of random samples from z. Thus,
it is more challenging to perform generalization analysis for
DML. To address this challenge, we develop a novel anal-
ysis method by extending Rademacher complexity analysis
[Shalev-Shwartz and Ben-David, 2014] to the setting of DML,
and then we derive Theorem 1 that describes the generalization
bound for DML with dropout.
Theorem 1. (Generalization Bound for DML with Dropout)
Suppose the deep neural network needed to be learned has
L layers and the weight parameter W l (l ∈ [L]) satisfies
‖W l‖F ≤ Bl. Let σ(·) be a 1-Lipschitz activation function
(e.g., ReLU) and X ∈ [0, 1]d denote the feature space. Then
for any δ ∈ (0, 1), with probability 1− δ we have
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R(Wz)−Rz(Wz) ≤ 3V1

√
2 log(1/δ)

n
+ 6

√
1/bn

2
c (5)

+ 32hLB
LV L(

√
2L log 2 + 1)(

L∏
l=1

Bl)(
L∏

l=1

√
ρl)

√
d/bn

2
c,

where |g(·)| ≤ V1, and ‖σ(fL−1(·))‖ ≤ V L. Note that g(·)
denotes the loss function, and fL−1(·) represents the output
of the (L− 1)-th layer of the learned neural network.

Proof. Due to space limitation, the detailed proof for this
theorem is provided in the full version.

Observations. With Theorem 1, we can derive the following
observations, which can help explain the behaviors of existing
DML models and guide the design of good neural networks
for DML.

• The generalization bound (i.e.,R(Wz)−Rz(Wz)) de-
creases monotonically at the rate of O(

√
1/n) when the

training data size n increases. In particular, (R(Wz)−
Rz(Wz)) → 0 when n → +∞, which indicates that
the DML models can achieve good generalization perfor-
mance when the training data size is sufficiently large.
• The generalization bound is also related to the dimen-

sionality of the feature vector (i.e., d). In the cases where
the value of d is extremely small (e.g., d = 0), we may
get a small generalization bound. However, the empirical
loss may be very large since the learned model cannot
capture the particular characteristics of the data [Zhai
and Wang, 2018]. On the other hand, high-dimensional
input features (i.e., d is extremely large) usually contain
much noisy information, which can hide the relationship
between the learning task and the most relevant features
[Mason et al., 2017] and thus incurs large generalization
bounds. Thus, a proper feature set that dominates the
underlying learning task should be selected, and are then
fed into the network.
• The magnitude of the weight parameters (i.e., ‖W l‖F )

at the end of the learning process is critical to the general-
ization performance, and small magnitude of the weights
is preferred. By observing this, explicit regularizers can
be imposed on the weight parameters, which is achieved
by penalizing the norm of the optimal solution. In this
way, the generalization bound can be dramatically re-
duced when the magnitude of the weight parameters are
very large. Also, weight-decay can be adopted to avoid
choosing large-magnitude weights, which can improve
the generalization performance.

• The multiplicative term
∏L

l=1

√
ρl which is related to the

retention rates of dropout helps us to understand how the
dropout method works. When ρl = 0, the above bound
is tight since the features from the training samples have
no influence on the output [Zhai and Wang, 2018]. When
∀l ∈ [L], ρl = 1, it reduces to the complexity of a
standard model. That is to say, when these retention rates
are set to ones, it reduces to the generalization bound of
the DML model without dropout. For other cases where
ρl ∈ (0, 1), we can obtain that

∏L
l=1

√
ρl < 1, which

means that dropout can reduce the generalization bound.
However, when continuously decreasing the retention
rates for dropout, the quality of the learned model may
deteriorate [Zhai and Wang, 2018]. The reason is that
the learned model may be tuned to the particular training
samples, rather than the underlying characteristics of the
data. Thus, specifying optimal retention rates for dropout
is very crucial in practice.
• The generalization bound is also affected by V L, which

denotes the bounded output range of the activation func-
tion σ(·) on the (L− 1)-th layer. This theorem implies
that batch normalization can improve the generalization
performance as it is an operator that normalizes the output
of the previous layer within each mini-batch, especially
in the settings where the output range is extremely large.

