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Abstract—The recent proliferation of human-carried mobile
devices has given rise to the mobile crowd sensing (MCS)
systems. However, the sensory data provided by the participating
workers are usually not reliable. As an efficient technique to
extract truthful information from unreliable data, truth discovery
has drawn significant attention. Currently, the privacy concern
of the participating workers poses a major challenge on the
design of truth discovery mechanisms. Although the existing
mechanism can conduct truth discovery with high accuracy and
strong privacy guarantee, tremendous overhead is incurred on
the worker side. In this paper, we propose a novel lightweight
privacy preserving truth discovery framework, L-PPTD, which is
implemented by involving two non-colluding cloud platforms and
adopting additively homomorphic cryptosystem. This framework
not only achieves the protection of each worker’s sensory data
and reliability information but also introduces little overhead to
the workers. In order to further reduce each worker’s overhead in
the scenarios where only the sensory data need to be protected, we
propose another more lightweight framework named L2-PPTD.
The desirable performance of the proposed frameworks is verified
through extensive experiments conducted on real world MCS
systems.

I. INTRODUCTION

Driven by the explosion of mobile devices (e.g., smart-
phones, smartwatches, and smartglasses) equipped with var-
ious sensors (e.g., accelerometer, compass, GPS, camera),
mobile crowd sensing (MCS) [1–3] has recently emerged as a
widely employed sensing paradigm. In a typical MCS system,
the collection of sensory data is outsourced to a large crowd of
users (usually referred to as workers) carrying mobile devices.
Such MCS systems potentially can serve a wide spectrum
of applications that have significant societal and economic
impacts, including urban and environment monitoring, smart
transportation, healthcare, etc.

However, in MCS systems, the sensory data collected by
individual workers are usually not reliable. The reasons in-
clude environment noise, the hardware quality, as well as the
ways in which workers use the hardware. A possible solution
is to aggregate the sensory data of multiple workers who
observe the same objects (or events). When aggregating crowd
sensing data, however, the traditional methods (e.g., average
and voting) would not be able to derive accurate aggregated
results, since they regard all the workers equally. An ideal
approach should have the capability to capture the difference
in the quality of information among different participating
workers. However, the challenge here is that the reliability
level (referred to as weight) of each worker is usually unknown

a priori. To address this challenge, the problem of truth
discovery [4–9], which aims at discovering truthful facts from
unreliable data, has recently been widely studied. The common
principle of truth discovery approaches is that a worker will be
assigned a higher weight if her data is closer to the aggregated
results, and the data of a worker will be counted more in the
aggregation procedure if she has a higher weight.

Although truth discovery approaches have brought sig-
nificant improvement to the aggregation accuracy in MCS
systems, they fail to address the privacy concerns of the
participating workers. In many MCS applications, the workers
are usually not willing to provide their sensory data since the
private information of them may be inferred from these data.
For example, through crowd wisdom system, some difficult
questions can be solved by aggregating the answers collected
from a large crowd of workers. However, the personal infor-
mation of each worker can be inferred from her answers.

To address this challenge, a recent paper [10] presents
a mechanism called PPTD, which adopts threshold Paillier
cryptosystem [11] to protect each worker’s private information.
This mechanism can achieve strong privacy guarantee, how-
ever, at a cost of significant computation and communication
overhead. The reason is that each worker in this mechanism
has to conduct considerable amount of ciphertext-based cal-
culations and communication with the cloud server during
the truth discovery procedure. In MCS systems, the mobile
device carried by each participating worker usually has limited
energy resources. Therefore, there is a great need to design a
privacy-preserving truth discovery scheme which can not only
guarantee high accuracy and strong privacy protection but also
introduce little overhead to the participating workers.

In the light of this need, in this paper we propose a novel
lightweight privacy-preserving truth discovery framework (L-
PPTD) for MCS systems, in which the sensory data and
reliability information of each worker are both protected
from being disclosed to others. The proposed framework is
implemented by involving two non-colluding cloud platforms
and adopting additively homomorphic cryptosystem. In this
framework, the aggregated results (referred to as truth) are co-
operatively estimated by the two cloud platforms without dis-
closing any worker’s private information. Additionally, instead
of directly encrypting the data to be uploaded, each worker in
this framework preserves her privacy through perturbing the
data with some random numbers, and all the ciphertext-based
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calculations are moved onto the cloud side, which substantially
reduce the overhead incurred on each worker.

Although L-PPTD can achieve tremendous reduction of the
overhead on the worker side, each worker is still respon-
sible for calculating her weight so as to protect reliability
information. To further reduce the workload of workers, we
propose a more lightweight framework (L2-PPTD) suiting for
the scenarios where only the sensory data of each worker need
to be protected. In this framework, all each worker needs to
do is just uploading the perturbed sensory data and random
numbers before the truth discovery procedure starts.

In summary, the main contributions of this paper are:
• In order to protect each worker’s sensory data and reliabil-

ity information, we propose a novel lightweight privacy-
preserving truth discovery framework called L-PPTD,
which significantly reduces the overhead on the worker side.

• For the scenarios where only the sensory data need to
be protected, a more lightweight framework, L2-PPTD, is
proposed to further reduce the overhead on each worker.

• Extensive experiments based on real world MCS systems
are conducted to evaluate the performance of the proposed
framework.

II. PROBLEM FORMULATION

In this section, we formulate the problem addressed by
the proposed lightweight privacy preserving truth discovery
framework. This framework consists of two different types of
parties: data requester and participating workers. The data
requester is an individual or organization who posts sensing
tasks which usually require the observations on a collection of
objects (e.g., the potholes or litters in geotagging campaigns),
while the participating workers are a group of mobile device
users who carry out the sensing tasks and generate sensory
data with their mobile devices.

