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Abstract—Given a network of agents interacting over time,
which few interactions best characterize the dynamics of the
whole network? We propose an algorithm that finds the optimal
sparse approximation of a network. The user controls the level of
sparsity by specifying the total number of edges. The networks
are represented using directed information graphs, a graphical
model that depicts causal influences between agents in a network.
Goodness of approximation is measured with Kullback-Leibler
divergence. The algorithm finds the best approximation with no
assumptions on the topology or the class of the joint distribution.

I. INTRODUCTION

Networks have become an increasingly integral part of life.
Humans participate in networks, including social, commu-
nication, and financial networks. Humans are comprised of
networks, including neuronal, gene regulatory, and metabolic.
A major challenge to understand how these networks function
and how to control them is to identify the connections,
specifically causal influences, in the networks.

Two major approaches to determine and measure the
strength of agent interactions are experimentation and us-
ing observed time-series. Experimentation directly determines
influences through manipulating the states of certain nodes.
However, experimentation can be costly or impractical, such
as with the human brain or financial networks. An alternative
is to use observed time-series to infer the connections.

Under certain conditions, such as no feedback, or for certain
classes of distributions, causal influences can be learned from
i.i.d. data [1], [2], [3]. Some methods for time series use prior
assumptions on the interactions [4], hypothesize a particular
topology and test that hypothesis with data [5], or assume a
specific class of parametric models [6].

In some cases, approximations can be better than the full
network. Approximations that are sparse, yet capture many of
the network dynamics, could be more tractable to learn and
use. Sparse approximations could be more tractable to learn
since the search space is reduced.

Sparse approximations could be more useful by only de-
picting the few, strongest edges. For biological networks,
approximations could generate hypotheses for connections,
reducing the number of experiments. For adversarial networks,
having an approximation with only a few, strong edges can
greatly facilitate analysis of which edges to target (such as

which road to blockade or communication link to break).
Different tasks might require different levels of sparsity; it
is important that the user can control the sparsity.

In this work, we propose an algorithm to identify optimal
sparse approximations of networks of interacting agents. The
method makes no assumptions about the distribution or the
topology. Despite the generality, the algorithm is none-the-
less significantly more tractable than finding the exact graph.
Goodness of approximation is measured with KL divergence.
The user controls the sparsity level (and computation time) by
specifying the total number of edges. We use graphical models
to assess how the network topology relates to the dynamics.

Probabilistic graphical models provide a powerful frame-
work for characterizing statistical relationships. Markov and
Bayesian networks, for example, are two widely used classes
for depicting correlations in i.i.d. data [7]. For time-series,
dynamic Bayesian networks can be used. However, they
represent multiple variables from each time-series as separate
nodes. Structure learning can be prohibitive for large dynamic
Bayesian networks due to the number of potential edges. In-
stead, we use directed information graphs to model interacting
processes [8], [9]. These graphical models represent each time-
series as a node, resulting in a more compact depiction. They
can be applied to any network, whether the time-series are
linear or non-linear, parametric or non-parametric, discrete or
continuous valued.

A. Our Contributions

We propose an algorithm to find the optimal approximation
with a user-specified number k of edges, with no assumptions
on the underlying topology or distribution. The algorithm only
requires computing marginals with k + 1 processes, the theo-
retical minimum needed for optimality. We also demonstrate
the performance of the approximations through simulations.

B. Related Work

There have been several works finding sparse approxima-
tions when the processes are multivariate auto-regressive using
tree-approximations [10], [11] or Lasso [12], [13].

There have also been algorithms that find sparse approx-
imations of directed information graphs. One finds directed
tree approximations [14], connected graphs where each node
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(a) An in-degree one approximation.
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(b) A k-sparse approximation.

Fig. 1. Diagrams of two approximations, one an in-degree one approximation
with 6 edges and the other a k-sparse approximation with k = 4 edges.

has a single parent. That was generalized in [15], with a
method to find connected graphs with more parents. Another
finds approximations with user-specified in-degrees [16]. See
Figure 1a for an example of an in-degree one approximation.

In contrast, the approximations this work considers are of
the form in Figure 1b. The user simply specifies the total
number of edges in the graph, letting the algorithm determine
the in-degrees. The result is a sparser approximation that better
approximates the full network. For networks of m nodes,
(uniform) in-degree approximations like Figure 1a can only
have m, 2m, 3m, etc. edges. In contrast, approximations like
Figure 1b can have any number of edges.

