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ABSTRACT
The demand for automatic extraction of true information
(i.e., truths) from conflicting multi-source data has soared
recently. A variety of truth discovery methods have wit-
nessed great successes via jointly estimating source reliabil-
ity and truths. All existing truth discovery methods focus
on providing a point estimator for each object’s truth, but
in many real-world applications, confidence interval estima-
tion of truths is more desirable, since confidence interval
contains richer information. To address this challenge, in
this paper, we propose a novel truth discovery method (ET-
CIBoot) to construct confidence interval estimates as well
as identify truths, where the bootstrapping techniques are
nicely integrated into the truth discovery procedure. Due
to the properties of bootstrapping, the estimators obtained
by ETCIBoot are more accurate and robust compared with
the state-of-the-art truth discovery approaches. Theoretical-
ly, we prove the asymptotical consistency of the confidence
interval obtained by ETCIBoot . Experimentally, we demon-
strate that ETCIBoot is not only effective in constructing
confidence intervals but also able to obtain better truth es-
timates.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
Truth Discovery; Confidence Interval; Bootstrapping

1. INTRODUCTION
Today, we are living in a data-rich world, and the infor-

mation on an object (e.g., population/weather/air quality
of a particular city) is usually provided by multiple sources.
Inevitably, there exist conflicts among the multi-source da-
ta due to a variety of reasons, such as background noise,
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hardware quality or malicious intent to manipulate data, etc.
An important question is how to identify the true informa-
tion (i.e., truths) among the multiple conflicting pieces of
information. Because of the volume issue, we cannot expect
people to detect truth for each object manually. Thus, the
demand for automatic extraction of truths from conflicting
multi-source data has soared recently.
A commonly used multi-source aggregation strategy is av-

eraging or voting. The main drawback of these approaches
is that they treat the reliability of each source as the same.
In real-world applications, however, different sources may
have different degrees of reliability and more importantly,
their reliability degrees are usually unknown a priori. To
address this problem, a variety of truth discovery method-
s [2–5,7, 11,12,15–18,20–25] have been proposed. Although
these methods vary in many aspects, they share a common
underlying principle: If a piece of information is provided
by a reliable source, it is more likely to be trustworthy, and
the source that more often provides trustworthy information
is more reliable. Following this principle, existing methods
are designed to jointly estimate source reliability and truths
by assigning larger weights to the reliable sources which in
return play more important roles in the data aggregation.
All existing truth discovery methods [2–5, 7, 11, 12, 15–19,

21,22] focus on providing a point estimator for each object’s
truth, i.e., the estimate is a single value. However, impor-
tant confidence information is missing in this single-value
estimate. For example, two objects A and B receive the
same truth estimate, e.g., 25. Even though the estimates
are the same, the confidence in these estimates could dif-
fer significantly–A may receive 1000 claims around 25 while
B only receives one claim of 25, and clearly the confidence
in A’s truth estimate is much higher. Therefore, instead of
a point estimation, an estimated confidence interval of the
truth is more desirable. An α-level confidence interval [8]
is an interval (a, b) such that P(θ ∈ (a, b)) = α for a given
α ∈ (0, 1), where θ denotes the truth in our scenario. The
width of the interval reflects the confidence in the estimate–A
smaller interval indicates the higher confidence in the esti-
mate and a larger interval means that the estimate has more
possible choices within the interval. In the example we just
mentioned, suppose the 95% conference interval of A and B ’s
estimates are (24.9,25.1) and (0,50) respectively. Although
both truth estimates are 25, we are more certain that the
truth of A is close to 25. With such confidence information,
the decision makers can use the truth estimates more wisely.
However, such important confidence information cannot be
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obtained by the traditional point estimation strategy adopt-
ed by existing truth discovery methods.

The estimation of confidence intervals for objects’ truths
can benefit any truth discovery scenario by providing addi-
tional information (i.e., confidence) in the output, but its
advantage is more obvious on long-tail data. A multi-source
data is said to be long-tail in the sense that most objects
receive a few claims from a small number of sources and on-
ly a few objects receive many claims from a large number
of sources. As discussed in the aforementioned example, the
difference in the confidence of the truth estimates is usually
caused by the difference in the number of claims received by
the objects. When an object receives more claims, a smaller
confidence interval is obtained, and thus the estimate of this
truth is more certain. It is essential to provide confidence
intervals rather than points for the truth estimates on such
long-tail data, which are ubiquitous. The Flight Status and
Game applications used in our experiments are examples of
such long-tail phenomena (The details are deferred in Sub-
section 4.3). In Figure 1, we present the histograms in terms
of the number of claims and fit them into an exponential dis-
tribution, a typical long-tail distribution, respectively.
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(a) Flight Status Dataset
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(b) Game Dataset