In MCS systems, the sensory data and the reliability infor-
mation of each participating worker may be disclosed to the
data requester or other workers during the data aggregation
process, resulting in the leakage of workers’ privacy. Here we
mainly consider the attacks coming from the inside malicious
parties (data requester or participating workers). For the sake
of curiosity and financial purpose, the data requester may try
to infer the sensitive personal information of each participating
worker. On the other hand, each participating worker may also
want to know the private information of other workers. In this
paper, we adopt the semi-honest threat model, in which all
the parties will strictly follow the designed protocols, but each
of them may backup all the data she has sent and received,
and then try to learn the private information of other parties.
Additionally, we assume there is no collusion in the designed
framework, which means the parties will not collude with each
other outside the designed protocols.

The problem addressed in this paper is formulated as
follows: Suppose there are M objects in the posted sensing
task, denoted as O = {o1, o2, ..., oM}, and these objects
will be observed by K participating workers represented as
U = {u1, u2, ..., uK}. We use W = {w1, w2, ..., wK} to

denote the weights (i.e., reliability) of these workers. Let xkm
denote the sensory data of worker uk for object om. For every
object om ∈ O, there is a ground truth which is not known
by all the parties in this framework. Our goal is to calculate
the estimated values {xm}Mm=1 of the ground truths for all
the objects while protecting the sensory data and reliability
information of each worker from being disclosed to others.

III. PRELIMINARY

In this section, we will review the concepts and general
procedure of truth discovery and additively homomorphic
encryption, which are the two major techniques adopted in
our proposed framework.

A. Truth Discovery

The truth discovery approaches usually take a two-step
iterative procedure:

1) Weight Estimation: In this step, each worker’s weight
will be estimated based on the difference between its sensory
data and the estimated truths. Typically, the weight of a worker
uk is calculated as wk = f(

∑M
m=1 d(x

k
m, xm)), where f is

a monotonically decreasing function, and d(xkm, xm) is the
distance function which is used to measure the difference
between workers’ sensory data and the estimated truths.

In the proposed framework, we consider both cases when
the sensory data are continuous or categorical. For continuous
data, the squared distance function d(xkm, xm) = (xkm−xm)2

is adopted. For categorical data, we assume each task has
multiple candidate results or answers. Then the sensory data
xkm = (0, ..., 1

q
, ..., 0)T represents worker k selects the q-th

result or answer for object om. In this case, the distance
function is defined as d(xkm, xm) = (xkm − xm)T (xkm − xm).

In this paper, we aim to develop a general framework that is
compatible with different types of function f . Without loss of
generality, we will first use the following logarithmic weight
function adopted in the widely used truth discovery method
CRH [4, 5] as an example when presenting our framework

wk = log

(∑K
k′=1

∑M
m=1 d(x

k′

m, xm)∑M
m=1 d(x

k
m, xm)

)
, (1)

and then discuss the generalization of the proposed framework
to other weight functions.

2) Truth Estimation: After worker weights are calculated,
the ground truth for each object om can be estimated as

xm =

∑K
k=1 wkx

k
m∑K

k=1 wk

. (2)

When the sensory data is continuous, this value is actually
the weighted average of the workers’ observations on object
om. But when the data is categorical, xm is a vector in
which each element represents the probability of a particular
candidate result or answer being the truth. The estimated truth
of object om will be the result or answer with the largest value
in vector xm.

In truth discovery algorithms, the above two steps will be
iteratively conducted until some convergence criterion is sat-
isfied. The convergence criterion can be a predefined iteration
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number or a threshold of the change in the estimated truths in
two consecutive iterations.

B. Additively Homomorphic Encryption

Let M denote the message space, an encryption scheme is
said to be additively homomorphic if the encryption function
E satisfies
∀ m1,m2 ∈M, E[m1 +m2] = E[m1]⊕ E[m2] (3)

∀ m3 ∈M, E[a ·m3] = a⊗ E[m3] (4)

for some operators ⊕ and ⊗, where a is a constant. In other
words, by using the additively homomorphic cyptosystem, the
encrypted sum of messages can be directly calculated from
the ciphertexts of these messages.

In this paper, we adopt a widely used additively homo-
morphic cryptosystem, namely, Paillier’s cryptosystem [12],
in which the message m ∈ Zn (Zn is the set of integers
modulo the large positive integer n) can be encrypted as
E[m] = gmrnmod n2 with the public key pk = (n, g), where
r ∈ Z∗

n (Z∗
n denotes the multiplicative group of invertible

elements of Zn) is privately and randomly selected by the user
who calculates the ciphertexts. Then, ∀ m1,m2,m3 ∈ Zn,
the following equations show the additively homomorphic
properties of Paillier’s cryptosystem:

D(E[m1 +m2]) = D(E[m1] · E[m2]) = m1 +m2 (5)
D(E[a ·m3]) = D(E[m3]

a) = a ·m3 (6)

where D(·) is the decryption function with the private key sk.

IV. L-PPTD FRAMEWORK

In this section, we will first introduce the L-PPTD frame-
work, and then analyze its computational complexity and
communication overhead.

