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Abstract—The recent proliferation of increasingly capable
mobile devices has given rise to mobile crowd sensing (MCS)
systems that outsource the collection of sensory data to a crowd
of participating workers that carry various mobile devices.
Aware of the paramount importance of effectively incentiviz-
ing participation in such systems, the research community has
proposed a wide variety of incentive mechanisms. However,
different from most of these existing mechanisms which assume
the existence of only one data requester, we consider MCS
systems with multiple data requesters, which are actually more
common in practice. Specifically, our incentive mechanism is
based on double auction, and is able to stimulate the participation
of both data requesters and workers. In real practice, the
incentive mechanism is typically not an isolated module, but
interacts with the data aggregation mechanism that aggregates
workers’ data. For this reason, we propose CENTURION, a
novel integrated framework for multi-requester MCS systems,
consisting of the aforementioned incentive and data aggregation
mechanism. CENTURION’s incentive mechanism satisfies truth-
fulness, individual rationality, computational efficiency, as well as
guaranteeing non-negative social welfare, and its data aggregation
mechanism generates highly accurate aggregated results. The
desirable properties of CENTURION are validated through both
theoretical analysis and extensive simulations.

I. INTRODUCTION

Recent years have witnessed the rise of mobile crowd sens-

ing (MCS), a newly-emerged sensing paradigm that outsources

the collection of sensory data to a crowd of participating users,

namely (crowd) workers, who usually carry increasingly ca-

pable mobile devices (e.g., smartphones, smartwatches, smart-

glasses) with a plethora of on-board sensors (e.g., gyroscope,

camera, GPS, compass, accelerometer). Currently, a large

variety of MCS systems [1–6] have been deployed that cover

almost every aspect of our lives, including healthcare, smart

transportation, environmental monitoring, and many others.

To perform the sensing tasks, the participating workers

typically consume their own resources such as computing and

communicating energy, and expose themselves to potential

privacy threats by sharing their personal data. For this reason, a

participant would not be interested in participating in the sens-

ing tasks, unless she receives a satisfying reward to compen-

sate her resource consumption and potential privacy breach.
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Therefore, it is necessary to design an effective incentive

mechanism that can achieve the maximum user participation.

Due to the paramount importance of stimulating participation,

many incentive mechanisms [7–31] have been proposed by the

research community. However, most of these aforementioned

past literature assume that there is only one data requester

who also serves as the platform in the MCS system. In

practice, however, there are usually multiple data requesters

competing for human resources, who usually outsource worker

recruiting to third-party platforms (e.g., Amazon Mechanical

Turk [32]) that have already gathered a large number of

workers. Therefore, in this paper, we focus on such MCS

systems where three parties, including the data requesters,

a platform (i.e., a cloud-based central server), as well as a

crowd of participating workers co-exist, and aim to develop a

new incentive mechanism that can decide which worker serves

which data requester at what price.

In real practice, the sensory data provided by individual

workers are usually quite unreliable due to various factors

(e.g., poor sensor quality, lack of sensor calibration, envi-

ronment noise). Hence, in order to cancel out the possible

errors from individual workers, it is highly necessary that the

platform utilizes a data aggregation mechanism to properly

aggregate their noisy and even conflicting data. In an MCS

system, the incentive and the data aggregation mechanism

are usually not isolated from each other. In fact, the data

aggregation mechanism typically interacts with the incentive

mechanism, and thus, affects its design and performance.

Intuitively, if the platform aggregates workers’ data in naive

ways (e.g., voting and average) that treat all workers’ data

equally, the incentive mechanism does not need to distinguish

them with respect to their reliability. However, a weighted

aggregation method that puts higher weights on more reli-

able workers is much more desirable, because it shifts the

aggregated results towards the data provided by the workers

with higher reliability. Accordingly, the incentive mechanism

should also incorporate workers’ reliability, and selects work-

ers that are more likely to provide reliable data.

Therefore, different from most of the aforementioned ex-

isting work [7–31], we propose CENTURION1, a novel in-

tegrated framework for multi-requester MCS systems, which

1The name CENTURION comes from inCENTivizing mUlti-Requester
mobIle crOwd seNsing.
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consists of a weighted data aggregation mechanism that con-

siders workers’ diverse reliability in the calculation of the

aggregated results, together with an incentive mechanism that

selects workers who potentially will provide more reliable

data. Specifically, CENTURION’s incentive mechanism is

based on double auction [33], which involves auctions among

not only the workers, but also the data requesters, and is able

to incentivize the participation of both data requesters and

workers. This paper makes the following contributions.

• Different from existing work, we propose a novel integrated

framework for multi-requester MCS systems, called CEN-

TURION, consisting of a data aggregation and an incentive

mechanism. Such an integrated design, which captures the

interactive effects between the two mechanisms, is much

more complicated and challenging than designing them

separately.

• CENTURION’s double auction-based incentive mechanism

is able to incentivize the participation of both data requesters

and workers, and bears many desirable properties, including

truthfulness, individual rationality, computational efficiency,

as well as non-negative social welfare.

• The data aggregation mechanism of CENTURION takes

into consideration workers’ reliability, and calculates highly

accurate aggregated results.

In the rest of this paper, we first discuss the past literature

that are related to this work in Section II, and introduce

the preliminaries in Section III. Then, the design details of

CENTURION’s data aggregation and incentive mechanism are

described in Section IV. In Section V, we conduct extensive

simulations to validate the desirable properties of CENTU-

RION. Finally in Section VI, we conclude this paper.

II. RELATED WORK

Aware of the paramount importance of attracting worker

participation, the research community has recently devel-

oped various incentive mechanisms [7–31] for MCS systems.