Two other factors that affect the derived generalization bound
are L and hL, which can provide suggestions on non-extreme-
deep neural networks and non-extreme-wide output layers,
respectively. As we can see, all the above observations are con-
sistent with the widely used network architectures in practice.
Additionally, Theorem 1 can be easily generalized to other sit-
uations where different loss functions (e.g., the triplet network-
based DML models), activation functions and types of dropout
(e.g., dropout of both weights and units) are adopted.

4 Adaptive Dropout for Deep Metric
Learning

The above generalization analysis implies that taking dropout
into account during the training process can help to reduce
the generalization error of DML. However, the retention rates
for dropout are usually pre-defined based on the experience
and domain knowledge, and fixed throughout the training
process. It is still not clear how to choose the optimal retention
rates such that the learned DML model can achieve the best
performance. To address this challenge, in this section, we
propose a novel adaptive dropout based DML method (called
ADroDML) by incorporating the derived generalization error
bound into the objective function of DML as a regularizer,
and let this error bound guide the choice of the retention rates.
Specifically, the retention rates ρ = {ρl}Ll=1 for dropout and
the weight parameters W = {W l}Ll=1 of the network are
unified into one objective function, which is defined as
min
W ,ρ

L(W ,ρ) =
2

n(n− 1)

∑
i<j

g(1 + yij(D(fL(xi,W ,ρ),

fL(xj ,W ,ρ))− γ)) + βΩ(W ,ρ), (6)
where β > 0 is the associated regularization parameter, and
the regularization term Ω(W ,ρ) is derived from the gener-
alization bound given in Eq. (5). There are two terms in the
right hand side of Eq. (6). The first term is used to penalize
the large distance between similar sample pairs and penalize
the small distance between dissimilar instance pairs. The goal
of the second term is to reduce the model complexity for DML
to give lower error on future unseen data. The term Ω(W ,ρ)
in Eq. (6) is computed as follows

Ω(W ,ρ) = ∆ ∗ (
L∏

l=1

‖W l‖F )(
L∏

l=1

√
ρl),
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Dataset Size Dimension
MNIST 8v9 2,016 28× 28
Bone disease 9,704 672
Wine quality 4,898 11

Table 1: The statistics of the adopted datasets.

where ∆ = 32hLB
LV L

√
d/bn2 c(

√
2L log 2 + 1). Note that

the first two terms in the right hand of Eq. (5) are omitted
since they do not contain either the weight parameters or the
retention probability parameters.
Optimization. Next, we discuss how to solve the optimiza-
tion problem formulated in Eq. (6), where we have two sets of
parameters that need to be learned, i.e.,W = {W l}Ll=1 and
ρ = {ρl}Ll=1. Here we solve this optimization problem us-
ing the block-coordinate descent algorithm [Bertsekas, 1999],
which starts with an initial setting of the parameters, and then
optimizeW and ρ in an alternating fashion. Specifically, we
iteratively conduct the following two steps:

Step 1: Weights update. With an initial estimate of the
retention rates ρ = {ρl}Ll=1, we first update the weight pa-
rametersW = {W l}Ll=1 by minimizing L(W ,ρ) with fixed
ρ = {ρl}Ll=1. By solving this optimization problem, we can
then obtain the set of weight parameters W = {W l}Ll=1
which minimize L(W ,ρ) with the fixed retention rates.

Step 2: Retention rates update. In this step, we fix the
weight matricesW = {W l}Ll=1 for different layers, and then
calculate the retention rates ρ = {ρl}Ll=1 through minimizing
the objective function L(W ,ρ) given in Eq. (6).

The above two steps are iteratively conducted until the con-
vergence criterion is satisfied. In this paper, the convergence
criterion is that the difference between the objective function
values in two consecutive iterations is less than a threshold.
Compared with the dropout strategy that requires to specify
the retention rates in advance, the bound-based regularizer
enables us to adaptively optimize the objective and adjust the
retention rates for dropout in a theoretically justified way.