In this framework, we aim to protect the sensory data and
reliability information of each worker from being disclosed to
others while accurately estimating the object truths. To achieve
this goal, two non-colluding cloud platforms are involved as
the third parties in L-PPTD. As shown in Fig. 1, we use SA

and SB to denote the two cloud platforms respectively. The
key idea of L-PPTD is to calculate the summed distances (i.e.,∑K

k=1

∑M
m=1 d(x

k
m, xm)) used to estimate worker weights

through the cooperation of SA and SB without letting SA

or SB know the raw data of each worker. With this distance
information, each worker will be able to calculate her weight
by herself. After the weight of each user is derived, the object
truth can be estimated via a similar cooperation between SA

and SB . The final estimated object truths will be forwarded
to the data requester.

A. The Detailed Procedure of L-PPTD

As shown in Fig. 1, L-PPTD is mainly composed of two
phases: Initialization Phase and Iteration Phase. Next, we will
elaborate on each step in the two phases.

1) Initialization Phase: This phase will be conducted only
once during the whole truth discovery procedure. Firstly, cloud
SB generates the public key pk and private key sk. The public

Fig. 1: The workflow of L-PPTD

key can be known by all the parties while the private key is
only known by SB . Then the following steps are taken.

Step I: Each worker uk generates random numbers
{αk

m}Mm=1, {βk
m}Mm=1 and γk, which are used to perturb

her sensory data, weighted data and weight respectively. For
categorical data, αk

m and βk
m are two vectors in which each

element is a random. Then uk perturbs the sensory data xkm as
x̃km = xkm−αk

m, and uploads all the perturbed data {x̃km}Mm=1

to cloud SA.
Step II: Each worker uploads all the random numbers

generated in step I to cloud SB . Thus, the random numbers
of each worker are only known by herself and cloud SB .

Step III: After receiving the random numbers from each
worker, cloud SB calculates the ciphertexts {E[αk

m]}K,M
k,m=1

and summations {
∑K

k=1 β
k
m}Mm=1,

∑K
k=1 γk. For categorical

data, E[αk
m] represents a ciphertext vector in which each

element is the ciphertext of the corresponding element in
vector αk

m. Then the ciphertexts and the summations are sent
to cloud SA.

Please note that when the data needed to be encrypted in
this paper is not integer, we will round it by multiplying a
parameter R (a magnitude of 10) and at last the original data
will be recovered by dividing the same parameter.

2) Iteration Phase: This phase starts with the random
initialization of the object truths on cloud platform SA.

Step À: Based on the homomorphic property of the Paillier
cryptosystem, cloud SA firstly calculates the ciphertext Cconti

for continuous data as

Cconti =E[

K∑
k=1

M∑
m=1

(xkm − xm)2 −
K∑

k=1

M∑
m=1

(αk
m)2]

=

K∏
k=1

M∏
m=1

E[(xkm − xm)2 − (αk
m)2]

=

K∏
k=1

M∏
m=1

E[(xkm − αk
m − xm)2 + 2αk

m(xkm − αk
m − xm)]

=

K∏
k=1

M∏
m=1

{E[(x̃km − xm)2] · E[αk
m]2(x̃

k
m−xm)}

(7)

where E[αk
m] is received from cloud SB . Based on the

perturbed sensory data x̃km received from the k-th worker,
and the estimated truth xm for each object om calculated in
the previous iteration (xm is randomly initialized in the first
iteration), E[(x̃km − xm)2] is calculated with public key pk.
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For categorical data, we assume xkmi, α
k
mi, x̃

k
mi and xmi

represents the i-th element of vector xkm, αk
m, x̃km and xm

respectively, and the number of elements in each vector is l.
Similarly, The ciphertext Ccate can be calculated by SA as

Ccate =E[

K∑
k=1

M∑
m=1

l∑
i=1

(xkmi − xmi)
2 −

K∑
k=1

M∑
m=1

l∑
i=1

(αk
mi)

2]

=

K∏
k=1

M∏
m=1

l∏
i=1

E[(xkmi − xmi)
2 − (αk

mi)
2]

=

K∏
k=1

M∏
m=1

l∏
i=1

{E[(x̃kmi − xmi)
2] · E[αk

mi]
2(x̃k

mi−xmi)}.

(8)

At last, the ciphertext Cconti or Ccate together with the
estimated object truths {xm}Mm=1 are sent to cloud SB .

Step Á: After receiving the ciphertext, cloud SB decrypts
it with his private key sk and calculates the summation of
distances (i.e.,

∑K
k′=1

∑M
m=1 d(x

k′

m, xm) in Equation (1)) by
adding the value

∑K
k=1

∑M
m=1(α

k
m)2 (for categorical data, the

value is
∑K

k=1

∑M
m=1

∑l
i=1(α

k
mi)

2) to the decrypted data.
Then the summation

∑K
k=1

∑M
m=1 d(x

k
m, xm) together with

the estimated object truths {xm}Mm=1 are sent to each worker.
Step Â: In this step, each worker uk first calculates∑M
m=1 d(x

k
m, xm) based on the estimated object truths

{xm}Mm=1 received from cloud SB , then estimates her weight
wk according to Equation (1).

Step Ã: After the weight is estimated, each worker uk
calculates the weighted data wkx

k
m for object om and per-

turbs it as wkx
k
m − βk

m, where βk
m is the random number

(random number vector for categorical data) generated in the
initialization phase. Additionally, the weight wk is perturbed as
wk−γk. Then the perturbed weighted data (i.e., wkx

k
m−βk

m)
and perturbed weight (i.e., wk − γk) are sent to cloud SA.