Among them, game-theoretic incentive mechanisms [7–28],

which utilize either auction [10–13, 18–28] or other game-

theoretic models [8, 9, 14–17], have gained increasing popu-

larity due to their ability to tackle workers’ selfish and strategic

behaviors. These mechanisms typically aim to maximize the

platform’s profit [14–23] or social welfare [9–13], and mini-

mize the platform’s payment [7, 8, 24–27] or social cost [28].

Different from most of the aforementioned past literature

which assume that there exists only one data requester, we

propose a novel incentive mechanism for MCS systems with

multiple data requesters that compete for human resources. In

fact, there do exist several prior work [19, 22, 28] designing in-

centive mechanisms for the multi-requester scenario. However,

they do not provide any joint design of the data aggregation

and the incentive mechanism as in this paper, which is

much more challenging than designing the two mechanisms

as isolated modules. Moreover, although similar integrated

designs that consider the two mechanisms are proposed in

some existing work [25, 26], as previously mentioned, they

assume that only one data requester exists in the MCS system.

III. PRELIMINARIES

In this section, we introduce the system overview, reliability

level model, auction model, as well as the design objectives.

A. System Overview

CENTURION is an MCS system framework consisting

of a cloud-based platform, a set of participating workers,

denoted as W = {w1, · · · , wN}, and a set of requesters,

denoted as R = {r1, · · · , rM}. Each requester rj ∈ R has

a sensing task τj to be executed by the workers. The set of

all requesters’ tasks is denoted as T = {τ1, · · · , τM}. We

are specifically interested in the scenario where T is a set of

M different binary classification tasks that require workers to

locally decide the classes of the events or objects, and report

to the platform their local decisions (i.e., the labels of the

observed events or objects). Such MCS systems, collecting

binary labels from the crowd, constitute a large portion of the

currently deployed MCS systems (e.g., congestion detection

systems that decide whether or not particular road segments

are congested [2], geotagging campaigns that tag whether

bumps or potholes exist on specific segments of road surface

[1, 3]).

Each task τj has a true label lj ∈ {−1,+1}, unknown to

the requesters, the platform, and the workers. If a worker wi

is chosen to execute task τj , she will provide to the platform

a label li,j . We define l = [li,j ] ∈ {−1,+1,⊥}N×M as the

matrix containing all workers’ labels, where li,j = ⊥ means

that task τj is not executed by worker wi. For every task τj , the

platform aggregates workers’ labels into an aggregated result,

denoted as l̂j , so as to cancel out the errors from individual

workers. The framework of CENTURION is given in Figure

1, and we describe its workflow as follows.
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Fig. 1. Framework of CENTURION (where circled numbers represent the
order of the events).

• Incentive Mechanism. Firstly, in the double auction-based

incentive mechanism, each requester rj submits to the

platform a sensing request containing the sensing task τj
to be executed (step 1 ), and a bid aj , the amount she is

willing to pay if the task is executed (step 2 ). Then, the

platform announces the set of sensing tasks T to the workers

(step 3 ). After receiving the task set, every worker wi sends

to the platform the set of tasks she wants to execute, denoted

as Γi ⊆ T , as well as a bid bi, which is her bidding price

for executing them (step 4 ). Based on received bids, the
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platform determines the set of winning requesters SR, the

set of winning workers SW , as well as the payment prj
charged from every winning requester rj and the payment

pwi paid to every winning worker wi (step 5 ). Note that

losing requesters’ tasks are not executed, and thus, they do

not submit any payment. Similarly, losing workers do not

receive any payment, as they do not execute any task.

• Data Aggregation Mechanism. Next, the platform collects

the labels submitted by the winning workers (step 6 ),

calculates the aggregated results, and sends them to the

winning requesters (step 7 ).

• Finally, the platform charges prj from winning requester rj
(step 8 ), and pays pwi to winning worker wi (step 9 ).

We denote the requesters’ and workers’ bid profile as a =
(a1, · · · , aM ) and b = (b1, · · · , bN ), respectively. Moreover,

the requesters’ and workers’ payment profile is denoted as

pr = (pr1, · · · , p
r
M ) and pw = (pw1 , · · · , p

w
N ), respectively.

B. Reliability Level Model

Before worker wi executes task τj , her label about this task

can be regarded as a random variable Li,j . Then, we define

the reliability level of a worker in Definition 1.

Definition 1 (Reliability Level). A worker wi’s reliability level

θi,j about task τj is defined as the probability that she provides

a correct label about this task, i.e.,

θi,j = Pr[Li,j = lj ] ∈ [0, 1]. (1)

Moreover, we denote the workers’ reliability level matrix as

θ = [θi,j ] ∈ [0, 1]N×M .

We assume that the platform knows the reliability level

matrix θ a priori, and maintains a historical record of it.

In practice, the platform could obtain θ through various

approaches. For example, as, in many scenarios, workers tend

to have similar reliability levels for similar tasks, the platform

could assign to workers some tasks with known labels, and use

workers’ labels about these tasks to estimate their reliability

levels for similar tasks as in [34]. In cases where ground truth

labels are not available, θ can still be effectively inferred from

workers’ characteristics (e.g., the prices of a worker’s sensors,

a worker’s experience and reputation for similar tasks) using

the algorithms proposed in [35], or estimated using the labels

previously submitted by workers about similar tasks by the

methods in [36, 37].

C. Auction Model

In this paper, we consider the scenario where both requesters

and workers are strategic and selfish that aim to maximize their

own utilities. Since CENTURION involves auctions among

not only the workers, but also the requesters, we utilize the

following double auction for Multi-rEquester mobiLe crOwd

seNsing (MELON double auction), formally defined in Defi-

nition 2, as the incentive mechanism.

