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ABSTRACT
In the era of big data, information regarding the same objects can
be collected from increasingly more sources. Unfortunately, there
usually exist conflicts among the information coming from differ-
ent sources. To tackle this challenge, truth discovery, i.e., to inte-
grate multi-source noisy information by estimating the reliability of
each source, has emerged as a hot topic. In many real world appli-
cations, however, the information may come sequentially, and as a
consequence, the truth of objects as well as the reliability of sources
may be dynamically evolving. Existing truth discovery methods,
unfortunately, cannot handle such scenarios. To address this prob-
lem, we investigate the temporal relations among both object truths
and source reliability, and propose an incremental truth discovery
framework that can dynamically update object truths and source
weights upon the arrival of new data. Theoretical analysis is pro-
vided to show that the proposed method is guaranteed to converge
at a fast rate. The experiments on three real world applications and
a set of synthetic data demonstrate the advantages of the proposed
method over state-of-the-art truth discovery methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
mining
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1. INTRODUCTION
Nowadays, with information explosion, it becomes much more

convenient to collect information from multiple places. For exam-
ple, to know the weather condition of a specific location, we can get
the information from multiple weather services; to get the up-to-
date information about some stocks, multiple websites are record-
ing the real-time information; to query the flight status, multiple
agencies may provide such information. However, these collected
information could conflict with each other.
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To better utilize the collected multi-source information, an im-
portant task is to resolve the conflicts among them, and output the
trustworthy information. In the light of this challenge, truth discov-
ery [3,5,7–9,14,17,21,23,25] is emerging as a promising paradigm
that can help people identify trustworthy information from multiple
noisy information sources, and it has been applied in various appli-
cation domains [4, 11, 18, 19]. In contrast to voting or averaging
approaches that treat all sources equally, truth discovery methods
estimate the source reliability and infer the trustworthy informa-
tion simultaneously. As the source reliability degrees are usually
unknown a priori, in truth discovery, source reliability estimation
and trustworthy information inference are tightly combined by the
following principle: If a source provides trustworthy information
more often, it will be assigned a high reliability; Meanwhile, if one
piece of information is claimed by high quality sources, it will be
regarded as trustworthy information.

Most of the existing truth discovery algorithms are proposed to
work on static data. They can not handle the scenarios where the
collected information comes sequentially, which happen in many
real world applications. Consider the aforementioned applications:
The weather condition, the stock information, and the flight status
are collected in real-time. These applications reveal the necessity
to develop truth discovery methods for such scenarios.

In the scenarios that information is collected continuously, new
challenges are brought by the nature of such applications. First,
as data comes sequentially from multiple sources in a dynamic en-
vironment, we cannot afford to re-run the batch algorithm at each
timestamp. Instead, we need approaches that scan data once and
conduct real-time truth discovery to facilitate processing and stor-
age on large-scale data. Unfortunately, existing truth discovery
approaches are not developed to handle dynamic streaming data.
They work in batch processing manner, and cannot incrementally
update truth and source reliability.

Second, unique characteristics of dynamic data are observed
across various real world applications: 1) The true information of
objects evolves over time, and for a specific object, the temporal
smoothness exists among its information at different timestamps.
2) The observed source reliability changes over time, which is not
consistent with the assumption held by existing approaches as they
assume the source has unchanged reliability. In Section 2, we will
illustrate more details about these observations and discuss the dif-
ficulties they bring to truth discovery.

To tackle the aforementioned two challenges, in this paper, a new
truth discovery method is developed for dynamic scenarios. We
first propose an effective solution that can update truth and source
reliability in an incremental fashion. Thus the proposed method
can work in real-time, and the data only needs to be visited once.
To capture the unique characteristics of dynamic data, two factors,
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namely, smoothing factor and decay factor, are incorporated into
the proposed approach to model the evolution of both truth and
source reliability. Further, we give theoretical analysis of the pro-
posed method, and show its fast rate of convergence.

To demonstrate the effectiveness and efficiency of the proposed
method, we conduct a series of experiments on three real world
applications and a set of synthetic datasets. By comparing with
state-of-the-art truth discovery methods, the improvement brought
by the proposed method is justified. We also analyze the effect of
the smoothing factor and decay factor, explain how these factors
can capture the characteristics of dynamic data, and test the sensi-
tivity of the proposed method with respect to these factors.

In summary, our contributions in this paper are:
• Motivated by many real world applications, we study the

truth discovery task under dynamic scenarios, in which the
information is collected continuously, and evolution exists in
both object truths and source reliability.

• We develop an incremental truth discovery method that can
be applied in real-time scenarios. Two more factors are in-
corporated into the proposed method to capture the charac-
teristics of dynamic data.

• Theoretical analysis is presented to prove the convergence of
the proposed method. The rate of convergence is also given.

• We test the proposed method on three real world applications
and several synthetic datasets, and the improvements on both
performance accuracy and efficiency are demonstrated.

In the following sections, we first present the observations and
challenges under dynamic scenarios in Section 2. In Section 3, af-
ter formally defining the task, the proposed solution is derived, and
further the smoothing factor and decay factor are incorporated. In
Section 4, we give theoretical analysis on the proposed method.
Section 5 shows the experiments we conduct to validate the effec-
tiveness and efficiency of the proposed method. We discuss related
work in Section 6, and conclude the paper in Section 7.

2. OBSERVATIONS
As mentioned before, in this section, we explore and summa-

rize common evolutionary patterns observed across various appli-
cations. Later in this paper we will present our solutions that are
motivated by these patterns. In the following, we use three truth
discovery tasks, i.e., weather forecast, stock records, and flight sta-
tus integration, to illustrate the effect of dynamic changes on truth
discovery. These three datasets have been used before in truth dis-
covery literature [7, 8, 26] as static data, but they all involve dy-
namically changing data. Specifically, we are interested in getting
true answers for weather forecast of cities, real-time recording of
stocks, and status of flights by merging data that are continuously
collected from multiple websites. More details and experimental
results on these datasets can be found in Section 5.