Step Ä: Based on the information received from all the
participating workers, cloud SA first calculates the value∑K

k=1(wkx
k
m − βk

m) for each object om, then derives the
summation of the weighted data as

K∑
k=1

wkx
k
m =

K∑
k=1

(wkx
k
m − βk

m) +
K∑

k=1

βk
m (9)

where the value
∑K

k=1 β
k
m is received from cloud SB in the

initialization phase. Similarly, the summation of all workers’
weights is calculated as

∑K
k=1 wk =

∑K
k=1(wk − γk) +∑K

k=1 γk. With all the above information, SA is able to
estimate the object truth xm according to Equation (2).

In this phase, step À ∼ Ä are repeated until the convergence
criterion is satisfied. The final estimated truth for each object
will be sent to the data requester by cloud SA. Please note
that, for categorical data, the final result for each object om
should be the candidate answer with the largest value in the
vector xm calculated in the final iteration.

In the procedure of L-PPTD, each worker only communi-
cates with the two cloud platforms once respectively in each
iteration and all the calculations on the worker side are based
on plaintexts. Thus, very little overhead will be introduced to
each worker, which is confirmed by the experimental results
presented in section VI.

B. Security Analysis
The security goal of L-PPTD can be summarized as Theo-

rem 1, followed by the proof.

Theorem 1. Suppose the number of participating workers
satisfies K ≥ 3 and for each object, there are at least
two workers providing different sensory data. If the parties
(including the two cloud platforms) are semi-honest and there
is no collusion among them, the sensory data and weight
information of each worker will not be disclosed to any other
party under the L-PPTD framework.

Proof. Firstly, we prove the security of workers’ private
information on the cloud side. For cloud SA, besides
the ciphertexts {E[αk

m]}K,M
k,m=1, he knows the plaintexts

{xkm − αk
m}

K,M
k,m=1, {wkx

k
m − βk

m}
K,M
k,m=1, {wk − γk}Kk=1,

{
∑K

k=1 β
k
m}Mm=1,

∑K
k=1 γk and {xm}Mm=1. Since the private

key sk is only known by cloud SB , cloud SA cannot decrypt
the ciphertexts. Although the values {

∑K
k=1 β

k
m}Mm=1 and∑K

k=1 γk are known by cloud SA, he cannot learn anything
about the individual random numbers just based on these
summations. In this way, as long as the two cloud platforms do
not collude with each other, cloud SA cannot infer the plain-
texts of {xkm}

K,M
k,m=1, {wkx

k
m}

K,M
k,m=1 and {wk}Kk=1. For cloud

SB , he knows the plaintexts of {αk
m}

K,M
k,m=1, {βk

m}
K,M
k,m=1,

{γk}Kk=1, {xm}Mm=1 and
∑K

k=1

∑M
m=1 d(x

k
m, xm). However,

based on these values, he cannot learn anything about the
private information of each worker.

On the worker side, besides the sensory data {xk′

m}Mm=1

and weight wk′ , each worker uk′ also knows the plaintexts
of {xm}Mm=1 and

∑K
k=1

∑M
m=1 d(x

k
m, xm), based on which

the value
∑K

k=1

∑M
m=1 d(x

k
m, xm)−

∑M
m=1 d(x

k′

m, xm) can be
calculated. However, since the number of all workers satisfies
K ≥ 3, worker uk′ cannot infer the private information of
any other individual workers. For the data requester, he knows
nothing about workers’ private information except the final
aggregated results {xm}Mm=1.

In summary, the sensory data and weight information of
each worker will not be disclosed to other parties under the
L-PPTD framework.

C. Efficiency Analysis

Next, we will discuss the computational complexity and
communication overhead of L-PPTD.

1) Computational Complexity: On the worker side, all the
computations are conducted on the plaintexts, and thus will
introduce less overhead compared with the ciphertext-based
calculations. In the initialization phase, each worker only
needs to generate some random numbers and then perturb
her sensory data. The computational complexity is O(M) for
each worker in this phase. In the iteration phase, each worker
uk calculates the weight wk based on

∑M
m=1 d(x

k
m, xm), the

perturbed weighted data {wkx
k
m−βk

m}Mm=1 and the perturbed
weight wk−γk. The computational costs of these calculations
are O(M), O(M) and O(1) respectively in each iteration.

On the cloud side, we mainly consider the overhead intro-
duced by the ciphertext-based calculations, which dominate
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the overall computational cost when the key size is fixed.
In each iteration, cloud SA has to conduct O(KM) encryp-
tions in order to encrypt the values {(x̃km − xm)2}K,M

k,m=1,
and O(KM) ciphertext multiplications and exponentiations
to calculate Cconti or Ccate. For cloud SB , he needs to
take O(KM) encryptions to encrypt the random numbers
{αk

m}
K,M
k,m=1 in the initialization phase and conduct decryption

once in each iteration.
2) Communication Overhead: Since the proposed frame-

work is used in MCS systems, in which the mobile devices
usually have limited energy resources, we hope that each
worker communicates with the clouds as little as possible.
Thus, here we mainly analyze the amount of communication
between the parties in L-PPTD. In addition to the analysis
provided here, we also conduct real-world experiments to
measure the communication overhead in section VI.

In L-PPTD, each worker needs to upload the perturbed data
to cloud SA and the random numbers to cloud SB , both of
which are conducted only once during the whole truth discov-
ery procedure. In every iteration, each worker first receives the
summation

∑K
k=1

∑M
m=1 d(x

k
m, xm) and the estimated object

truths from cloud SB , then uploads the perturbed weight and
perturbed weighted data to cloud SA. So the total number of
communication times between each worker and the two cloud
platforms is 2(t+1), where t is the number of iterations. For
the cloud platforms, cloud SB needs to send the ciphertexts
and summations of the random numbers to cloud SA in the
initialization phase. In each iteration, cloud SA sends the
ciphertext Cconti or Ccate together with the estimated truths
to cloud SB . So the total number of communication times
between cloud SA and cloud SB is t+ 1.