5 Experiments
5.1 Experimental Setup
Datasets. We adopt the following real-world datasets for
our experiments: the MNIST 8v9 dataset1, the bone disease
dataset2, and the wine quality dataset 3. The statistics of these
datasets are provided in Table 1.
Model settings. Unless otherwise specified, all the neural
networks adopted in the experiments have 3 layers. For each
dataset, the number of the units in each layer of the neural
network is provided in Table 2. We implement the DML model
using Google Tensorflow, and the training process is done
locally using NVIDIA GeForce GTX 1060 GPU. Additionally,
Adam optimizer is used in the training process for DML and
the learning rate is set as 1e−4. As for the activation function,
we use ReLU because it is a 1-Lipschitz activation function
and satisfies the Lipschitz-continuous condition.

1http://yann.lecun.com/exdb/mnist/
2https://sofonline.epi-ucsf.org/interface/
3https://archive.ics.uci.edu/ml/datasets.php

Dataset # units in the three layers
MNIST 8v9 (784, 64, 10)
Bone disease (672, 64, 10)
Wine quality (11, 8, 4)

Table 2: The number of units in each layer of the neural networks.

5.2 Experiments for Theoretical Observations
We first conduct experiments to verify the derived theoretical
observations in Section 3. Specifically, we evaluate the effect
of the training data size, batch normalization, regularization,
dropout and the input feature dimension on the generalization
behavior of DML. Note that the input for DML is a set of
sample pairs instead of individual samples. For each dataset,
4,950 sample pairs are selected as the test set (no overlap with
training set). Unless otherwise specified, the training data sizes
for the MNIST 8v9 dataset, the bone disease dataset and the
wine quality dataset are set as 160, 220 and 100, respectively.
Correspondingly, the numbers of the generated training sample
pairs for the MNIST 8v9 dataset, the bone dataset and the wine
quality dataset are 12,720, 24,090 and 4,950, respectively. We
do not use the validation set to tune parameters, but assign
values by standard settings. When evaluating the effect of
the training data size, batch normalization, regularization and
dropout, we report the testing loss because the generalization
bound is mainly used to measure how well the learned ML
model performs on the unseen data (test data). Additionally,
we also evaluate the impact of the input feature dimension on
the empirical training loss.

The effect of the training data size. To investigate the ef-
fect of the training data size (i.e., n) on the generalization
behavior of DML, we train the model with different training
data sizes and then calculate the testing loss. Here we consider
three cases where the training data sizes are set as 20, 50 and
110, respectively. Figure 1a and Figure 1d show the results on
the MNIST 8v9 and bone disease datasets when the number
of batches varies. From the two figures, we can see that the
larger the training data size, the smaller the testing loss. This
verifies that increasing the training data size can potentially
improve the generalization performance on unseen data.

The effect of batch normalization. Then we evaluate the
effect of batch normalization on the generalization behavior
of DML. Here we still adopt the MNIST 8v9 and bone dis-
ease datasets. For each dataset, we train the model with and
without batch normalization, respectively, and then calculate
the testing loss. The results for the two datasets are shown in
Figure 1b and Figure 1e, from which we can see the testing
loss of the model trained with batch normalization is lower
than that of the model trained without batch normalization.
The results verify that batch normalization play an important
role to generalize DML.

The effect of regularization. We also evaluate the effect of
regularization for DML through explicitly comparing the per-
formance of the DML models with and without regularization.
Then we report the calculated testing losses on the MNIST
8v9 and bone disease datasets in Figure 1c and Figure 1f, re-
spectively. From the two figures we can see the models with
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Figure 1: The testing loss of the DML model on the MNIST 8v9
dataset (a-c) and the bone disease dataset (d-f). (a) and (d): The
effect of the training data size. (b) and (e): The effect of batch
normalization. (c) and (f): The effect of regularization.

regularization perform much better than those without regular-
ization. That is to say, regularization can help to improve the
generalization performance.