There are two major observations regarding the impact of dy-
namic data on truth discovery: 1) Truth is evolving but temporal
smoothness is observed, and 2) source reliability changes, which
differs from the assumption held by truth discovery approaches ap-
plied to static settings.
Truth Evolution. In Figures 1, we demonstrate the evolution of
truths (x-axis denotes time, and y-axis denotes the true value that
we are interested in: temperature, market capitalization, or flight ar-
rival time). Figure 1a shows the highest temperature of New York
City during a period of two months, Figure 1b illustrates stock in-
formation over one month (weekdays only), and Figure 1c is about
the arrival time of a particular flight on each day of one month

(arrival time is translated into minutes from 12am, for example,
07 : 30am is translated into 450 mins). From these figures, we
can observe that the value is constantly changing but the change
within a small time window is smooth. For example, in tempera-
ture data, if today’s highest temperature is 42F, it is more likely that
the highest temperature tomorrow will not deviate much from 42F.
Similar patterns can be observed on stock data. For flight data, as
the scheduled arrival time for a flight is almost the same, for most
of the days, the actual arrival time is around the arrival time of the
previous ones (temporal smoothness). Only a few exceptions are
observed in which arrival time is quite different from the sched-
uled arrival time (the peaks in Figure 1c). These exceptions will be
discussed and analyzed in experiments (Section 5).

Source Reliability Evolution. Truth discovery approaches
can infer trustworthy information from conflicting multi-source
data as it takes source reliability into consideration. To estimate
such source reliability, existing approaches make the assumption
that each source’s reliability is consistent over all the claims it
makes. This assumption is made in [22] and further adopted by
[3, 5, 7, 8, 14, 23, 25], and it works well in static settings where all
the claims are processed simultaneously. However, this assump-
tion does not hold any more in dynamic environment. Figure 2
demonstrates how sources’ reliability changes over time on the
three datasets we adopt. The reliability of a source is quantified
by comparing the sources’ claims with the true values and measur-
ing the closeness between them. An interesting observation is that
source reliability fluctuates around a certain value, which may cor-
respond to the underlying true source reliability. However, at dif-
ferent timestamps, the observed source reliability reflects the effect
of both the underlying source reliability and some other factors that
are “local” to each timestamp. For example, a source that usually
provides accurate flight information may fail at certain timestamps
when some unusual events happen. We call such factors as envi-
ronment factors, which are different across time.

The above two observations demonstrate the characteristics of
dynamic data that need to be considered in modeling truth discov-
ery on such data. Moreover, as the information comes continuously,
it requires that the computation process should be in real-time. In
the following section, we first propose an effective approach that
can update truth and source reliability in real-time, and then ad-
dress the effect of temporal smoothness and environment factors in
dynamic data.

3. METHODOLOGY
We start with introducing some concepts in truth discovery, and

then formally define the task. In the remaining part of this sec-
tion, we first build an efficient algorithm for truth discovery with
dynamic data, which provides an incremental scheme to guarantee
high efficiency. Based on it, smoothing factor and decay factor are
incorporated into the proposed method to capture the observations
discussed above.

3.1 Problem Formulation
To describe the notations clearly, we group them as follows:

Input. Consider a set of objects O that we are interested in, and
for each of them o ∈ O, related information can be collected from
S sources at each timestamp t ∈ {1, 2, 3, . . .}. Let vso,t represent
the information from the s-th source about the object o at the t-th
timestamp. For convenience, let’s denote all the information from
source s at time t as X st , that is, X st = {vso,t}o∈O . Further, the size
of this set is denoted as cst = |X st |.
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Figure 1: Truth Evolves over Time.
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Figure 2: The Observed Source Reliability Changes over Time.

Output. After collecting information from different sources, our
goal is to aggregate these information and output trustworthy ones.
Let v̂∗o,t be the aggregated result for object o at time t, and X ∗t =
{v̂∗o,t}o∈O be the whole set of aggregated results at time t.

Besides the aggregated results, truth discovery methods can also
estimate sources’ reliability degrees. Let ws denote the weight (re-
liability degree) of the s-th source, andW represent the whole set
of source weights. As source weights are estimated based on their
information errors (difference) compared with the aggregated re-
sults, here we introduce some notations about source errors. Let
eso,t indicate the error of the s-th source made on object o at time
t, and est contain the errors on all the objects for source s at time
t. Further, we have some notations for accumulated errors: es1:t
denotes all the errors of source s from time 1 to time t, and e1:t
contains such information for all the sources.

Table 1 summarizes the notations used in this paper.

Table 1: Notations
Notation Definition

vso,t information for object o from source s at time t
X st set of all the information from source s at time t
cst number of claims provided by source s at time t

v̂∗o,t the aggregated result for object o at time t
X ∗t set of aggregated results at time t
ws weight of source s
W set of all the source weights
eso,t error on object o made by source s at time t
est set of errors made by source s at time t
es1:t errors of source s from time 1 to time t
e1:t errors of all the sources from time 1 to time t

Task Definition. The studied task is formally defined as fol-
lows. For a set of objects we are interested in, at timestamp T ,
related information is collected from S sources. Our goal is to
find the most trustworthy information v̂∗o,T for each object o by
resolving the conflicts among information from different sources
{vso,T }Ss=1. Meanwhile, to guarantee the efficiency, the proposed
method should not re-visit the information at previous timestamps
t ∈ {1, 2, 3, . . . , T − 1}. Besides the efficiency requirement, com-
pared with tradition truth discovery tasks, the main difference of

the proposed one is that the temporal evolution patterns within both
objects and sources are investigated.

3.2 Proposed Method
When applying the existing truth discovery methods on dynamic

data, the key limitation is their efficiency. Most of them iteratively
update estimated source reliability and the identified trustworthy
information. Thus multiple visits of the whole dataset are required.
In dynamic scenario, it becomes inefficient or even infeasible as
the data comes continuously. In the light of this challenge, we first
develop an efficient truth discovery method for dynamic data by
exploring the equivalence between optimization-based solution and
maximum a posteriori estimation.