D. Generalization

Although the logarithmic weight function is adopted in this
paper, L-PPTD can also incorporate other types of weight
function, such as the reciprocal function wk = dk

−p and the
affine function wk = 1− pdk, where dk =

∑M
m=1 d(x

k
m, xm)

and p is a parameter chosen based on the specific applica-
tion scenarios. In L-PPTD, besides the summation

∑K
k=1 dk

received from SB , each worker uk can calculate the value dk
by herself. So as long as the weight function f (presented
in section III-A) does not involve other information about all
workers except the summation

∑K
k=1 dk, it can be calculated

on the worker side.

V. L2-PPTD FRAMEWORK

Although little overhead is introduced on the worker side,
each worker in L-PPTD framework is still involved in the
calculation of her own weight and weighted data. To make
the proposed framework more efficient in the scenarios where
only the sensory data of each worker need to be protected,
we propose an even more lightweight framework, called L2-
PPTD, in which the workers need not to be involved in
the iterative procedure. Similar to L-PPTD, L2-PPTD also
contains two phases (i.e., initialization phase and iteration
phase) as shown in Fig. 2.

Fig. 2: The workflow of L2-PPTD

A. The Detailed Procedure of L2-PPTD

In the L2-PPTD framework, each worker only needs to take
part in the initialization phase. Both the weight estimation and
truth estimation are completed on the cloud side.

1) Initialization Phase: This phase is also conducted only
once during the whole truth discovery procedure. Different
from L-PPTD, both of the two cloud platforms SA and SB

need to generate their own public keys and private keys. We
use (pkA, skA) and (pkB , skB) to denote the key pairs of SA

and SB respectively.
Step I: Each worker uk generates a random number αk

m for
each object om (for categorical data, αk

m is a vector in which
each element is a random). Then she perturbs the sensory data
xkm as x̃km = xkm − αk

m, and uploads all the perturbed data
{x̃km}Mm=1 to cloud SA.

Step II: Each worker uk uploads the random numbers
{αk

m}Mm=1 to cloud SB .
Step III: Cloud SA first encrypts each perturbed sensory

data x̃km with his own public key pkA, then sends all the
ciphertexts {EA[x̃

k
m]}K,M

k,m=1 (EA is the encryption function
based on pkA) to cloud SB . For categorical data, EA[x̃

k
m] is

a ciphertext vector in which each element is the ciphertext of
the corresponding element in vector x̃km.

Step IV: Cloud SB encrypts each random number αk
m

with his own public key pkB , and sends all the ciphertexts
{EB [α

k
m]}K,M

k,m=1 (EB is the encryption function based on
pkB) to cloud SA.

2) Iteration Phase: This phase also starts with the random
initialization of the object truths on cloud SA.

Step À: For continuous data, cloud SA calculates the
ciphertext Ck

conti for each worker uk as

Ck
conti =EB [

M∑
m=1

(xkm − xm)2 −
M∑

m=1

(αk
m)2]

=

M∏
m=1

{EB [(x̃
k
m − xm)2] · EB [α

k
m]2(x̃

k
m−xm)}.

(10)

For categorical data, SA calculates the ciphertext Ck
cate for

each worker uk as

Ck
cate =EB [

M∑
m=1

l∑
i=1

(xkmi − xmi)
2 −

M∑
m=1

l∑
i=1

(αk
mi)

2]

=

M∏
m=1

l∏
i=1

{EB [(x̃
k
mi − xmi)

2] · EB [α
k
mi]

2(x̃k
mi−xmi)}.

(11)
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Then, all the ciphertexts {Ck
conti}Kk=1 or {Ck

cate}Kk=1 are sent
to cloud SB (here the estimated object truths are not sent).

Step Á: After receiving the ciphertexts from cloud SA,
cloud SB decrypts them with his private key skB and cal-
culates the summation of distances (i.e.,

∑M
m=1 d(x

k
m, xm))

for each worker uk by adding the value
∑M

m=1(α
k
m)2 or∑M

m=1

∑l
i=1(α

k
mi)

2 to the decrypted data. Then, cloud SB

estimates the weight of uk according to Equation (1).
Step Â: When the sensory data is continuous, based on

the estimated weights, cloud SB first calculates the value∑K
k=1 wkα

k
m for each object om and encrypts it with SA’s

public key pkA as EA[
∑K

k=1 wkα
k
m]. Then, cloud SB calcu-

lates the encrypted summation of weighted data for each object
om as

EA[

K∑
k=1

wkx
k
m] =EA[

K∑
k=1

wk(x
k
m − αk

m) +

K∑
k=1

wkα
k
m]

=EA[

K∑
k=1

wkx̃
k
m] · EA[

K∑
k=1

wkα
k
m]

=

K∏
k=1

{EA[x̃
k
m]wk} · EA[

K∑
k=1

wkα
k
m].

(12)

When the sensory data is categorical, EA[
∑K

k=1 wkx
k
m] is a

ciphertext vector in which each element is calculated similarly
with Equation (12). Then, the ciphertexts (ciphertext vectors
for categorical data) of all objects together with the summation
of all workers’ weights (i.e.,

∑K
k=1 wk) are sent to cloud SA.