Figure 1: The long-tail phenomenon

To address the problem, in this paper, we propose a nov-
el method, Estimating Truth and Confidence Interval via
Bootstrapping (ETCIBoot) to construct confidence inter-
val estimates for truth discovery tasks. We adopt the iter-
ative two-step procedure used in traditional truth discovery
methods: 1) Update truth estimates based on the current
estimates of source weights (source reliability degrees), and
2) update source weights based on the current estimates of
truths. At the truth computation step, instead of giving
a point estimation, we now adopt the following procedure
to obtain confidence interval estimates. ETCIBoot obtains
multiple estimates of an object’s truth, using bootstrapping
techniques. Each estimate is obtained by calculating the
weighted averaging or voting on a new set of sources which
are bootstrapped from available sources. A statistic T that
involves the truths is constructed. Its distribution F is usu-
ally unknown a priori. Based on these multiple estimates

obtained via bootstrapping, we derive an estimator T̂ of T

and further approximate F by F̂ (i.e., the distribution of T̂ ).
The confidence intervals of the truths are naturally implied

in the distribution of T̂ (i.e., F̂ ). Theoretically, we prove

that T̂ is asymptotically consistent to T in distribution, and
the end points of the confidence intervals converge to the

true ones at Op(n
− 3

2 ), where n is the number of claims.
Besides providing confidence intervals, ETCIBoot is also

able to provide more accurate and robust truth estimates if
we use the average of the multiple estimates as the point esti-
mator. Existing truth discovery methods typically compute
weighted mean in the truth computation step, and thus the

truth estimates can be quite sensitive to some outlying claim-
s. In contrast, ETCIBoot adopts bootstrapping procedure
which improves the robustness of the estimation. The truth
estimates are obtained by computing the mean of bootstrap
samples. These samples capture the distribution of claims
in which the outlying claims’ effect can be greatly reduced.
We conduct experiments on both simulated and real-world

datasets. Experimental results show that the proposed ET-
CIBoot can effectively construct confidence intervals for each
objects and achieve better truth estimates compared with
the state-of-the-art truth discovery methods.
To sum up, the paper makes the following contributions:

• To the best of our knowledge, we are the first to il-
lustrate the importance of confidence interval estima-
tion in truth discovery, and propose an effective method
(ETCIBoot) to address the problem.

• Theoretically, we prove that the confidence interval ob-
tained by ETCIBoot is asymptotically consistent.

• The point estimates obtained by ETCIBoot are more
accurate and robust compared with existing approach-
es due to the properties of bootstrap sampling, which
is nicely integrated into the truth discovery procedure
in ETCIBoot .

• Experimental results demonstrate the effectiveness of
ETCIBoot in constructing confidence intervals as well
as identifying truths.

2. PROBLEM SETTING
We first introduce terminologies and notations in this sec-

tion. Then, the problem is formally defined.
Definition 1. An object is an item of interest. Its true

information is defined as a truth.

Definition 2. The reliability of a source measures the
quality of its information. A source weight is proportional
to its reliability, i.e., the higher the quality of a source’s in-
formation, the higher its reliability, and the higher its weight.

Assume that there are S := {s}S1 sources, providing claims
on objects N := {n}N1 , where an object may receive claims
from only a subset of S. The truths of objects N are de-
noted as {x∗

n}n∈N , which are unknown a priori. For the
n-th object, Sn represents the set of sources which provide
claims for it. The multi-source data for the n-th object is
denoted as Xn := {xs

n}s∈Sn , where xs
n represents the claim

provided by the s-th source for the object n. The whole data
collection on objects N is further denoted as X := ∪N

n=1Xn.
For the s-th source, we assume the difference ϵs between its

claims and truths follows a normal distribution with mean 0
and variance σ2

s , i.e., ϵs ∼ Normal(0, σ2
s). This assumption is

commonly used in existing truth discovery works [11,12,22].
ϵs captures the error of source s. As a small ϵs means that
the claims are close to the truths, σ2

s measures the quality of
the claims provided by the s-th source. We further denote
the weight of source s as ωs. Definition 2 implies that the
larger σ2

s , the smaller ωs.
Truth Discovery Task. Truth discovery task is formally

defined as follows: Given the multi-source data X , the goal
of a truth discovery approach is to obtain estimates x̂n which
are as close to x∗

n as possible (∀n ∈ N ). Besides, for any α ∈
(0, 1), we can also provide an α-level two-sided confidence
interval for each object.
We summarize the notations in Table 1.
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Table 1: Notations
Notation Definition

S the set of sources
N the set of objects
xs
n the claim on object n made by source s

x∗
n the true claim of the n-th object

x̂n the estimator of the claim for object n
ϵs the s source’s error
σ2
s the s-th source’s variance of claims

ωs the weight of source s
Sn the subset of sources available for object n
Ns the subset of objects claimed by source s
Xn the data set available for object n
X the whole data set for all objects

3. METHODOLOGY
In this section, we first review some preliminaries about

truth discovery and confidence interval in Subsection 3.1. We
then introduce two main components of ETCIBoot : a novel
strategy for data aggregation (ETBoot) and a method for
confidence interval construction (CIC ) in Subsections 3.2
and 3.3, respectively. The proposed ETCIBoot is further
summarized in Subsection 3.4. Finally, we present the theo-
retical analysis of the confidence interval estimates obtained
by ETCIBoot in Subsection 3.5.