Definition 2 (MELON Double Auction). In a double auction

for multi-requester mobile crowd sensing (MELON double

auction), each requester rj obtains a value vj , if her task

τj is executed, and bids to the platform aj , the amount she

is willing to pay for the execution of her task. Each worker

wi is interested in executing one subset of the tasks, denoted

as Γi ⊆ T , and bids to the platform bi, her bidding price for

executing these tasks. Her actual sensing cost for executing

all tasks in Γi is denoted as ci. Both the requesters’ values

and workers’ costs are unknown to the platform.

Then, we define a requester’s and worker’s utility, as well

as the platform’s profit in Definition 3, 4, and 5.

Definition 3 (Requester’s Utility). A requester rj’s utility is

defined as

ur
j =

{
vj − prj , if rj ∈ SR

0, otherwise
. (2)

Definition 4 (Worker’s Utility). A worker wi’s utility is defined

as

uw
i =

{
pwi − ci, if wi ∈ SW

0, otherwise
. (3)

Definition 5 (Platform’s Profit). The profit of the platform is

defined as

u0 =
∑

j:rj∈SR

prj −
∑

i:wi∈SW

pwi . (4)

Based on Definition 3, 4, and 5, we define the social welfare

of the MCS system in Definition 6.

Definition 6 (Social Welfare). The social welfare of the MCS

system is defined as

usocial = u0 +
∑

i:wi∈W

uw
i +

∑

j:rj∈R

ur
j

=
∑

j:rj∈SR

vj −
∑

i:wi∈SW

ci. (5)

Clearly, the social welfare is the sum of the platform’s profit

and all requesters’ and workers’ utilities.

D. Design Objectives

In this paper, we aim to ensure that CENTURION bears the

following advantageous properties.

Since the requesters are strategic and selfish in our model, it

is possible that any requester rj submits a bid aj that deviates

from vj (i.e., her value for task τj). Similarly, any worker wi

might also submit a bid bi that differs from ci (i.e., her cost

for executing all tasks in Γi). Thus, one of our objectives is

to design a truthful incentive mechanism defined in Definition

7.

Definition 7 (Truthfulness). A MELON double auction is

truthful if and only if bidding vj and ci is the dominant strategy

for each requester rj and worker wi, i.e., bidding vj and ci
maximizes, respectively, the utility of each requester rj and

worker wi, regardless of other requesters’ and workers’ bids.

By definition 7, we aim to ensure that both requesters and

workers bid truthfully to the platform. Apart from truthfulness,

another desirable property that we aim to achieve is individual

rationality defined in Definition 8.

Definition 8 (Individual Rationality). A MELON double auc-

tion is individual rational if and only if no requesters or
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workers receive negative utilities, i.e., we have ur
j ≥ 0, and

uw
i ≥ 0, for every requester rj and worker wi, respectively.

Individual rationality is a crucial property to stimulate the

participation of both requesters and workers, because it ensures

that the charge to a requester is no larger than her value, and

a worker’s sensing cost is also totally compensated. As men-

tioned in Section III-A, CENTURION aggregates workers’

labels to ensure that the aggregated results have satisfactory

accuracy, which is mathematically defined in Definition 9.

Definition 9 (βj-Accuracy). A task τj is executed with βj-

accuracy if and only if Pr[L̂j 6= lj ] ≤ βj , where βj ∈ (0, 1),

and L̂j denotes the random variable representing the aggre-

gated result for task τj .

By Definition 9, βj-accuracy ensures that the aggregated

result equals to the true label with high probability. Note that,

for every task τj , βj is a parameter chosen by the platform, and

a smaller βj implies a stronger requirement for the accuracy.

In short, our objectives are to ensure that the proposed

CENTURION framework provides satisfactory accuracy guar-

antee for the aggregated results of all executed tasks, and

incentivizes the participation of both requesters and workers

in a truthful and individual rational manner.

IV. DESIGN DETAILS

In this section, we present the design details of the incentive

and data aggregation mechanism of CENTURION.

A. Data Aggregation Mechanism

1) Proposed Mechanism

Although the data aggregation mechanism follows the in-

centive mechanism in CENTURION’s workflow, we introduce

it first, as it affects the design of the incentive mechanism.

In order to capture the effect of workers’ diverse reliability

on the calculation of the aggregated results, CENTURION

adopts the following weighted aggregation method. That is,

the aggregated result l̂j for every executed task τj is calculated

as

l̂j = sign

(
∑

i:wi∈SW ,τj∈Γi

λi,j li,j

)
, (6)

where λi,j > 0 is worker wi’s weight on task τj . Furthermore,

the function sign(x) equals to +1, if x ≥ 0, and −1 otherwise.

Intuitively, higher weights should be assigned to workers

who are more likely to submit correct labels, which makes the

aggregated results closer to the labels provided by more reli-

able workers. In fact, many state-of-the-art literature [36, 37]

utilize such weighted aggregation method to aggregate work-

ers’ data. As the weight λi,j’s highly affect the accuracy of the

aggregated results, we propose, in the following Algorithm 1,

the data aggregation mechanism of CENTURION.