Step Ã: After receiving the data from cloud SB , cloud SA

decrypts the ciphertexts and gets the summation
∑K

k=1 wkx
k
m

for each object om. Then, the truth of each object is estimated
according to Equation (2).

Step À ∼ Ã in this phase will also be iteratively conducted
until the convergence criterion is satisfied. The final estimated
truths are then sent to the data requester. In this framework,
although the reliability information (i.e., weight) of each
worker is known by cloud SB , much less overhead will be
introduced on the worker side since the workers only take
part in the initialization phase.

B. Security Analysis

Theorem 2. Suppose there are at least two workers providing
different sensory data for each object. If the parties (including
the two cloud platforms) are semi-honest and there is no
collusion among them, the sensory data of each worker will not
be disclosed to any other party under L2-PPTD framework.

Proof. In L2-PPTD, since each worker does not receive any
information about other parties, we just need to prove the
sensory data of each worker would not be disclosed to the
cloud platforms and the data requester.

For cloud SA, the values he knows include the cipher-
texts {EB [α

k
m]}K,M

k,m=1, {Ck
conti}Kk=1 (or {Ck

cate}Kk=1) and the
plaintexts {xkm − αk

m}
K,M
k,m=1, {

∑K
k=1 wkx

k
m}Mm=1,

∑K
k=1 wk,

{xm}Mm=1. Without the private key skB , above ciphertexts
cannot be decrypted by SA. Since the weight of each worker
estimated on cloud SB is not sent to cloud SA, SA cannot infer
the individual values wk, wkx

k
m just based on the summations

{
∑K

k=1 wkx
k
m}Mm=1 and

∑K
k=1 wk. Additionally, as the two

cloud platforms do not collude with each other, the sensory
data of each worker will not be inferred by cloud SA from the
values {xkm − αk

m}
K,M
k,m=1.

For cloud SB , he knows the ciphertexts {EA[x
k
m −

αk
m]}K,M

k,m=1, {EA[
∑K

k=1 wkx
k
m]}Mm=1 and the plaintexts

{αk
m}

K,M
k,m=1, {

∑M
m=1 d(x

k
m, xm)}Kk=1, {wk}Kk=1. Since the

object truths {xm}Mm=1 estimated on cloud SA are not sent
to cloud SB , SB can not learn the individual sensory data
xkm from the values {

∑M
m=1 d(x

k
m, xm)}Kk=1. Additionally, SB

cannot decrypt the ciphertexts without SA’s private key. So
each worker’s sensory data will not be known to cloud SB .
Additionally, similar to L-PPTD, the data requester can only
know the final aggregated results {xm}Mm=1 in L2-PPTD.

In summary, the sensory data of each worker will not be
disclosed to other parties under the L2-PPTD framework.

C. Efficiency Analysis

1) Computational Complexity: The participating workers in
L2-PPTD are only involved in the initialization phase and the
computational cost (based on plaintexts) is O(M) for each
worker. For cloud SA and cloud SB , both of them are involved
in the initialization phase and iteration phase. In the initializa-
tion phase, they both have to take O(KM) encryptions. In
each iteration, cloud SA has to conduct O(KM) encryptions,
O(M) decryptions, O(KM) ciphertext multiplications and
exponentiations. On the other hand, Cloud SB needs to con-
duct O(K) decryptions, O(M) encryptions, O(KM) cipher-
text multiplications and O(KM) ciphertext exponentiations to
calculate the weights and ciphertexts {EA[

∑K
k=1 wkx

k
m]}Mm=1.

2) Communication Overhead: In L2-PPTD, since the par-
ticipating workers are only involved in the initialization phase,
the number of communication times between each worker and
the cloud platforms is only 2 during the whole truth discovery
procedure. As for cloud SA and SB , both of them need to
send data once to each other in the initialization phase and
each iteration, so the communication overhead between the
two clouds is 2(t+ 1), where t is the number of iterations.

D. Generalization

Since the weight of each worker in L2-PPTD is estimated
based on plaintexts on cloud SB , which has all the val-
ues {

∑M
m=1 d(x

k
m, xm)}Kk=1 needed to estimate the workers’

weights, any weight function f can be used in this framework.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed framework on real world crowdsensing systems. Both
continuous and categorical sensory data are considered here.
The cloud platforms in this experiment are emulated by two
Intel(R) Core(TM) 3.4GHz computers running Ubuntu 14.04,
with 16GB RAM. We use Nexus 5 Android phones as the
mobile sensing devices. The frameworks are implemented with
the Paillier encryption tool1 and the key size is set as 512 bits.
Additionally, we use the rounding parameter R = 107 to round

1http://www.cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/
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the fractional data. The baseline methods are the original truth
discovery method CRH [4, 5] and the state-of-the-art privacy
preserving truth discovery framework PPTD [10].

A. Experiment on Crowdsourced Indoor Floorplan Construc-
tion System

We first evaluate the performance of the proposed frame-
work on one real-world crowdsensing application, i.e., crowd-
sourced indoor floorplan construction [1, 13]. In such crowd-
sensing systems, although the indoor floorplan can be auto-
matically constructed from the sensory data (e.g., compass,
accelerometer, gyroscope) collected by smartphone users, the
sensor readings may disclose a user’s private personal infor-
mation. For the sake of illustration, here we only focus on es-
timating the distance (continuous data) between two particular
location points in a hallway. 10 smartphone users are employed
as the participating workers and 20 hallway segments in a
building are selected as the objects. We develop an Android
App that can estimate the walking distances of a smartphone
user through multiplying the user’s step size by step count
inferred using the in-phone accelerometer. The ground truths
are obtained by measuring these segments manually.