The effect of dropout. Next, we analyze the effect of
dropout on the performance of the DML model. In this ex-
periment, we adopt the MNIST 8v9, bone disease and wine
quality datasets. We vary the retention rate from 0.3 to 1.0 for
the MNIST 8v9 dataset, from 0.1 to 1.0 for the bone disease
dataset and from 0.1 to 0.9 for the wine quality dataset. Note
that when the retention rate for each layer is set as 1.0 (i.e.,
∀l ∈ [L], ρl = 1.0), it is the case without dropout. The calcu-
lated testing losses for the three datasets are shown in Figure 2.
The results show that the DML model trained with dropout per-
forms better than that trained without dropout, which means
dropout can improve the model’s generalization ability. Addi-
tionally, from this figure we can see that smaller retention rate
does not mean better generalization performance. This result
also accords with the previous theoretical analysis.
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Figure 2: The testing loss of the DML model under different retention
rates on the MNIST 8v9, bone disease and wine-quality datasets.

The effect of the input feature dimension. Finally, we
evaluate the effect of the input feature dimension (i.e., d)
on the training loss. Here we adopt the MNIST 8v9 dataset.
We first randomly select a subset of features to reduce the
feature dimension of this dataset. Then, for this newly derived
reduced-dimensional dataset, we randomly select 1, 200 sam-
ples as the training samples (i.e., n = 1, 200). Additionally,
we consider three neural network structures in this experiment,
and all of them have three layers. The numbers of the units
in different layers of the three network structures are (d, 64,
10), (d, 80, 10) and (d, 128, 16), respectively. Figure 3 reports

the evolution of the training loss under various input feature
dimensions (i.e., d). In this figure, each line denotes the evolu-
tion of the training loss for a specific value of d. We can see
that the smaller the value of of the input feature dimension
(i.e., d), the larger the training loss. This is also consistent
with our previous theoretical analysis in Section 3 that when
the value of the input feature dimension (i.e., d) is very small,
the empirical training loss could be very large. The reason is
that when the number of the randomly selected features is very
small compared with that in the original unreduced dataset,
most of the useful information in the original dataset cannot
be captured, which means the learned DML model cannot
capture the particular characteristic features in the original
dataset. Thus, the empirical training loss becomes large.
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Figure 3: The training loss of the DML model for different input
feature dimensions on the MNIST 8v9 dataset. The results in (a), (b)
and (c) are for three different neural network structures, respectively.

5.3 Experiments for ADroDML
In this section, we evaluate the performance of ADroDML on
the MNIST 8v9 and wine quality datasets. For each dataset,
we first select 1,200 samples as the training set, and then use
the remaining samples as the test set.
Baseline methods. We compare the performance of
ADroDML with the following two baseline methods:
• Normal DML training (NormalDML). In this method, we

use the standard contrastive loss to train a DML model
and do not take the dropout strategy into consideration.
• DML training with a constant dropout retention rate

(DMLCons). In this method, we consider the dropout
strategy with a pre-defined retention rate. Here we set the
value of the retention rate as 0.5 by following existing
DML works [Hoffer and Ailon, 2015; Gouk et al., 2015].

For the sake of fairness, the network structure for each of the
baseline methods is the same as that of ADropDML.
Performance. In this experiment, we use the standard K-
nearest neighbor algorithm (KNN) as the classifier, which
means for each given test sample, its label is assigned by ma-
jority voting over its top-K nearest samples in the training
set. Here we consider three cases where the value of K is
set as 3, 5 and 7, respectively. In Figure 4 and Figure 5, we
respectively report the classification accuracy of ADroDML
on the MNIST 8v9 dataset and the wine quality dataset. The
results in the two figures show that our proposed ADroDML
can achieve the best performance in all cases. When K = 3,
the classification accuracy of ADroDML on the wine quality
dataset is around 97.8% while that of the two baseline meth-
ods (i.e., NormalDML and DMLCons) is around 60.0% and
62.8%, respectively. The main reason is that the proposed
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Figure 4: Classification accuracy of the proposed ADroDML on the
MNIST 8v9 dataset.
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Figure 5: Classification accuracy of the proposed ADroDML on the
wine quality dataset.