Algorithm 1 takes as inputs the reliability level matrix θ,

the workers’ label matrix l, the profile of workers’ interested

task sets, denoted as Γ = (Γ1, · · · ,ΓN ), the winning requester

set SR, and the winning worker set SW . Note that a large θi,j
indicates that a worker wi has a high reliability level for task

τj , and any worker wi with θi,j ≤ 0.5 will not be selected as

Algorithm 1: Data Aggregation Mechanism

Input: θ, l, Γ, SR, SW ;

Output:
{
l̂j |rj ∈ SR

}
;

1 foreach j s.t. rj ∈ SR do

2 l̂j ←
∑

i:wi∈SW ,τj∈Γi

(
2θi,j − 1

)
li,j ;

3 return
{
l̂j |rj ∈ SR

}
;

a winner by the incentive mechanism. The aggregated result

l̂j for each winning requester rj’s task τj is calculated (line

1-2) using Equation (6) with the weight

λi,j = 2θi,j − 1, ∀rj ∈ SR, wi ∈ SW , τj ∈ Γi. (7)

By Equation (7), we have that λi,j , i.e., worker wi’s weight

for task τj , increases with θi,j , which conforms to our intuition

that the higher the probability that worker wi provides a correct

label about task τj , the more her label li,j should be counted

in the calculation of the aggregated result about this task.

We provide the formal analysis about the data aggregation

mechanism in Section IV-A2.

2) Analysis

In Theorem 1, we prove that the aggregated results calcu-

lated by Algorithm 1 has desirable accuracy guarantee.

Theorem 1. For each executed task τj , the data aggregation

mechanism given in Algorithm 1 minimizes the upper bound of

the error probability of the aggregated result, i.e., Pr[L̂j 6= lj ]

(where L̂j is the random variable representing the aggregated

result for task τj mentioned in Definition 9), and satisfies that

Pr[L̂j 6= lj ] ≤ exp

(
−

∑
i:wi∈SW ,τj∈Γi

(2θi,j − 1)2

2

)
. (8)

Proof. We denote Xi,j as the random variable for worker wi’s

weighted label about task τj , i.e., Xi,j = λi,j lj with proba-

bility θi,j , and Xi,j = −λi,j lj with probability 1− θi,j . Then,

we define Xj =
∑

i:wi∈SW ,τj∈Γi
Xi,j , and thus, E[Xj ] =∑

i:wi∈SW ,τj∈Γi
E[Xi,j ] =

∑
i:wi∈SW ,τj∈Γi

ljλi,j(2θi,j − 1).

The error probability of the aggregated result can be calcu-

lated as Pr[L̂j 6= lj ] = Pr[Xj < 0|lj = 1]Pr[lj = 1]+Pr[Xj ≥
0|lj = −1]Pr[lj = −1], and based on the Chernoff-Hoeffding

bound, we have

Pr[Xj < 0|lj = 1] = Pr[E[Xj ]−Xj > E[Xj ]|lj = 1]

≤ exp

(

−
2(E[Xj |lj = 1])2

∑

i:wi∈SW ,τj∈Γi
(2λi,j)2

)

= exp

(

−

(
∑

i:wi∈SW ,τj∈Γi
λi,j(2θi,j − 1)

)

2

2
∑

i:wi∈SW ,τj∈Γi
λ2

i,j

)

.

Then, we define the vector λj = [λi,j ] for every executed

task τj , which contains every λi,j such that wi ∈ SW , and

τj ∈ Γi. Therefore, minimizing the upper bound of Pr[Xj <

0|lj = 1] is equivalent to finding the vector λj that maximizes

the function f(λj) defined as

f(λj) =

(∑
i:wi∈SW ,τj∈Γi

λi,j(2θi,j − 1)
)2

∑
i:wi∈SW ,τj∈Γi

λ2
i,j

.
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Based on the Cauchy-Schwarz inequality, we have

f(λj) ≤

(∑
i:wi∈SW ,τj∈Γi

λ2

i,j

)(∑
i:wi∈SW ,τj∈Γi

(2θi,j − 1)2
)

∑
i:wi∈SW ,τj∈Γi

λ2

i,j

=
∑

i:wi∈SW ,τj∈Γi

(2θi,j − 1)2,

and equality is achieved if and only if λi,j ∝ 2θi,j − 1. Thus,

Pr[Xj < 0|lj = 1] ≤ exp

(

−

∑

i:wi∈SW ,τj∈Γi
(2θi,j − 1)2

2

)

. (9)

Similarly, from the Chernoff-Hoeffding bound, we have

Pr[Xj ≥ 0|lj = −1] ≤ exp

(

−

(
∑

i:wi∈SW ,τj∈Γi
λi,j(2θi,j − 1)

)

2

2
∑

i:wi∈SW ,τj∈Γi
λ2

i,j

)

.

The upper bound of Pr[Xj > 0|lj = −1] is also minimized

if and only if λi,j ∝ 2θi,j − 1 based on the Cauchy-Schwarz

inequality, and we have

Pr[Xj ≥ 0|lj = −1] ≤ exp

(

−

∑

i:wi∈SW ,τj∈Γi
(2θi,j − 1)2

2

)

. (10)

From Inequality (9) and (10), we have that when λi,j =

2θi,j − 1, the upper bound of Pr[L̂j 6= lj ] is minimized, and

Pr[L̂j 6= lj ] ≤ exp

(
−

∑
i:wi∈SW ,τj∈Γi

(2θi,j − 1)2

2

)
,

which exactly proves Theorem 1.

By Theorem 1, we have that the data aggregation mecha-

nism proposed in Algorithm 1 upper bounds the error proba-

bility Pr[L̂j 6= lj ] by exp
(
− 1

2

∑
i:wi∈SW ,τj∈Γi

(2θi,j − 1)2
)
,

which in fact is the minimum upper bound of this probability.

Next, we derive Corollary 1, which is directly utilized in our

design of the incentive mechanism in Section IV-B.