Optimization-Based Solution. At time T , we have all the in-
formation from the timestamp 1 to T . Based on the principles of
truth discovery, we can consider the following optimization prob-
lem to infer both source reliability and trustworthy information:

minW,{X∗t }Tt=1
LT =

TX
t=1

lt, (1)

where lt is the loss function at time t, which is defined as follows:

lt = θ

SX
s=1

ws

cstX
o=1

(vso,t − v̂∗o,t)2 −
SX
s=1

cst log(ws). (2)

The motivation behind this loss function is following: 1) The first
term

PS
s=1 ws

Pcst
o=1(vso,t−v̂∗o,t)2 measures the weighted distance

between the provided information vso,t and the aggregated result
v̂∗o,t. By minimizing this part, the aggregated result v̂∗o,t will be
closer to the information from the sources with high weight ws.
Meanwhile, if a source provides information that is far from the
aggregated results, in order to minimize the total loss, it will be as-
signed a low weight. 2) The second term

PS
s=1 c

s
t log(ws) works

as a constraint to preventws approaching 0, which leads to the triv-
ial optimum for the first term. 3) Parameter θ adjusts the trade-off
between these two terms above.

The benefits of adopting this optimization-based formulation are:
1) It encodes the idea of truth discovery. 2) It allows us to incor-
porate constraints and prior knowledge about source weights. 3) In
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the following, we will show that this formulation can be linked with
MAP estimation which gives an efficient incremental solution.

In this optimization problem (Eq. (1)), two sets of variables are
involved, source weights W and aggregated results {X ∗t }Tt=1. To
solve this problem, we adopt coordinate descent [1], in which one
set of variables are fixed in order to solve for the other set of vari-
ables.

When source weights W are fixed, to infer aggregated results
v̂∗o,t, we take the derivative of Eq. (2) with respect to v̂∗o,t, and get
the following formula:

v̂∗o,t =

PS
s=1 ws · v

s
o,tPS

s=1 ws
. (3)

According to this weighted combination strategy to compute
the aggregated results, the information provided by high quality
sources will play more important roles, which keeps consistent with
the basic principle of truth discovery.

However, to estimate the source weightsW at time T , according
to Eq. (1), we need to re-visit all the information from the first
timestamp to the current one, which leads to additional cost and
makes the algorithm inefficient.
Maximum A Posteriori Estimation. In order to improve the
efficiency, we re-examine the above object function from another
perspective, and propose to learn source weights based on a proba-
bilistic model.

Recall that the error of the s-th source on object o at time t is
defined as eso,t = vso,t − v̂∗o,t. As the weight of source indicates the
quality of its provided information, the errors of a specific source
given its source weight ws can be assumed to follow a normal dis-
tribution: eso,t|ws ∼ N(0, 1

θws
), where θ is the trade-off parameter

in the loss function. If the source weight ws is high, the errors
will be small, which is equivalent to the idea that the aggregated re-
sults should be close to the information from high quality sources.
Next, we formally prove that the above optimization problem can
be translated into an equivalent likelihood estimation task.

THEOREM 3.1. Given the fixed aggregated results {X ∗t }Tt=1

and eso,t|ws ∼ N(0, 1
θws

), minimizing loss function LT in Eq. (1)
is equivalent to maximizing likelihood

QS
s=1 p(e

s
1:T |ws).

PROOF. We first give the formulation of likelihood:

SY
s=1

p(es1:T |ws) =

TY
t=1

SY
s=1

p(est |ws) =

TY
t=1

SY
s=1

cstY
o=1

p(eso,t|ws)

∝
TY
t=1

SY
s=1

cstY
o=1

(
√
θws)e

−
θws(eso,t)

2

2

=

TY
t=1

SY
s=1

(
√
θws)

cst e−
θws

Pcst
o=1(eso,t)

2

2 . (4)

To maximize Eq. (4), we can minimize its negative log likelihood,
which is given as follows:

− log

0@ TY
t=1

SY
s=1

cstY
o=1

p(eso,t|ws)

1A ∝
TX
t=1

0@1

2

SX
s=1

θws

cstX
o=1

(eso,t)
2 − 1

2

SX
s=1

cst log(ws)−
1

2

SX
s=1

cst log θ

1A .

(5)

Since the third term in Eq. (5) is a constant, Eq. (5) and Eq. (1) are
equivalent.

According to Theorem 3.1, the optimization problem in Eq. (1)
can be transferred into likelihood estimation. Thus the posterior
distribution of ws after timestamp T can be linked with the distri-
bution after timestamp T − 1 as follows:

p(ws|es1:T ) = p(ws|esT , es1:(T−1))

∝ p(ws, e
s
t , e

s
1:(T−1))

∝ p(est |ws, es1:(T−1))p(ws|es1:(T−1))

= p(esT |ws)p(ws|es1:(T−1)). (6)

Eq. (6) gives an incremental way to estimate the source weight at
time T : The weight can be updated based on the weight at time
T − 1, and it is not necessary to re-visit the previous data. This
dramatically improves the efficiency of the proposed method.

In order to incorporate prior knowledge, we use Maximum a
posteriori (MAP) estimation to estimate source weight ws. We
set the prior distribution for ws as Gamma distribution p(ws) ∝
Gamma(α, β), which is equivalent to have an initial loss l0 =PS
s=1 wsβ −

PS
s=1(α− 1) log(ws).