1) Accuracy: We first compare the accuracy of the final
estimated object truths between the proposed method and
the baseline approach. In this experiment, the root of mean
squared error (RMSE) is used to measure the deviation be-
tween the estimated results and the ground truths. Here the
number of objects is fixed as 20 and we vary the number of
workers from 3 to 10. The results are shown in Fig. 3. As seen,
our proposed frameworks have almost the same estimation
accuracy as CRH regardless of the number of workers.

2) Convergence: In order to evaluate the convergence of
the proposed algorithms, we measure the distance between the
estimated object truths in two consecutive iterations using a
convergence value defined as ||xt−xt−1||2, where xt (t ≥ 1)
is the vector of estimated truths in iteration t (the values in
x0 are randomly initialized). The convergence values of L-
PPTD are shown in Fig. 4. Here we calculate the convergence
values with 5 different initial truth vectors (i.e., x0). As we
can see, the L-PPTD algorithm converges quickly in just a
few iterations. L2-PPTD has similar convergence pattern.
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Fig. 3: Accuracy for
the indoor floorplan con-
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3) Computational cost: Here we evaluate the running time
of the proposed frameworks on both the worker and the cloud
sides. The results are compared with that of the baseline
method PPTD.

Table I shows the running time on one worker’s smartphone
while the number of objects is varying from 4 to 20. Since
the workers are not involved in the iteration phase of L2-
PPTD, there is no result for that phase in Table I. From this
table, we can see the running time of the proposed frameworks
is much less than that of PPTD. The reason is that all the
computations on the worker side are based on plaintexts in
our frameworks while the workers in PPTD need to do some
encryptions. Additionally, the results in this table also show
that L2-PPTD is more lightweight than L-PPTD.
TABLE I: Running time on smartphone for the indoor floor-
plan construction system

Number of objects 4 8 12 16 20
PPTD/iteration (×10−2s) 1.3 2.0 2.8 3.4 5.1

L-PPTD Initialization phase 3.0 4.6 6.0 6.7 9.3
(×10−6s) Each iteration 0.9 1.1 1.5 2.1 2.6

L2-PPTD (×10−6s) 2.6 3.0 3.8 4.1 4.9

Figure 5 shows the running time on the cloud platforms with
the worker number varying from 3 to 10. The results in one
iteration and the initialization phase are provided in Fig. 5a
and Fig. 5b, respectively. Since cloud SA in L-PPTD does not
have to do any computation in the initialization phase, there
is no result for SA in Fig. 5b. From Fig. 5a, we can see the
running time of our frameworks on both cloud SA and SB

are less than that of PPTD. This is mainly because of the
threshold-based decryption scheme used in PPTD. Although
the initialization phase is involved in our frameworks, it does
not introduce much computational cost, which can be seen
from Fig. 5b.
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Fig. 5: Running time on cloud platforms for the indoor
floorplan construction system

4) Communication overhead: Here we evaluate the data
size each worker needs to send or receive in the proposed
frameworks. In Table II, we provide a comparison between
the proposed frameworks and PPTD. As can be seen, the
data needed to be transmitted in each iteration of L-PPTD
is much less than that of PPTD. The reason is that in the
proposed frameworks, workers do not need to send or receive
any ciphertext, which is usually much larger than plaintext.
Since each worker is not involved in the iteration phase of
L2-PPTD and the initialization phases of the two frameworks
are only needed to be conducted once, the total communication
overhead of our scheme are also much less than that of PPTD.
Additionally, the results further verify the conclusion that L2-
PPTD is more lightweight than L-PPTD since there is no
communication overhead on the smartphone in each iteration
of L2-PPTD.
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TABLE II: Communication overhead on smartphone for the
indoor floor plan construction system (KB)

Number of objects 4 8 12 16 20
PPTD/iteration 1.83 3.15 4.37 5.58 6.90

L-PPTD Initialization phase 0.05 0.09 0.14 0.21 0.25
Each iteration 0.10 0.18 0.26 0.33 0.41

L2-PPTD 0.04 0.09 0.14 0.19 0.24

B. Experiment on Crowd Wisdom System

In this experiment, we evaluate the proposed frameworks on
crowd wisdom system in which the sensory data are categor-
ical. Each smartphone user in this system receives questions
from the cloud to which she uploads her answers. The cloud
infers the true answer for each question through aggregating
the answers from smartphone users. However, some users may
concern that their personal information may be inferred from
their answers. Here we implement the proposed frameworks
on this system. 100 smartphone users are employed as the
participating workers and 54 questions (each has 4 candidate
answers) are used as the objects.

1) Accuracy and Convergence: In this part, we measure the
accuracy of the proposed frameworks with Error Rate, which
is defined as the percentage of mismatched values between the
estimated results and the ground truths. Since some objects
(i.e., questions) are not answered by all the workers in this
experiment, we vary the average number of workers that
answer each question and then calculate the Error Rate. The
results of the two frameworks and CRH are shown in Fig. 6.
We can see that the Error Rates of the proposed frameworks
are the same with that of CRH in all scenarios, which verifies
the accuracy of our proposed frameworks for categorical data.
Additionally, the convergence value defined before is also
adopted here to measure the convergence. We find both our
frameworks and CRH converge within two iterations.
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Fig. 6: Accuracy for the wisdom system

2) Computational cost: Here we also evaluate the running
time of the proposed frameworks on both smartphone and
cloud platforms. In this experiment, we record the running
time on smartphone while the number of objects is varying
from 2 to 14, which is the maximum number of questions
answered by a single worker. The results are shown in Ta-
ble III, from which we can see the computational cost of our
frameworks on smartphone is much less than that of PPTD.
TABLE III: Running time on smartphone for the crowd
wisdom system