Corollary 1. For every executed task τj , the data aggregation

mechanism proposed in Algorithm 1 satisfies that if

∑

i:wi∈SW ,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln

(
1

βj

)
, (11)

then Pr[L̂j 6= lj ] ≤ βj , i.e., βj-accuracy is satisfied for this

task τj , where βj ∈ (0, 1) is a platform chosen parameter.

Moreover, we define β as the vector (β1, · · · , βM ).

Proof. By setting the upper bound of Pr[L̂j 6= lj ] given in

Theorem 1 to be no greater than βj ∈ (0, 1), we have

exp

(
−

∑
i:wi∈SW ,τj∈Γi

(2θi,j − 1)2

2

)
≤ βj ,

which is equivalent to

∑

i:wi∈SW ,τj∈Γi

(2θi,j − 1)2 ≥ 2 ln

(
1

βj

)
. (12)

Hence, together with Theorem 1, we have that Inequality (12)

indicates that Pr[L̂j 6= lj ] ≤ βj .

Corollary 1 gives us a sufficient condition, represented by

Inequality (11), that the set of winning workers SW selected

by the incentive mechanism (proposed in Section IV-B) should

satisfy so as to achieve βj-accuracy for each executed task τj .

B. Incentive Mechanism

Now, we introduce the design details of CENTURION’s

incentive mechanism, including its mathematical formulation,

the hardness proof of the formulated integer program, the

proposed mechanism, as well as the corresponding analysis.

1) Mathematical Formulation

As mentioned in Section III-C, CENTURION’s incentive

mechanism is based on the MELON double auction defined

in Definition 2. In this paper, we aim to design a MELON

double auction that maximizes the social welfare, while

guaranteeing satisfactory data aggregation accuracy. The

formal mathematical formulation of its winner selection

problem is provided in the following MELON double auction

social welfare maximization (MELON-SWM) problem.

MELON-SWM Problem:

max
∑

j:τj∈T

ajyj −
∑

i:wi∈W

bixi (13)

s.t.
∑

i:wi∈W,τj∈Γi

(2θi,j − 1)2xi ≥ 2 ln

(
1

βj

)
yj , ∀τj ∈ T (14)

xi, yj ∈ {0, 1}, ∀wi ∈ W, τj ∈ T (15)

Constants. The MELON-SWM problem takes as inputs the

task set T , the worker set W , the requesters’ and workers’ bid

profile a and b, the profile of workers’ interested task sets Γ,

the workers’ reliability level matrix θ, and the β vector.

Variables. On one hand, the MELON-SWM problem has a

vector of M binary variables, denoted as y = (y1, · · · , yM ).
Any yj = 1 indicates that task τj will be executed, and thus,

requester rj is a winning requester (i.e., rj ∈ SR), whereas

yj = 0 means rj 6∈ SR. On the other hand, the problem

has another vector of N binary variables, denoted as x =
(x1, · · · , xN ), where xi = 1 indicates that worker wi is a

winning worker (i.e., wi ∈ SW ), and xi = 0 means wi 6∈ SW .

Objective function. The objective function satisfies that∑
j:τj∈T ajyj−

∑
i:wi∈W bixi =

∑
j:rj∈SR

aj−
∑

i:wi∈SW
bi,

which is exactly the social welfare defined in Definition 6

based on the requesters’ and workers’ bids.

Constraints. For each task τj , Constraint (14) naturally

holds, if yj = 0. When yj = 1, it is equivalent to Inequality

(11) given in Corollary 1, which specifies the condition that

the set of selected winning workers SW should satisfy in

order to guarantee βj-accuracy for task τj . To simplify the

presentation, we introduce the following notations, namely

qi,j = (2θi,j − 1)2, q = [qi,j ] ∈ [0, 1]N×M , Qj = 2 ln
(

1
βj

)
,

and Q = [Qj ] ∈ [0,+∞)M×1. Thus, Constraint (14) can be

simplified as
∑

i:wi∈W,τj∈Γi

qi,jxi ≥ Qjyj , ∀τj ∈ T .
(16)

Besides, we say a task τj is covered by a solution, if yj = 1.
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2) Hardness Proof

We prove the NP-hardness of the MELON-SWM problem

by performing a polynomial-time reduction from the 3SAT(5)

problem which is formally defined in Definition 10.

Definition 10 (3SAT(5) Problem). In a 3SAT(5) problem, we

are given a set O = {z1, · · · , zn} of n Boolean variables, and

a collection C1, · · · , Cm of m clauses. Each clause is an OR

of exactly three literals, and every literal is either a variable

of O or its negation. Moreover, every variable participates in

exactly 5 clauses. Therefore, m = 5n
3 . Given some constant

0 < ǫ < 1, a 3SAT(5) instance ϕ is a Yes-Instance if

there is an assignment to the variables of O satisfying all

clauses, whereas it is a No-Instance (with respect to ǫ), if

every assignment to the variables satisfies at most (1 − ǫ)m
clauses. An algorithm A distinguishes between the Yes- and

No-instances of the problem, if, given a Yes-Instance, it returns

a “YES” answer, and given a No-Instance it returns a “NO”

answer.

Regarding the hardness of the 3SAT(5) problem, we intro-

duce without proof the following well-known Lemma 1, which

is a consequence of the PCP theorem [38].

Lemma 1. There is some constant 0 < ǫ < 1, such

that distinguishing between the Yes- and No-instances of the

3SAT(5) problem, defined with respect to ǫ, is NP-complete.

Next, we introduce Theorem 2 and 3 that will be utilized

to prove the NP-hardness of the MELON-SWM problem.