By combining the prior knowledge and Eq. (6), we get the pos-
terior distribution of ws after timestamp T :

p(ws|es1:T ) ∝ p(esT |ws)p(ws|es1:(T−1)) ∝ p(ws)
TY
t=1

p(est |ws)

∝ wα−1
s e−βws

TY
t=1

(
√
θws)

cst e−
θws

Pcst
o=1(eso,t)

2

2

∝ wα−1
s e−βwsw

PT
t=1 c

s
t

2
s e−

θws
Pt
t=1

Pcst
o=1(eso,t)

2

2

= w
α−1+

PT
t=1 c

s
t

2
s e−(β+ θ

2
PT
t=1

Pcst
o=1(eso,t)

2)ws .(7)

This indicates that: p(ws|es1:T ) ∼ Gamma(α +
PT
t=1 c

s
t

2
, β +

θ
2

PT
t=1

Pcst
o=1(eso,t)

2). Thus the MAP estimation for source
weight ws after timestamp T is:

ws =
2α− 2 +

PT
t=1 c

s
t

2β + θ
PT
t=1

Pcst
o=1(eso,t)

2
(8)

From Eq. (8), we can see that the estimated source weight is in-
versely proportional to the average difference between its provided
information and the aggregated results. According to the basic prin-
ciple of truth discovery, if a source provides information that is
close to the aggregated results, its corresponding weight should be
high. The above equation for source weight estimation follows this
principle. Meanwhile, parameters from prior distribution α and β
also exert their effect on the source weight estimation.

Let’s denote the accumulated counts for the s-th source by times-
tamp t as ast , where as0 = 2α−2 and ast = ast−1+cst . Similarly, let
bst represent the accumulated error for the s-th source by timestamp
t, where bs0 = 2β, and bst = bst−1 + θ

Pcst
o=1(eso,t)

2. Thus, Eq. (8)
becomes:

ws =
asT−1 + csT

bsT−1 + θ
Pcs

T
o=1(eso,T )2

. (9)

Following this equation, to update the source weights after times-
tamp T , we only need to count the information and calculate the
errors that happen within the timestamp T . This guarantees that we
do not need to re-visit the data at previous timestamps.
Algorithm Flow. So far, we have derived the incremental way
to update source weights. The whole computation procedure for
each timestamp is illustrated in Algorithm 1. Similar to the ex-
isting truth discovery methods, the proposed method follows the
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Algorithm 1 : Incremental Algorithm Flow
Input: Information from S sources at timestamp T : {X sT }

S
s=1, and the

accumulated counts and errors at previous timestamp.
Output: Aggregated information X∗T .
1: Update the aggregated results v̂∗o,T according to Eq. (3) based on the current

estimation of source weights.
2: Compute the count csT and error eso,T for each source.
3: Update the weight of s-th source according to Eq. (9), and meanwhile, update the

accumulated counts and accumulated errors for next timestamp.
4: return X∗T .

general principle to estimate source reliability and infer trustwor-
thy information. The advantage of the proposed method is that it
works in an incremental way and only scans the data once. Thus it
has great efficiency and is suitable for dynamic scenario. The the-
oretical analysis in Section 4 will prove that the estimated source
weights converge to the true source reliability. In the following,
we will show that by slightly modifying this solution, the proposed
method can capture the observations in Section 2.

Smoothing Factor. In Section 2, we show that the information
of objects is evolving in a smooth way. To capture this observation,
we add one smoothness constraint on the aggregated results. Thus,
the loss function at time t becomes:

lt = θ

SX
s=1

ws

cstX
o=1

(vso,t − v̂∗o,t)2 −
SX
s=1

cst log(ws)

+θλ
X
o∈O

(v̂∗o,(t−1) − v̂∗o,t), (10)

where λ is a parameter to control the effect of this smoothness con-
straint. This added term will not affect the source weight estimation
step as the aggregated results are fixed in this step. For aggregation
step, we can take the derivative of Eq. (10) with respect to v̂∗o,t:

v̂∗o,t =

PS
s=1 wsv

s
o,t + λv̂∗o,(t−1)PS

s=1 ws + λ
. (11)

Let’s consider the aggregated results at previous timestamp t − 1
as a pseudo source for the corresponding objects at timestamp t. If
we treat λ as the weight of this pseudo source, the aggregation is
still in the form of weighted combination of all the sources. Based
on this, we incorporate the smoothness assumption in a simple yet
elegant way: at each time t, we treat the previous aggregated result
v̂∗o,(t−1) as the information from a pseudo source, and the proposed
algorithm remains the same.

One thing needs to set is the tuned parameter λ, which can be
interpreted as “the weight of the pseudo source”. Big λ suggests
that we should rely on this constraint more, while small λ can relax
this constraint. We will study the effect of this parameter on both
real world applications and synthetic data in Section 5.

Decay Factor. Another observation in Section 2 is that the ob-
served source reliability fluctuates around its true source weight,
and it can be explained by the environment factor. In order to tackle
this challenge in the proposed method, we introduce a decay factor
γ for source weight estimation as follows:

ws =
2α− 2 +

PT
t=1 γ

T−t · cst
2β + θ

PT
t=1

Pcst
o=1 γ

T−t · (eso,t)2
(12)

If we treat the true source weight as a “global” weight, this for-
mula enables us to estimate a “local” one, which captures both the
true source weight and the environment factor. The introduced de-
cay factor γ is used to balance the true source weight and environ-

ment factor: If γ is close to 1, the estimated local weight will be
close to the true source weight; While if it is smaller than 1, the
local weight captures the environment factor more. In experiments
we will show that by incorporating this decay factor, the proposed
method can model the balance between the true source weight and
the environment factor.

4. THEORETICAL ANALYSIS
In this section, we prove the estimated source weights given by

the proposed method (Eq. (8)) will converge to the true source
weights, and further, the rate of convergence is as fast as o( 1√

T
).

To prove this, we need the following lemma first.

LEMMA 4.1. Suppose for each T , there exists aW∗T that min-
imizes LT =

PT
t=1 lt. Then the posterior distribution p(W|e1:t)

satisfies the asymptotic normality:

(∇2LT (W∗T ))1/2(W −W∗T )
d−→ N(0, 1), as t→∞, (13)

whereW ∼ p(W|e1:T ).
PROOF. We use the Theorem 2.1 in [2] to prove the asymptotic

normality. The theorem states that if a series of functions satisfies
certain sufficient conditions, then the asymptotic normality stated
in Lemma 4.1 holds. Therefore, we only need to prove that our
functions satisfy those conditions. Recall that the posterior dis-
tributions p(W|e1:t) are a series of probability density distribu-
tions with respect to t. Suppose that W∗T is the local maximum
of log p(W|e1:T ). We need to prove the conditions as listed below:

P1. ∇ log p(W|e1:T )|W∗
T

= 0.
P2. ΣT ≡ {−∇2 log p(W|e1:T )|W∗

T
}−1 is positive definite.