The algorithm we propose uses dynamic programming to
identify the best set of k edges. The algorithm searches over
in-degree counts, choosing how many parents to assign to
each node. Several works on Bayesian networks use dynamic
programming to learn the exact graph, though they search over
partial orders of the variables [17], [18].

II. BACKGROUND

We first review notation and directed information graphs.

A. Notation and Information-Theoretic Definitions

We now define notation. We use “:=” for denoting.
• For a sequence a1, a2, . . ., denote (ai, . . . , aj) as aji and
ak := ak1 . Let [m] := {1, . . . ,m}.

• We consider m discrete-time random processes over a
horizon n with finite-alphabet X. Denote the ith random
process at time t by Xi,t, the ith random process as Xi :=
(Xi,1, . . . , Xi,n)

>, the collection of all m processes as
X := (X1, . . . ,Xm)>, and a subset of L processes
indexed by A ⊆ [m] as XA := (XA(1), . . . ,XA(L))

>.
Remark 1. We use finite-alphabet and finite time horizon
to simplify the presentation. The results generalize.

• Conditional and causally conditioned distributions [19]
of Xi given Xj are

PXi|Xj
(xi|xj) :=

n∏
t=1

PXi,t|Xt−1
i ,Xn

j
(xi,t|xt−1i , xnj ) (1)

PXi‖Xj
(xi‖xj) :=

n∏
t=1

PXi,t|Xt−1
i ,Xt−1

j
(xi,t|xt−1i , x

t−1
j ). (2)

Note the similarity between (1) and (2), though in (2)
the present and future, xnj,t, are not conditioned on. In

[19], the present xj,t was conditioned on. The reason we
remove it will be made clear in Remark 3.

• Let i, j ∈ [m] and A ⊆ [m]\{i, j}. The causally
conditioned directed information [20], [19] is

I(Xj → Xi‖XA) :=
n∑

t=1

I(Xt−1
j ;Xi,t|Xt−1

A∪{i}). (3)

Remark 2. While mutual information quantifies statis-
tical correlation (in the colloquial sense of statistical
interdependence), directed information quantifies statis-
tical causation in the sense of Granger causality [16].
The main principle of Granger causality [6] is that
when the past of Xj helps to predict the future of
Xi, even considering (conditioning on) the past of the
whole network, then Xj is said to causally influence
Xi. Directed information (3) measures the correlation
between the past of Xj and the future of Xi, conditioned
on the past of other processes. See [16] for more details
as well as experiments on simulated and real-world data.
Remark 3. In (2) and (3), there is no conditioning on
the present Xj,t. This follows the original definition [20]
and is consistent with Granger causality [6]. Later works
such as [19] included conditioning on Xj,t for the specific
setting of communication channels.

B. Directed Information Graphs

We now review directed information graphs.

Definition II.1. [8], [9] A directed information graph is a
probabilistic graphical model where each node represents a
process Xi and an edge Xj→Xi is drawn if

I(Xj → Xi‖X[m]\{i,j}) > 0.

Definition II.1 is in terms of individual edges. Under
certain conditions, the graph corresponds to a particular
factorization of the joint distribution. By the chain rule,
the joint distribution PX factorizes over time as PX(x) =∏n

t=1 PXt|Xt−1(xt|xt−1). If given the full past, Xt−1, the
processes {X1, . . . ,Xm} at time t are mutually independent,
PX can be further factorized as

PX(x) =
n∏

t=1

m∏
i=1

PXi,t|Xt−1(xi,t|xt−1), (4)

and PX is said to be strictly causal. Equation (4) can be
written using causal conditioning notation (2) as PX(x) =∏m

i=1 PXi‖X[m]\{i}
(xi ‖ x[m]\{i}). A distribution PX is called

positive if PX(x) > 0 for all x ∈ Xmn.

Theorem II.2. [16] For a joint distribution PX, if PX is pos-
itive and strictly causal, then the parent sets {A(i)}mi=1 in the
directed information graph are the unique, minimal cardinality
parent sets such that D(PX‖

∏m
i=1 PXi‖XA(i)

) = 0.