Because of space limit, we place the the proofs of these two

theorems in our technical report [39].

Theorem 2. Any 3SAT(5) instance is polynomial-time re-

ducible to an instance of the MELON-SWM problem.

We now analyze the optimal social welfare for an instance

of the MELON-SWM problem that corresponds to a 3SAT(5)

instance ϕ, when ϕ is a Yes- or No-Instance.

Theorem 3. If the 3SAT(5) instance ϕ is a Yes-Instance, then

there is a solution to the resulting instance of the MELON-

SWM problem whose social welfare is X . If ϕ is a No-

Instance, then any solution has social welfare at most 0.

Next, we describe Theorem 4 that states the NP-hardness

and inapproximability of the MELON-SWM problem.

Theorem 4. The MELON-SWM problem is NP-hard, and for

any factor φ, there is no efficient φ-approximation algorithm

to the MELON-SWM problem.

In fact, Theorem 4 is a direct consequence of Lemma 1,

and Theorem 2 and 3. Due to space limit, we place its proof

in the technical report [39], as well.

3) Proposed Mechanism

Theorem 4 not only shows the NP-hardness of the MELON-

SWM problem, but also indicates that there is no efficient

algorithm with a guaranteed approximation ratio for it. There-

fore, we relax the requirement of provable approximation

ratio, and propose the following MELON double auction that

aims to ensure non-negative social welfare, instead. Its winner

selection algorithm is given in the following Algorithm 2.

Algorithm 2 takes as inputs the task set T , the requester

set R, the worker set W , the profile of workers’ interested

Algorithm 2: MELON Double Auction Winner Selection

Input: T , R, W , Γ, a, b, q, Q;
Output: SR, SW , C;
// Initialization

1 SR ← ∅, SW ← ∅;
// Find a feasible cover

2 C ← FC(T ,Γ,q,Q);
3 foreach j s.t. τj ∈ T do
4 Cj ← {wi|wi ∈ C, τj ∈ Γi};

// Main loop

5 while maxj:rj∈R

(
aj −

∑
i:wi∈Cj

bi
)
≥ 0 do

6 j∗ ← argmaxj:rj∈R

(
aj −

∑
i:wi∈Cj

bi
)
;

7 SR ← SR ∪ {rj∗};
8 R ← R \ {rj∗};
9 SW ← SW ∪ Cj∗ ;

10 foreach j s.t. ri ∈ R do
11 Cj ← Cj \ Cj∗ ;

12 return SR,SW ;

task sets Γ, the requesters’ and workers’ bid profile a and b,

the q matrix, as well as the Q vector. Firstly, it initializes

the winning requester and worker set as ∅ (line 1). Then, it

calculates a feasible cover, denoted by C, containing the set

of workers that make Constraint (16) feasible for each task

τj given that each yj = 1, by calling another algorithm FC

which takes the task set T , the profile of workers’ interested

task sets Γ, the q matrix, and the Q vector as inputs (line 2).

Algorithm FC can be easily implemented in time polynomial

in M and N . For example, FC could greedily select each

worker wi into the feasible cover in a decreasing order of

the value
∑

j:τj∈Γi
qi,j until all constraints are satisfied. The

computational complexity of such FC is O(N). We assume

that FC adopts such a greedy approach in the rest of this paper.

Note that the specific choice of FC is not important, as long as

it returns a feasible cover in polynomial time. Next, for each

task τj , Algorithm 2 chooses from the feasible cover the set

of workers Cj whose interested task sets contain this task (line

3-4).

Based on C, the main loop (line 5-11) of the algorithm

selects the set of winning requesters and workers that give

non-negative social welfare. It executes until maxj:rj∈R

(
aj−∑

i:wi∈Cj
bi
)
, the maximum marginal social welfare of in-

cluding a new requester rj and the set of workers Cj into,

respectively, the winning requester and worker set, becomes

negative (line 5). In each iteration of the main loop, the

Algorithm finds first the index j∗ of the requester rj∗ that

provides the maximum marginal social welfare (line 6). Next,

it includes rj∗ into the winning requester set SR (line 7),

removes rj∗ from the requester set R (line 8), and includes

all workers in Cj∗ into the winning worker set SW (line 9).

The last step of the main loop is to remove all workers in Cj∗
from Cj for each task τj (line 10). Finally, Algorithm 2 returns

the winning requester and worker set SR and SW (line 12).

Next, we present the pricing algorithm of the MELON

double auction in Algorithm 3.

Apart from the same inputs to Algorithm 2, Algorithm 3

also takes as inputs the winning requester and worker set
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Algorithm 3: MELON Double Auction Pricing

Input: T , R, W , Γ, a, b, q, Q, SR, SW ;
Output: pr , pw;
// Initialization

1 pr ← 0, pw ← 0;
// Pricing for winning requesters

2 foreach j s.t. rj ∈ SR do
3 run Algorithm 2 on R \ {rj} and W;
4 S ′

R ←winning requester set when line 3 stops;
5 foreach k s.t. rk ∈ S

′
R do

6 prj ← min
{
prj ,

∑
wi∈C′

j
bi + ak −

∑
wi∈C′

k
bi
}

;

7 if C′j = ∅ then
8 prj ← min{prj , 0};

// Pricing for winning workers

9 foreach i s.t. wi ∈ SW do
10 run Algorithm 2 on R and W \ {wi};
11 S ′

R ←winning requester set when line 10 stops;
12 foreach k s.t. wi ∈ C

′
k and rk ∈ S

′
R do

13 sort requesters according to the decreasing order of
aj −

∑
i:wi∈C′

j
bi;

14 f ←index of the first requester with wi 6∈ C
′
f ;