ADroDML can adaptively learn the optimal dropout retention
rates to avoid the overfitting problem.

Convergence. Next, we evaluate the convergence of
ADroDML through calculating the training loss in each batch
of the training process. Figure 6 reports the experimental
results on the MNIST 8v9 dataset. Here we conduct the exper-
iment for three times. Each time the training data are randomly
selected from the dataset. From this figure, we can see that
the training loss gradually converges to zero with the increase
of the number of batches. This confirms that the convergence
can be guaranteed in our proposed method ADroDML.
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Figure 6: The training loss of AdroDML w.r.t Number of batches on
the MNIST 8V9 dataset.

6 Related Work
Based on the types of neural networks, the existing DML
works can be roughly divided into the following three cat-
egories: (1) The Siamese network based DML methods
[Huang et al., 2016; Law et al., 2017] are trained by mini-
mizing a contractive loss function, where the task is to min-
imize the distance between similar sample pairs and to push
the pairwise distance between dissimilar pairs larger than a
fixed margin. (2) The triplet network based DML methods
[Song et al., 2016; Wang et al., 2017] are trained by minimiz-
ing a triplet loss function, and the triplets are usually generated
based on the class labels of the training dataset. (3) There are
also some DML methods based on other types of networks
[Ni et al., 2017; Sohn, 2016]. However, all the existing works
do not provide generalization analysis for DML. Additionally,

they do not consider how to derive the optimal retention rates
for dropout.

Although there are some works providing the theoretical
analysis for traditional linear metric learning [Jin et al., 2009;
Cao et al., 2016], they can not be directly used for analyzing
the generalization bound of DML. Even though [Cao et al.,
2016] also adopts the Rademacher complexity, this work is
significantly different from ours. First of all, we provide
the generalization bound for DML that solves the nonlinear
transformation problem, while [Cao et al., 2016] presents the
bound for traditional metric learning that solves the linear
transformation problem. Thus, the problem studied in our
paper is more challenging than that in [Cao et al., 2016].
Secondly, to make the theoretical analysis more general, we
take into account the dropout strategy for DML models, which
is unfortunately not considered in [Cao et al., 2016].

Additionally, adding a regularization related to a specific
upper bound to learn the parameters in an optimal way
has many practical applications [Raghunathan et al., 2018;
Zhai and Wang, 2018]. However, their settings are different
from ours. For example, [Zhai and Wang, 2018] considers the
classification model with a final softmax layer, which assumes
that the input data are i.i.d. However, we aim to derive the
bound for DML, where the input data are not independent,
making our problem more challenging. Moreover, the tech-
niques used to derive the bound in our paper and those used in
[Zhai and Wang, 2018] are significantly different. In particular,
the derived bound based on the techniques in [Zhai and Wang,
2018] has an exponential dependency (i.e., 2L) on the network
length L, which is not appealing even for moderate networks.
In contrast, based on our proposed techniques, the derived
bound only linearly depends on L. Finally, the dropout strat-
egy considered in our paper and that in [Zhai and Wang, 2018]
are different. In our paper, we consider randomly dropping out
each connection, whereas they considered randomly dropping
out each hidden neuron, which is more restrictive than ours.

7 Conclusions
In this paper, we present the generalization error bound for
DML and analyze the findings derived from this bound. Addi-
tionally, we propose a novel method (ADroDML) to adaptively
adjust the dropout rates for DML based on the derived gen-
eralization bound. Compared with existing DML works that
require predefined dropout rates, ADroDML can adaptively
learn the dropout retention rates for DML in a theoretically jus-
tified way. We also conduct experiments on real-world datasets
to verify the findings derived from the generalization bound
and test the effectiveness of the proposed adaptive method.
The experimental results are consistent with our theoretical
analysis, and they also show that the proposed ADroDML can
achieve much better performance compared with the baselines.
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