In searching for the optimal sparse approximation, PX need
not be positive and strictly causal [16]. The proposed algorithm
will search for parent sets, motivated by Theorem II.2.
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III. OPTIMAL k-SPARSE APPROXIMATIONS

We now consider identifying the best, sparse approximation
for a network PX. Our goal is to specify a parent set Â(i) for
each node i, such that the induced marginal distribution,

P̂X(x) :=
m∏
i=1

PXi‖XÂ(i)
(xi‖xÂ(i)) (5)

is close the the full joint distribution PX and there are k edges
total. We seek to minimize the KL divergence D(PX‖P̂X).
The user can select k according to the task and resources at
hand. Note that the marginals in (5) are exact, but the parents
are approximate (not necessarily a subset of true parents). Let
Pk denote the set of all distributions of the form (5) with k
edges total,

Pk := {P̂X(x) :
m∑
i=1

|Â(i)| = k}.

Our objective is to identify the optimal approximation

P̂ ∗X := argmin
P̂X∈Pk

D(PX‖P̂X).

Theorem III.1. [14] For any distribution PX and set of
approximations P ,

argmin
P̂X∈P

D(PX ‖ P̂X) = argmax
P̂X∈P

m∑
i=1

I(XA(i) → Xi).

Remark 4. In [14], only the case |A(i)| = 1 for a positive
and strictly causal PX was shown. The result generalizes [16].

Theorem III.1 shows that to a certain extent, finding good
approximations for directed information graphs (a global prob-
lem) is the same as finding good parent sets (a local problem).
The choice of parent sets is not independent, however, because
the total number of parents is restricted.

To find the best graph with only k edges, it is necessary to
at least determine the best k parents for each node Xi. This is
because for each node Xi, the graph with k edges into Xi is a
feasible solution. To find the optimal set of k parents for each
node Xi, it is necessary and sufficient to compute statistics in-
volving k+1 processes, namely {I(XS → Xi)}{i},S⊆[m],|S|=k

[16]. Since finding the k-sparse optimal approximation is
strictly tougher, it is also necessary to compute statistics
involving (at least) k+1 processes. The algorithm we develop
will establish that is sufficient.

A. Algorithm Overview

The main algorithm, Algorithm 2: OPTkEDGES, uses dy-
namic programming to allocate the number of parents for each
node. It first calls Algorithm 1: FILLINC to fill in a table C
of directed information values between candidate parent sets
of different sizes and their child nodes.

Algorithm 1 runs as follows. Initially, it creates a (1 +
min(k,m−1))×m×2 array C, with columns corresponding
to processes Xi and rows corresponding to parent set sizes
l : 0 ≤ l ≤ min(k,m−1). Recall that in a graph of m nodes,

Algorithm 1. FILLINC
Input: k, m, DIBndInd

1. For i in m, . . . , 1
2. C[1, i, 1]← 0
3. C[1, i, 2]← ∅
4. For l in 1, . . . ,min(k,m− 1)
5. S∗l ← argmax

S⊆[m]\{i},|S|=l

I(XS → Xi)

6. C[l + 1, i, 1]← I(XS∗l
→ Xi)

7. C[l + 1, i, 2]← {(S∗l , i)}
8. Return C

the maximum in-degree is m− 1 though k ≥ m is permitted.
For each Xi and l : 0 ≤ l ≤ min(k,m− 1), compute

S∗l ← argmax
S⊆[m]\{i},|S|=l

I(XS → Xi).

Then C[l + 1, i, 1] ← I(XS∗l
→ Xi), the largest directed

information of l parents to Xi, and C[l + 1, i, 2] ← S∗l ,
the parent set achieving the best value. Break ties arbitrarily.
Indexing in C starts at 1, so row 1 corresponds to 0 parents.

To determine table C, the following set of directed infor-
mation values DIBndInd is needed,

DIBndInd :={I(XS → Xi) : S ⊆ [m], i ∈ [m],

|S| ≤ min(k,m− 1)}.

Lemma III.2. Each element C[l+1, i, 2] filled by Algorithm 1
is the set of indices for an optimal set of l parents for Xi, and
C[l+ 1, i, 1] is the corresponding directed information value.

Proof. The proof follows immediately by construction.