C1. “Steepness”: σ2
t → 0, as t → ∞, where σ2

t is the largest
eigenvalue of Σt.

C2. “Smoothness”: for any ε > 0, there exists an inte-
ger N and δ > 0 such that, for any t > N , and W ′ ∈
H(W∗t ; δ) = {|W ′ − W∗t | < δ}, ∇2 log p(W|e1:t)|W′ satisfies
I − A(ε) 6 ∇2 log p(W|e1:t)|W′{∇2 log p(W|e1:t)|W∗t }

−1 6
I +A(ε), where I is identity matrix and A(ε) is positive semidefi-
nite symmetric matrix whose largest eigenvalue goes to 0 as ε→ 0.

C3. “Concentration”: for any δ > 0, the probabilityR
H(W∗t ;δ)

p(W|e1:t)dW → 1 as t→∞.

Proof of (P1) and (P2). We first prove (P1) and (P2). Here we
assume that at each time t, the number of claims made by a source
cst is a positive constant. The truths v∗o,t for t = 1, . . . , T are also
known, so we can treat θ

Pcst
0=1(vso,t−v∗o,t)2 as a constant (denoted

as qst ). As shown is Eq. (7) and the definition of the loss functions
(Eq. (2)):

log p(W|e1:T ) = log p(W) +

TX
t=1

log p(e1:t|W) ∝ −
TX
t=0

lt.

Therefore, log p(W|e1:T ) = −C ∗ LT , where C is a positive
constant. Since there exists aW∗T that minimizes LT , we have:

∇LT (W∗T )s = [

TX
t=0

qst −
PT
t=0 c

s
t

w∗s,T
]s = 0.

Further,

∇2LT (W∗T ) = diag(

PT
t=0 c

s
t

w∗2s,T
)s,

which is positive definite. Note that ∇2LT (W∗T )−1 =

diag(
w∗2s,TPT
t=0 c

s
t
)s corresponds to ΣT in (P2), and therefore (P1) and

(P2) are satisfied.
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Proof of (C1). As T →∞,
PT
t=0 c

s
t , the number of claims made

by a source, will go to infinity, which means all the eigenvalues of
∇2LT (W∗T )−1 will go to 0. Thus the “steepness” condition (C1)
is satisfied.

Proof of (C2). Since all elements in∇2Lt(W) is continuous with
respect to ws,t, the “smoothness” assumption (C2) for ∇2Lt(W)
is straightforward. To be more specific, if W ′ ∈ H(W∗t ; δ) =

{|W ′ − W∗t | < δ}, we have 1
1+δ′ <

w∗2s,t
w′2s

< 1
1−δ′ , where

δ′ = δ
w∗s,t

. Since ∇2Lt(W ′)∇2Lt(W∗t )−1 = diag(
w∗2s,t
w′2s

), it im-
mediately implies (C2).

Proof of (C3). Based on (P1) and (P2), W∗T exists and for each

source, it can be calculate as
PT
t=0 c

s
tPT

t=0 q
s
t

. In fact, w∗s,T is the mean of

Gamma(
PT
t=0 c

s
t ,

PT
t=0 q

s
t ), the posterior distribution. As T →

∞,
PT
t=0 q

s
t will go to infinity. Since

PT
t=0 c

s
tPT

t=0 q
s
t

is a constant, the

variance of the posterior distribution
PT
t=0 c

s
tPT

t=0 q
s
t
∗ 1PT

t=0 q
s
t
→ 0,

which means Ep(W|e1:T )[(W −W∗T )2]→ 0. Therefore, the “con-
centration” assumption is proved.

As shown above, all the sufficient conditions for Theorem 2.1
in [2] are satisfied, so Lemma 4.1 holds.

Lemma 4.1 states the approximated distribution of the posterior
p(W|e1:t). As T → ∞, the asymptotic distribution implies that
the estimation based on the posterior distribution can converge to
the minimizer of the accumulated loss W∗T . Next, we will show
that the weight given by Eq. (8) can converge to the true source
weightW∗ at rate of o( 1√

T
).

THEOREM 4.2. If for any t, lt = l, then as T →∞, Ŵ , given
by Eq. (8), converges toW∗ = arg minW E[l] at

√
T (Ŵ −W∗) d−→ N(0,Σ), (14)

where Σ = (∇2E(l))−1V ar(∇l)(∇2E(l)−1)′.

PROOF. In order to prove Theorem 4.2, we will first prove that√
T (Ŵ − Ep(W|e1:T )) → 0, then prove that |Ep(W|e1:T )(W) −
W∗T | = o( 1√

T
), and finally prove that

√
T (W∗T − W∗)

d−→
N(0,Σ).

The weight given by Eq. (8) is the posterior mode of p(ws|es1:t),
a Gamma distribution. Therefore,

|Ŵ − Ep(W|e1:T )(W)| =
PS
s=1 |ŵs − Ep(ws|es1:T )(ws)|

=
PS
s=1

2

2β+θ
PT
t=1

Pcst
o=1(eso,t)

2

= Θ( 1
T

) = o( 1√
T

), (15)

where Ep(ws|es1:T )(ws) is the posterior mean.
From Lemma 4.1, we can take the expectation on the asymptotic

distribution and get the following:

E{(∇2LT (W∗T ))1/2(W −W∗T )} → 0,

which implies that

|Ep(W|e1:T ) −W∗T | = o(1)|(∇2LT (W∗T ))−1/2|.