15 if rf ∈ S
′
R then

16 pwi ←
max

{
pwi , ak−

∑
wh∈C′

k
bh−

(
af−

∑
wh∈C′

f
bh
)}

;

17 else

18 pwi ← max
{
pwi , ak −

∑
wh∈C′

k
bh
}

;

19 return pr , pw;

SR and SW , outputted by Algorithm 2. Firstly, Algorithm 3

initializes the requesters’ and workers’ payment profile as zero

vectors (line 1). Then, it calculates the payment prj charged

from each winning requester (line 2-8). For each rj ∈ SR,

Algorithm 2 is executed on the worker set W and requester set

R except requester rj (line 3). Next, it sets S ′
R as the winning

requester set when line 3 stops (line 4). For each rk ∈ S ′
R,

Algorithm 3 finds the minimum bid aj,k for requester rj to

replace rk as the winner. To achieve this, aj,k should satisfy

aj,k −
∑

wi∈C′
j
bi = ak −

∑
wi∈C′

k
bi, which is equivalent to

aj,k =
∑

wi∈C′
j
bi + ak −

∑
wi∈C′

k
bi. Note that C′

1, · · · , C
′
M

denote the sets C1, · · · , CM when the specific requester rk is

selected into S ′
R. If C′

j is not empty, the minimum value among

these aj,k’s is chosen as the payment prj (line 5-6); otherwise,

it is further compared with 0 (line 7-8), since requester rj
could win, in this case, as long as her bid is non-negative.

Next, Algorithm 3 derives the payment pwi to each winning

worker wi (line 9-18). Similar to line 3, Algorithm 2 is

executed on the requester set R and worker set W except

worker wi (line 10), and S ′
R is set as the winning requester

set when line 10 stops (line 11). In the rest of the algorithm,

we also use C′
1, · · · , C

′
M to denote the sets C1, · · · , CM when

the specific requester rk is selected into S ′
R. For each set

C′
k such that wi belongs to C′

k and rk belongs to S ′
R, the

algorithm calculates the maximum bid bi,k for worker wi

to be selected as a winner at this point (line 12-18). The

calculation firstly sorts requesters in the decreasing order

of their marginal social welfare, i.e., aj −
∑

i:wi∈C′
j
bi (line

13), and finds the index f of the first the requester in

this order such that wi does not belong to C′
f (line 14). If

rf is a winning requester in S ′
R, then bi,k should satisfy

ak −
(∑

wh∈C′
k
bh + bi,k

)
= af −

∑
wh∈C′

f
bh, which is

equivalent to bi,k = ak −
∑

wh∈C′
k
bh −

(
af −

∑
wh∈C′

f
bh
)
;

otherwise, bi,k should satisfy ak −
(∑

wh∈C′
k
bh + bi,k

)
= 0,

which is equivalent to bi,k = ak −
∑

wh∈C′
k
bh. Then, the

maximum value among these bi,k’s are chosen as the payment

pwi (line 15-18). Finally, Algorithm 3 returns the requesters’

and workers’ payment profile pr and pw (line 19).

4) Analysis of the Proposed Mechanism

In this section, we prove several desirable properties of

our MELON double auction, described in Algorithm 2 and

3. Firstly, we show its truthfulness in Theorem 5.

Theorem 5. The proposed MELON double auction is truthful.

Proof. We prove the truthfulness of the MELON double auc-

tion by showing that it satisfies the properties of monotonicity

and critical payment.

• Monotonicity. The algorithm FC called by Algorithm 2

is independent of the requesters’ and workers’ bids, and

winners are selected based on a decreasing order of the value

aj −
∑

i:wi∈Cj
bi. Thus, if a requester rj wins by bidding

aj , she will also win the auction by bidding any a′j > aj .

Similarly, if a worker wi wins by bidding bi, she will win

the auction, as well, if her bid takes any value b′i < bi.

• Critical payment. Algorithm 3 in fact pays every winning

requester and worker the infimum and supremum of her bid,

respectively, that can make her a winner.

As proved in [40], these two properties make an auction

truthful, i.e., each requester rj maximizes her utility by bid-

ding vj , and each worker wi maximizes her utility by bidding

ci. Therefore, the MELON double auction is truthful.

Next, we show that the proposed MELON double auction

satisfies individual rationality in Theorem 6.

Theorem 6. The proposed MELON double auction is individ-

ual rational.

Proof. By Definition 3 and 4, losers of the MELON double

auction receive zero utilities. From Theorem 5, every winning

requester rj bids vj , and every winning worker wi bids ci
to the platform. Moreover, they are paid, respectively, the

infimum and supremum of the bid for them to win the auction.

Therefore, it is guaranteed that all requesters and workers

receive non-negative utilities, and thus the proposed MELON

double auction is individual rational.

In Theorem 7, we prove that the proposed MELON double

auction has a polynomial-time computational complexity.

Theorem 7. The computational complexity of the proposed

MELON double auction is O(M3N +M2N2).

Proof. As mentioned in Section IV-A1, the algorithm FC (line

2) in Algorithm 2 takes a greedy approach, and has a com-

putational complexity of O(N). Line 3-4 of Algorithm 2 that

find the sets C1, · · · , CM terminate at most after MN steps.
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Next, the main loop (line 5-11) terminates after M iterations

in worst case. Within each iteration, finding the index of the

requester that provides the maximum marginal social welfare

(line 6) takes O(M) time, and updating the sets C1, · · · , CM
takes O(MN) time. Therefore, the computational complexity

of the main loop is O(MN), and thus, that of Algorithm 2

is O(M2N) overall. After Algorithm 2, our MELON double

auction executes its pricing algorithm described by Algorithm

3, where the loop for requester pricing (line 1-8) terminates

in worst case after M iterations. Clearly, the computational

complexity of each iteration of the loop is dominated by the

execution of Algorithm 2 in line 3. Therefore, the requester

pricing (line 1-8) in Algorithm 3 takes O(M3N) time. Fol-

lowing a similar method of analysis, we can conclude that the

worker pricing in Algorithm 3 takes O(M2N2) time. Hence,

the computation complexity of Algorithm 3, as well as that of

the overall MELON double auction is O(M3N+M2N2).