B. Finding the Optimal k-Sparse Approximation

Once table C is filled in with the best parent sets, we can
use dynamic programming to identify the k-sparse optimal
approximation. This procedure is formalized in Algorithm 2.
Let Bestk(l, i) denote the largest total influence, measured as
the sum of directed informations from parent sets to children,
that can be achieved by picking l edges into any of the last
m− i+ 1 nodes {Xi, . . . ,Xm},

Bestk(l, i) = max
{Ã(j)}mj=i

s.t. ∀j: i≤j≤m Ã(j)⊆[m]\{j}∑m
j=i |Ã(j)|=l

m∑
j=i

I(XÃ(j) → Xj)

Lemma III.3. The function Bestk(l, i) satisfies the following
recursion for all l : 0 ≤ l ≤ k and all i ∈ [m],

Bestk(l, i) = max
l′:0≤l′≤l

C[l′+1, i, 1] + Bestk(l−l′, i+ 1). (6)

Proof. The proof is omitted due to space limitations. It uses
induction on i and Lemma III.2.

To solve the recursion efficiently, store intermediate values
in an array H . The dimensions are (k+1)×m×2. H[l+1, i, 1]
stores Bestk(l, i), the value (sum of directed informations)
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Algorithm 2. OPTkEDGES
Input: k, m, DIBndInd

1. H[·, ·, 1]← 0, H[·, ·, 2]← ∅
2. C ← FILLINC(k, m, DIBndInd)
3. For l in 0, . . . ,min(k,m− 1)
4. H[l + 1,m, 1]← C[l + 1,m, 1]
5. H[l + 1,m, 2]← C[l + 1,m, 2]
6. For i in m− 1, . . . , 1
7. For l in 0, . . . ,min(k,m− 1)
8. l∗ ← argmax

l′:0≤l′≤l
C[l′+1, i, 1] +H[l−l′+1, i+1, 1]

9. H[l+1, i, 1]← C[l∗+1, i, 1] +H[l−l∗+1, i+ 1, 1]
10. H[l+1, i, 2]← C[l∗+1, i, 2] ∪H[l−l∗+1, i+ 1, 2]
11. Return H[k + 1, 1, 2]

of the parent sets picked. H[l, i, 2] records which parent sets
achieve that value. The array H can be filled in from column
i = m back to i = 1, and for each column i filling in row one
(l = 0) to k + 1 (l = k).

We now briefly describe the pseudo-code. Since the recur-
sion “ends” at column i = m, if l′ edges are left over, then
Xm will have l′ parents. Lines 3-5 set the final column of H .
Lines 6-10 compute values in reverse order of the recursion,
with line 10 tracking the current sets of parents picked for
Xi, . . . ,Xm and line 9 tracking the cumulative value. Line 11
returns the parent sets in the optimal k-sparse approximation.

Theorem III.4. Algorithm 2 identifies the optimal k-sparse
approximation P̂ ∗X ∈ Pk.

Proof. By Theorem III.1, the set of k edges which maximizes
the sum of directed informations from parent sets to children
corresponds to the optimal approximation. By Lemma III.3,
the recursion (6) finds the k edges that maximize the sum,
according to C. By construction, H stores intermediate values
of the recursion (6). By Lemma III.2, C is filled correctly.

By filling the first column in H , for X1, Algorithm 2
finds not only the optimal k-sparse approximation, but also
the optimal l-sparse approximation for all 0 ≤ l ≤ k. In
Algorithm 2, line 11, H[l + 1, 1, 2] could be called instead.

C. Asymptotic Efficiency

To analyze algorithmic complexity, we need to bound the
computation time needed for directed information. Suppose
the directed information I(XB → Y‖XB′) will be computed
following the definition (3). If the joint distribution is Markov
order r, the alphabet size is |X|, and the number of processes
in the term is |B|+ |B′|+ 1 = k + 1, the run-time is [15]

O(n|X|(k+1)r+1). (7)

Alternative methods could have different run-time bounds.
The complexity of finding the best k-sparse approximation

is dominated by Algorithm 1, computing directed information
values. Algorithm 1 computes all elements of DIBndInd,
running in O(m(

∑k
l=1

(
m−1

l

)
n|X|(l+1)r+1)) using (7), when

k ≤ m − 1. When the sparsity level is much smaller

than the number of nodes, m � k, this simplifies to
O(mk+1n|X|kr)) and O(mk+1n) for fixed sparsity k and
alphabet size |X|. If k ≥ m, the run-time is fixed as
O(m(

∑m−1
l=1

(
m−1

l

)
n|X|(l+1)r+1)) = O(mn(1 + |X|r)m−1).