As shown in the proof for Lemma 4.1, ∇2LT (W∗T ) = Θ(T ),
therefore |Ep(W|e1:T ) −W∗T | = o( 1√

T
).

Since W∗T = arg minW LT , it is also the minimizer
of 1

T

PT
t=0 lt, which converges to E(l) by the law of

large number. By the theorem of stochastic gradient de-
cent [16],

√
T (W∗T − W∗)

d−→ N(0,Σ), where Σ =
(∇2E(l))−1V ar(∇l)(∇2E(l)−1)′

So far, we prove the followings:
√
T (Ŵ − Ep(W|e1:T )) → 0,

√
T (Ep(W|e1:T ) −W∗T ) → 0, and

√
T (W∗T −W∗)

d−→ N(0,Σ).

By Slutsky’s theorem, we get
√
T (Ŵ −W∗) d−→ N(0,Σ).

The theoretical analysis above demonstrates that the proposed
method (Eq. (8)) has not only the intuitive explanation, but also the
theoretical guarantee: the estimated source weights converge to the
true weights in a fast speed. We will confirm this claim experimen-
tally in next section.

5. EXPERIMENTS
In this section, we experimentally validate the proposed method

for truth discovery under dynamic scenario from the following
aspects: 1) On three real world datasets, the proposed method
achieves better performance comparing with state-of-the-art truth
discovery algorithms, while the efficiency is significantly im-
proved. We also show that the introduced smoothing and decay
factors can capture the temporal relations among the evolving truths
and source weights. 2) On synthetic data, the theoretical analysis is
confirmed by the experiments. We further systematically study the
effect of smoothing and decay factors, and the efficiency is tested
on large-scale dataset.

5.1 Experiment Setup
Compared Methods. For the proposed method, we test the
incremental version (denoted as Dynamic Truth Discovery, Dy-
naTD for short), incremental version with smoothing factor (Dy-
naTD+smoothing), incremental version with decay factor (Dy-
naTD+decay), and incremental version with both smoothing and
decay factors (denoted as DynaTD+all). By gradually adding more
components into the proposed method, we can investigate the ben-
efit of considering these factors and understand how it tackles the
challenges.

For baseline methods, the following state-of-the-art truth discov-
ery methods are implemented: TruthFinder and AccuSim adopt
pre-defined rules to update both source reliability and aggregated
results. Investment borrows the idea that a source “invests” its re-
liability on the information it provides. 3-Estimate further extends
the scope by considering the difficulty of aggregating information
for specific objects. GTM is a probabilistic graphical model based
truth discovery method that is designed for continuous data, and
CRH is a truth discovery framework that can incorporate various
distance functions and work with heterogeneous data. CATD is a
recent truth discovery approach that considers the confidence inter-
val of the source reliability estimation.

Beyond the above truth discovery algorithms, we also implement
two naive methods Mean and Median, which do not consider the
source reliability and simply take the mean or median of all infor-
mation as aggregated results.

Note that the baseline methods cannot take streaming data as
input. Therefore, their settings are not exactly the same with the
proposed methods. For all the baselines, since they cannot capture
the temporal relations among evolving truths and source weights,
they are deployed on the entire dataset in a batch way, and treat the
same object at different timestamps as different objects. In contrast,
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Table 2: Performance Comparison

Weather Dataset Stock Dataset Flight Dataset

Method MAE RMSE Time(s) MAE RMSE Time(s) MAE RMSE Time(s)

DynaTD 3.7722 4.8655 0.2659 0.9320 2.5582 1.5226 6.5050 52.3547 7.8491
DynaTD+smoothing 3.7230 4.8007 0.2801 0.1563 0.7885 1.5320 6.2966 45.9228 7.6452

DynaTD+decay 3.7646 4.8627 0.2450 0.9121 2.5498 1.5260 6.3798 52.2029 7.6444
DynaTD+All 3.7093 4.7857 0.2849 0.1481 0.7845 1.5210 6.2309 45.8221 7.6165

Mean 4.9903 6.4982 0.1167 0.9438 2.5357 0.5701 8.2575 51.5801 3.1808
Median 4.9004 6.5752 0.1038 0.9133 2.6897 0.5919 7.8097 58.2965 3.2109
GTM 4.7463 6.1749 1.1480 0.8863 2.5365 6.6506 7.6506 51.6956 30.6503
CRH 3.9493 5.1038 0.6371 0.8398 2.6234 9.1807 8.6980 58.1676 38.9449

CATD 4.6310 6.0178 3.1769 0.8952 2.5527 14.0154 8.6453 53.0601 81.1288
TruthFinder 4.7573 6.6054 32.6739 0.8933 2.6589 494.9164 8.9633 62.6080 598.6464

AccuSim 4.5369 6.2482 33.6196 0.8963 2.6595 505.6787 7.5661 60.8732 622.4706
Investment 4.8999 6.8722 0.9750 0.9136 2.6889 7.3751 6.7258 60.1398 25.5679
3-Estimates 4.8804 6.8350 31.9051 0.9096 2.6908 224.3704 7.2561 60.7468 1186.7492

the proposed methods work in an incremental fashion, and can deal
with the evolving truths and source weights. To model the temporal
relations among the true information, either the groundtruth or the
aggregated results for past timestamps can be adopted.
Performance Metrics. To evaluate the performance, we calcu-
late the following metrics on aggregate results by comparing them
with the groundtruth: Mean of Absolute Error (MAE) and Root
of Mean Squared Error (RMSE). MAE uses L1-norm distance that
penalizes more on small errors, while RMSE adopts L2-norm dis-
tance that gives more penalty on big errors. In the results analysis,
we will discuss their difference in more detail. For both metrics,
lower value indicates better performance.

To assess the efficiency, we also report each method’s running
time. For each baseline, we implement it and set its parameters
according to the original papers. All the methods are run on a ma-
chine with 16G RAM, Intel Core i7 processor.