Number of objects 2 5 8 11 14
PPTD/iteration (×10−2s) 1.8 3.9 5.8 8.0 12.7

L-PPTD Initialization phase 3.5 10.2 12.6 17.6 23.3
(×10−6s) Each iteration 1.3 2.9 7.3 6.2 8.2

L2-PPTD (×10−6s) 1.8 4.6 7.1 9.4 11.6

For the cloud platforms, Fig. 7a and Fig. 7b show the
running time in each iteration and the initialization phase
respectively. As seen, the running time of our frameworks on
both cloud SA and SB is less than that of PPTD.
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Fig. 7: Running time on cloud platforms for the crowd wisdom
system

3) Communication overhead: The size of data needed to be
transmitted on each smartphone is shown in Table IV, from
which we can see the communication overhead on smartphone
in each iteration of L-PPTD is much less than that of PPTD.
Additionally, the data transmitted by each worker in L2-PPTD
is less than that of both L-PPTD and PPTD.
TABLE IV: Communication overhead on smartphone for the
crowd wisdom system (KB)

Number of objects 2 5 8 11 14
PPTD/iteration 3.1 6.9 10.6 14.4 18.1

L-PPTD Initialization phase 0.09 0.24 0.38 0.52 0.66
Each iteration 0.11 0.21 0.32 0.43 0.51

L2-PPTD 0.07 0.18 0.28 0.39 0.49

C. Experiment on Simulated MCS system

In order to evaluate the scalability and efficiency of the
proposed frameworks, we conduct further experiments on a
simulated MCS system, in which there are 300 participating
workers and 1000 objects. We generate the sensory data of
workers through adding Gaussian noise with different inten-
sities to the ground truths. Table V shows the running time
of the frameworks on smartphone with varying object number
ranging from 200 to 1000. From the table, we can see our
proposed frameworks can keep high efficiency even when the
number of objects is very large. Especially for L2-PPTD, when
the number of objects is 1000, the running time of L2-PPTD
on the smartphone is only 2.15×10−4s during the whole truth
discovery procedure.
TABLE V: Running time on smartphone for the simulated
MCS system

Number of objects 200 400 600 800 1000
PPTD/iteration (s) 0.43 0.83 1.47 2.29 2.88

L-PPTD Initialization phase 0.78 1.62 2.40 3.18 3.95
(×10−4s) Each iteration 0.24 0.51 0.64 0.86 1.14

L2-PPTD (×10−4s) 0.43 0.91 1.32 1.69 2.15

Next, we fix the number of objects as 500 and change the
number of workers from 30 to 300 in order to evaluate the
computational cost of the cloud platforms. The results shown
in Fig. 8 further verify that the two frameworks in this paper
are more efficient on the cloud platforms than PPTD.

Table VI reports the communication overhead on the smart-
phone while the number of objects observed by each worker
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Fig. 8: Running time on cloud platforms for the simulated
MCS system

is changing from 400 to 1000. When the number of objects
is 1000, the communication overhead in each iteration of
L-PPTD is only 19.6KB while that in PPTD is 314.2KB.
Additionally, the communication overhead of L2-PPTD is only
13.5KB during the whole truth discovery procedure when the
number of objects is 1000, which means L2-PPTD is a more
lightweight scheme for participating workers.
TABLE VI: Communication overhead on smartphone for the
simulated MCS system (KB)

Number of objects 400 600 800 1000
PPTD/iteration 126.1 188.8 251.6 314.2

L-PPTD Initialization phase 6.4 9.9 13.1 16.4
Each iteration 7.7 11.6 15.5 19.6

L2-PPTD 5.1 8.1 10.8 13.5

VII. RELATED WORK

As an effective technique to extract truthful information
from the unreliable data in MCS systems, truth discovery has
recently been widely studied [4–9]. However, these schemes
do not take actions to protect the participating workers’ pri-
vacy, which is a key concern in many MCS applications [14].
To address the privacy concern, a recent paper [10] presents a
mechanism called PPTD that can protect the workers’ privacy
during the truth discovery procedure. Although strong privacy
and high accuracy can be guaranteed in PPTD, significant
computation and communication overhead will be introduced
on both the worker and cloud sides.

With respect to the MCS systems, the privacy-preserving
problem is also studied in paper [15–17]. However, the prob-
lem settings targeted in these papers are different from that
of truth discovery aiming at jointly infer both worker weights
and object truths. In addition, although a cryptography based
scheme is proposed in paper [18] to protect the privacy of
each worker in crowdsourcing applications, it mainly focuses
on categorical data and is built upon the threshold-based
cryptosystem, which would inevitably incur a large amount of
overhead. Finally, Catalano et al. propose a two-server based
protocol [19] for the delegation of computation on encrypted
data. The frameworks presented in this paper, though also
involving two cloud servers, are designed for different problem
settings and application scenarios.

VIII. CONCLUSION

In this paper, we propose a lightweight privacy-preserving
truth discovery (L-PPTD) framework, which is implemented

by involving two non-colluding cloud platforms and adopting
additively homomorphic cryptosystem. This framework can
not only protect the sensory data and reliability information
of each participating worker but also substantially reduce
the overhead on the worker side. Additionally, to further
reduce each worker’s overhead in the scenarios where only
the sensory data need to be protected, a more lightweight truth
discovery (L2-PPTD) framework is also developed.
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