Finally, we show in Theorem 8 that our MELON double

auction guarantees non-negative social welfare, as required.

Theorem 8. The MELON double auction guarantees non-

negative social welfare.

Proof. Clearly, in the winner selection algorithm described by

Algorithm 2, a requester rj and the workers in Cj could be

selected as winners, only if the corresponding marginal social

welfare aj −
∑

i:wi∈Cj
bi is non-negative (line 5). Thus, as

the overall social welfare given by Algorithm 2 is the sum of

the aforementioned marginal social welfare of every iteration

where new winners are selected, the MELON double auction

guarantees non-negative social welfare.

V. PERFORMANCE EVALUATION

In this section, we introduce the baseline methods, simula-

tions settings, as well as simulation results of the performance

evaluation about our proposed CENTURION framework.

A. Baseline Methods

In our evaluation of the incentive mechanism, the first

baseline auction is the Marginal Social Welfare greedy (MSW-

Greedy) double auction. As in Algorithm 2, it also initializes

the winner sets as ∅, executes the algorithm FC to obtain a

feasible cover C, and chooses from C the set Cj containing

each worker wi such that τj ∈ Γi for each task τj . Different

from the MELON double auction, it sorts requesters in a

decreasing order of their marginal social welfare, i.e., the

value aj −
∑

i:wi∈Cj
bi for each requester rj . Then, it selects

the requester rj and the set of workers in Cj as winners

until the marginal social welfare becomes negative. Its pricing

algorithm is the same as that of the MELON double auction.

Clearly, the MSW-Greedy double auction is truthful and

individual rational. Another baseline auction is the one that

initiAlizes the feasIble cover C as the entire woRker set W ,

which we call AIR double auction. The rest of its winner

selection, as well as the entire pricing algorithm is the same

as those of our MELON double auction. It is easily provable

that the AIR double auction is also truthful and individual

rational.

Furthermore, we compare our weighted data aggregation

mechanism with a mean aggregation mechanism, which out-

puts +1 as the aggregated result for a task if the mean of

workers’ labels about this task is non-negative, and outputs

−1, otherwise. Another baseline aggregation mechanism that

we consider is the median aggregation that takes the median

of workers’ labels about a task as its aggregated result.

B. Simulation Settings

Setting vj ci θi,j βj |Γ∗
i | N M

I [10, 20] [5, 15] [0, 1] [0.05, 0.1] [15, 20] [90, 150] 60
II [10, 20] [5, 15] [0, 1] [0.05, 0.1] [15, 20] 60 [20, 80]

TABLE I
SIMULATION SETTINGS

The parameter settings in our simulation are given in Table

I. Specifically, parameters vj , ci, θi,j , βj , and |Γ∗
i | are sampled

uniformly at random from the intervals given in Table I. The

worker wi’s true interested task set Γ∗
i contains |Γ∗

i | tasks that

are randomly selected from the task set T . In setting I, we fix

the number of requesters as 60 and vary the number of workers

from 90 to 150, whereas we fix the number of workers as 60
and vary the number of requesters from 20 to 80 in setting II.

C. Simulation Results
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Fig. 2. Social welfare (setting I)
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Fig. 6. Error probability (setting I)
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Fig. 7. Error probability (setting II)

In Figure 2 and 3, we compare the social welfare generated

by our MELON double auction with those of the two baseline
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auctions. These two figures show that our MELON double

auction generates social welfare far more than the MSW-

Greedy and AIR double auction under both setting I and II.

We evaluate CENTURION’s accuracy guarantee in setting

I and II with a minor change of the parameter βj , i.e., βj

for each task τj is fixed as 0.05 to simplify presentation. We

compare the mean absolute error (MAE) for all tasks, which

is defined as MAE = 1
M

∑
j:τj∈T |l̂j − lj |, of our weighted

aggregation mechanism proposed in Algorithm 1 with those

of the mean d median aggregation. The simulation for each

combination of worker and requester number is repeated for

50000 times, and we plot the means and standard deviations

of the MAEs in Figure 4 and 5. From these two figures, we

observe that the MAE of our weighted aggregation mechanism

is far less than those of the mean and median aggregation.

Then, we show our simulation results about Pr[|l̂j − lj |],
referred to as task τj’s error probability (EP). After 50000
repetitions of the simulation for any given combination of

worker and requester number, empirical values of the EPs

are calculated, and the means and standard deviations of the

empirical EPs are plotted in Figure 6 and 7. These two figures

show that the empirical EPs are less than the required upper

bound βj and far less than those of the mean and median

aggregation.

VI. CONCLUSION

In this paper, we propose CENTURION, a novel integrated

framework for multi-requester MCS systems, consisting of

a double auction-based incentive mechanism that stimulates

the participation of both requesters and workers, and a data

aggregation mechanism that aggregates workers data. Its in-

centive mechanism bears many desirable properties including

truthfulness, individual rationality, computational efficiency, as

well as non-negative social welfare, and its data aggregation

mechanism generates highly accurate aggregated results.
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