5.2 Experiments on Real World Datasets
Datasets. In order to evaluate the proposed method in real
world applications, we adopt the aforementioned Weather Forecast
dataset, Stock Record dataset, and Flight Status dataset as testbeds.
Here we provide more details about these datasets.
• Weather Forecast: We collect high temperature forecast

information for 88 big US cities from HAM weather
(HAM)1, Wunderground (Wund)2, and World Weather On-
line (WWO)3. The collection lasts for more than two months
(Oct. 7, 2013 to Dec 17, 2013). In addition to the forecast
information, real high temperature observations of each day
are also collected for evaluation purpose.

• Stock Record: The stock data [8] contains information for
1000 stocks that are collected from 55 sources during each
weekday of July 2011. As we assume the information is
continuous data type, Market property is adopted. The
groundtruth information is provided by the authors.

• Flight Status: The flight data [8] extracts departure and ar-
rival information for 1200 flights from 38 sources during
every day in December 2011. All the time information is
translated into minutes (for example, 07 : 30am is translated
into 450 mins). The groundtruth information is also available
from the authors.

1http://www.hamweather.com
2http://www.wunderground.com
3http://www.worldweatheronline.com

Performance Comparison. Table 2 summarizes the results for
all the methods on the three real datasets. In terms of aggregation
accuracy, the proposed method achieves best performance on every
dataset, and the improvement is promising: on Weather dataset,
compared with the best baseline CRH, the proposed method’s
MAE decreases by 3% while RMSE decreases by 6.23%; on Stock
dataset, compared with the best baseline method CRH, MAE and
RMSE of the proposed method decrease by 82.4% and 70.1% re-
spectively; while on Flight dataset, compared with the best base-
lines Investment and GTM, the proposed method’s MAE reduces
by 7.4% and RMSE reduces by 11.4%. Among the baseline meth-
ods, Mean and Median simply aggregate the multi-source infor-
mation without considering source reliability, and thus they have
the worst performance. TruthFinder, AccuSim, Investment and
3-Estimates take categorical data as input, so they are not able to
handle continuous data type well. In this sense, GTM, CRH and
CATD are more appropriate for these tasks. Our proposed method
is based on the advantages of these existing methods, and by con-
sidering the time-evolving truths and source weights in dynamic
scenarios, it achieves the best performance.

In terms of efficiency, the running time of the proposed methods
is close to Mean and Median, which can be viewed as the lower
bound of running time for truth discovery algorithms. Compared
with the most efficient truth discovery baseline method, the pro-
posed method significantly reduces the running time: on Weather
dataset, it runs two times faster than CRH; on Stock dataset, it runs
four times faster than GTM; while on Flight dataset, it runs eight
times faster than Investment. Most truth discovery methods re-
quire some iterations to converges, so it is time-consuming. Among
them, TruthFinder and AccuSim need to calculate the implication
function, and 3-Estimates needs to estimate the difficulty of each
object, so their running time increases dramatically.

To summarize, under the dynamic scenario, the proposed meth-
ods outperform all the baselines in terms of both accuracy and ef-
ficiency. Among the proposed methods, we can observe that by
adding smoothing factor and decay factor, the performance is fur-
ther improved. Next, we analyze the effect of these two factors.

The Effect of Smoothing Factor. Smoothing factor is used to
deal with the evolving truths. Pseudo sources are created to model
this, and the smoothing factor adjusts how much influence these
pseudo sources will exert. Figure 3 shows the effect of different
smoothing factors on the three real world datasets. For Weather
dataset, a relative small smoothing factor leads to the best perfor-
mance. For Stock dataset, the change range of stock information
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on the collected data is small, so a big smoothing factor is suit-
able. The most interesting one is Flight dataset: the MAE and
RMSE change in different ways as smoothing factor increases. Ex-
cept some special cases, a flight will depart or arrive around the
scheduled time, so a large smoothing factor will enforce the ag-
gregated results to be close to the history, which can avoid large
errors, which leads to the decreasing in RMSE as L2-norm gives
more penalty on large errors. However, enforcing the results to be
close to history information will bring some small errors, since the
real departure and arrival time would not stay exactly the same. As
a consequence, MAE increases as it penalizes more on small errors.
From these results we can see that the introduced smoothing factor
has the ability to capture the unique characteristics of real world
applications.
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Figure 3: Performance w.r.t. Smoothing Parameter λ

The Effect of Decay Factor. Under dynamic scenario, the
errors might be introduced by environment factors instead of the
source itself, so the observed source reliability fluctuates around its
true weight. To tackle this challenge, decay factor is introduced to
estimate local weights. We first examine how environment factors
are captured by comparing the estimated weights without decay
factor and with decay factor. Figure 4 reports the comparison on
three real world datasets, in which blue dot lines show the estimated
weights without considering decay factor while red line represents
the estimated weights by considering decay factor. From these es-
timated weights, we can draw the conclusion that: without decay
factor, the estimated source weight converges to its true weight (we
will further confirm this in the experiment on simulated data); while
by considering the decay factor, the estimated weights capture both
the true weight trend and the local environment factors.

Next, we study the effect of decay factor. Figure 5 illustrates
how the performance (in terms of both MAE and RMSE) changes
with respect to decay factor. For Weather application, as the en-
vironment factor in it is relative stable and small, the performance
reaches the best when the decay factor is close to 1, that is, the local

weights should be close to the global weights. However, for Stock
application, the information changes in a fast speed, which means
the effect of environment factors is big, so the improvement can
be achieved when the decay factor is close to 0 and local weights
are estimated. For Flight application, the environment is stable for
most cases, but it may change rapidly, especially when flights de-
lay due to unanticipated reasons, so a medium decay factor is more
suitable. From these results, we observe that the introduced decay
factor can handle the challenge of the fluctuated source weights.
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Figure 5: Performance w.r.t. Decay Parameter γ