We now determine the asymptotic efficiency of Algorithm
2, OPTkEDGES, for k ≤ m − 1. It uses C to fill table H .
H has k + 1 rows and m columns. Each element needs to
look up no more than k elements in the previous column, so
Algorithm 2’s run-time is O(mk2) given C.

The total run-time is thus O(mk+1n|X|kr)) when k ≤ m−
1 and O(mn(1 + |X|r)m−1) otherwise. A brute-force search
would, like Algorithm 2, require computing all elements of
DIBndInd first. It would then test all

(
m(m−1)

k

)
= O(m2k)

graphs (for k ≤ m − 1). Thus, once given C, Algorithm 2’s
run-time of O(mk2) is a significant improvement.

Remark 5. Algorithm 1 is impractical for large k and m.
The main bottleneck is computing directed information values
to fill in table C. This can be parallelized. Faster estimation
methods would reduce the overall complexity.

An alternative heuristic is to only compute directed infor-
mation values up to an in-degree limit (such as three or four).
Algorithm 2 could be slightly modified to find the best k-
sparse approximation with limited in-degrees. Furthermore,
once k ≥ m − 1 (or a limit on the in-degree), then the
complexity of Algorithm 1, FILLINC, does not grow with k. A
wide range of sparsity levels could be examined in that regime
without an increase in complexity.

IV. SIMULATIONS

In this section, we demonstrate the performance of optimal
k-sparse approximations through network simulations.

1) Setup: The simulations consisted of 150 consensus
games. In each game, a network of m = 10 nodes was
generated. Each node was randomly assigned parents, with
the number of parents picked uniformly between two and six.
See Figure 2a for an example network. At each time-step t,
every node i would select one of two states 0/1 based on its
current state Xi,t, the state of its parents XA(i),t, and its bias
a1 ∈ [0, 1] for state 1. The selection followed the distribution

PXi,t+1|XA(i)∪{i},t
(1|XA(i)∪{i},t) =

a1γ1
a1γ1 + a0γ0

,

where γ1 := (Xi,t +
∑

j∈A(i)Xj,t), the number of 1’s that
node i sees at time t, and γ0 is defined similarly.

Each game consisted of 1000 rounds with the same network.
Each round lasted for t = 10 time steps or until consensus.
The initial states were randomly generated. A high number of
rounds was used to ensure accurate estimates.

The performance of the k-sparse approximations generated
by Algorithm 2 were measured using the following ratio. The
ratio is the sum of directed informations from chosen parent
sets to children divided by that of the true parents,∑m

i=1 I(XÂ(i) → Xi)∑m
i=1 I(XA(i) → Xi)

, (8)

2016 IEEE International Symposium on Information Theory

1738



1

2

34

5

6

7

8 9

10

(a) An example network.
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Fig. 2. Figure 2a shows an example network of m = 10 nodes. Darker nodes
have a higher bias a1. Figure 2b shows the simulation results for the best k-
sparse approximations versus the best in-degree one and two approximations.

where A(i) and Â(i) denote the true and inferred parent sets
respectively. This ratio characterizes how much of the causal
dynamics the estimated parent sets account for. Recall from
Theorem III.1 that larger sums (eg. the numerator of (8))
correspond to better approximations. The directed information
values were estimated using the plug-in empirical estimator
(see, for instance, [16]).

For comparison, the ratio (8) was also calculated for the best
in-degree one and in-degree two approximations [16] which
used 10 and 20 edges respectively.

2) Results: Overall, the k-sparse approximation performed
well. The mean and standard deviation the ratio (8) over
150 games is shown in Figure 2b. At k = 10 and 20
edges, the ratio had already reached 50% and 80% of the
dynamics respectively. In contrast, the best in-degree one and
two approximations had close to 38% and 70% using 10 and
20 edges respectively. On average, networks had forty edges.

V. CONCLUSION

We developed and tested an algorithm that finds the optimal,
sparse approximation of a network where the user controls the
sparsity level. The algorithm works regardless of the network
topology or the class of the joint distribution. Important future

directions include identifying faster, heuristic algorithms that
are provably good for major classes of distributions, exploring
the robustness of the approximations in the small-data regime,
and developing automatic procedures for selecting k.
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