5.3 Experiments on Synthetic Datasets
The experiments on the real world datasets demonstrate that the

proposed method can improve the accuracy while largely reduce
the running time, and the effect of introduced factors are also justi-
fied. In this section, we design a series of experiments on synthetic
datasets to confirm the theoretical analysis, study the relationship
between the introduced factors and environment factors, and test
the efficiency on large-scale datasets.
Weight Convergence Study. To confirm the theoretical conver-
gence analysis of the proposed method, we simulate the behavior of
ten sources with different reliability levels for 20 timestamps. We
assign each source a true weight, and at each timestamp, we gener-
ate 2000 observations for each source according to its true weight,
where the errors follows N(0, 1

w∗s
). Then the simulated data is fed

into the proposed method to estimate source weights. Figure 6 il-
lustrates the comparison, in which black lines show the true source
weights and red dot lines represent the estimated weights by the
proposed method. We observe that the estimated weights (red dot
line in figures) quickly converge to the corresponding true weights
(black line in figures). This result experimentally confirms Theo-
rem 4.2 in Section 4.
Smoothing Factor. As the smoothing factor is introduced to
capture the information evolution, here we study how the change
rate of information can affect the best choice for smoothing factor.
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Figure 4: Source Weight Comparison
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Figure 6: Source Weight Convergence

For clarity and simplicity purpose, we simulate a linear evolution
of the true information, and control the change rates by different
slopes, where a small slope indicates a slow change rate and vice
versa. The data is generated using the same method as described in
the previous experiment. Figure 7 shows the best smoothing factor
for different change rates, and the choice is made based on MAE
and RMSE respectively. They both show that when information
changes slowly, we can rely on history information more and thus
big smoothing factor works better. In contrast, the smoothness con-
straint should be relaxed when the information changes quickly.
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Figure 7: The effect of Smooth Factor λ

Decay Factor. We also study the relation between decay factor
and environment factors. The environment factors are simulated
through adding Gaussian noise to the observations, and they can
be tuned by changing the variance of the Gaussian distribution. A
small variance indicates a stable environment and vice versa. As
the environment would have the same impact on all sources, we
add the same level of noise to all the sources at a given timestamp.
Other settings are kept the same as the one in above convergence
experiment. Figure 8 shows the best decay factor with respect to
different levels of environment factor. When the environment fac-
tor is small, the local weight is almost the same as the true weight
(global one), so the decay factor should be close to 1. On the other
hand, when the environment factor is quite large, the local weight,
which captures the environmental changes, should play a more im-
portant role, so the best decay factor will tend to be small.
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Figure 8: The effect of Decay Factor γ

Efficiency Study. We further test the efficiency of the proposed
method DynaTD on large scale dataset. We simulate various scales
of datasets by controlling the number of claims made by each
source at a given timestamp. As Mean and Median do not estimate
source reliability, they have the optimal efficiency comparing with
truth discovery methods. Here we use their running time as refer-
ences and compare the running time of the proposed method with
them. From Figure 9, the conclusion can be drawn that the pro-
posed method (black line) has the nearly optimal efficiency com-
pared with Mean (blue line) and Median (red line), even on very
large dataset. This improvement is brought by the fact that the pro-
posed method incrementally updates the source weights and only
scans the whole data once.
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6. RELATED WORK
Truth discovery is a hot topic for resolving conflicts among

multi-source noisy information. Its advantage is the estimation
of source reliability: instead of treating all sources equally, these
methods infer the reliability of each source and incorporate such
estimated source reliability into the aggregation. The early-stage
truth discovery methods [5, 8, 14, 21] iteratively update the esti-
mated source reliability and the aggregated results according to
some pre-defined rules.

Recently, more truth discovery methods are proposed to fit var-
ious scenarios. As most existing methods take facts (categorical
data) as input, to enlarge the scope of applications, GTM [24] is
specially designed for continuous data, and CRH [7] is a frame-
work that can plug in different types of distance function to capture
the unique characteristic of different data types and conduct the es-
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timation jointly. Another direction of truth discovery is the source
correlation analysis [3, 17], in which sources are not independent
and they may copy from each other. To further improve the ad-
vantage of truth discovery, people are considering to estimate more
information rather than a single reliability degree for each source,
and they enrich the meaning of source reliability from different as-
pects [6, 13, 15, 25]. Nowadays, truth discovery has been applied
into several domains, including social and crowd sensing [18, 19],
knowledge fusion [4], online health communities [11], etc.

There is a few work that shares some similarities with our work.
In [10], the authors consider the information for truth discovery
can be collected continuously, but they study this scenario from the
source perspective. That is, they dynamically choose information
sources from a pool to retrieve information, while in our setting, the
information sources are fixed. The proposed method in [12] takes
into account the evolving true information of objects, and estimates
the truths of current timestamp based on sources’ historical claims.
However, in our setting, no historical data are kept due to space
limit. In [20], the authors propose a method to handle time-varying
truths, but it works in batch operation on categorical data. A single-
pass truth discovery method [26] is proposed to fit streaming data,
but it fails to consider the unique characteristics of dynamic data
and the proposed method is designed for categorical data. To the
best of our knowledge, we are the first to propose an efficient al-
gorithm to capture the temporal relations among both information
and source reliability for truth discovery.

7. CONCLUSIONS
In this paper, we propose to discover truths from dynamic data,

where the collected information comes sequentially, and both truths
and the source reliability evolve over time. This is a challeng-
ing task since we have to come up with an efficient way to cap-
ture the temporal relations among the identified trustworthy infor-
mation and source reliability. To address the efficiency issue, we
propose an incremental method by studying the equivalence be-
tween optimization-based solution and MAP estimation. Theoreti-
cal analysis shows that the proposed method can guarantee the con-
vergence of the estimated source weights and the rate of conver-
gence is as fast as o( 1√

T
). To capture the temporal relations among

both the identified trustworthy information and source reliability,
we further incorporate two more factors, smoothing factor λ and
decay factor γ, into the proposed method. Experiments on both
real world and synthetic datasets demonstrate that the proposed
method has great efficiency while the integration performance is
further improved by capturing those temporal relations. The effect
of smoothing factor λ and decay factor γ are also studied under
various settings.
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