3.1 Preliminary

Truth Discovery
The goal of a truth discovery task is to identify objects’ truth-
s (i.e., true information) from conflicting multi-source data.
Many truth discovery methods have been proposed to esti-
mate truths and weights iteratively. Details can be found in
Section 5. We briefly introduce two iterative steps as follows.

Weight Update. Source weights play important roles in
truth discovery. The underlying principle is that: If a source
more often provides reliable information, it has a larger
weight, and consequently this source contributes more in the
truth estimation step discussed below. Based on this prin-
ciple, various weight update strategies have been proposed.
In this paper, we adopt the weight estimation introduced
in [11]. Specifically, a source weight is inversely proportional
to its total difference from the estimated truth, namely,

ωs ∝
χ2
(α
2
,|Ns|)∑

n∈Ns
(xs

n − x̂n)
2 , (1)

where χ2
(α
2
,|Ns|) is the α

2
-th percentile of a χ2-distribution

with |Ns| degree. It is used to capture the effect of the
number of claims so that small sources get their weights
reduced.

Truth Estimation. A commonly used strategy is weighted
averaging for continuous data or weighted voting for categor-
ical data, namely,

x̂n =

∑
s∈Sn

ωsx
s
n∑

s∈Sn
ωs

, or, x̂n = argmax
x

∑
s∈Sn

ωs1(x
s
n, x)∑

s∈Sn
ωs

, (2)

where 1(xs
n, x) = 1 if xs

n = x; otherwise it is 0. The weights
are obtained at the Weight Update step; the truth estimated
at this step will be used to update weights based on (1).

Providing proper initializations, Weight Update and Truth
Estimation are iteratively executed until the convergence
condition is satisfied.

Confidence Interval
Assume that an experiment has a sample set X =
{x1, · · · , xn} from Fµ(x), where Fµ is an accumulative den-
sity function (c.d.f.) with a parameter µ. An α-level confi-
dence interval for the parameter µ is defined as follows:

Definition 3. For any α ∈ (0, 1), (µX,L, µX,R) is called
an α-level two-sided confidence interval of a parameter µ if
it satisfies the following condition:

P (µ ∈ (µX,L, µX,R)) = α. (3)

The immediately preceding probability statement (3) can be
read: Prior to the repeated independent trails of the random
experiment, α is the probability that the random interval
(µX,L, µX,R) includes the unknown parameter µ.

Given the distribution of the experiment sample set X,
the exact end points of a confidence interval is defined as:

Definition 4. The exact end points of an α-level two-
sided confidence interval of µ with a known c.d.f. F are:{

µL,Exact = µ− Var(µ)√
n

F−1(1− α),

µR,Exact = µ+ Var(µ)√
n

F−1(α);
(4)

where F−1(·) is the inverse function of c.d.f. F , Var(µ) is
the variance of µ, and n is the number of observed samples.

However, (4) is always unknown a prior because F is un-
known. The major task in this paper is to construct a confi-
dence interval estimate for each truth.

3.2 ETBoot Strategy
In this subsection, we introduce a novel bootstrapping-

based strategy for the truth discovery task. We term this
strategy as Estimating Truth via Bootstrapping (ETBoot).
All existing truth discovery methods apply weighted aver-
aging or voting using all sources’ information. In contrast,
ETBoot first bootstraps multiple sets of sources and then
on each set of the bootstrapped sources it obtains a truth
estimate based on (2). The final truth estimator is defined
as the mean of these estimates. Due to the properties of
bootstrapping techniques which are nicely integrated into
the truth discovery procedure, ETBoot is more robust to
the outlying claims and then achieves a better estimate of
the truth. Moreover, as shown in Subsection 3.3, ETBoot is
able to construct an α-level two-sided confidence interval of
the estimated truth for any α ∈ (0, 1).
The detailed procedure of ETBoot is as follows: for the

n-th object, it obtains B estimates of its truth, i.e., {x̂b
n}Bb=1,

where x̂b
n is obtained by the following two-step procedure:

• Step 1: Source Bootstrap. In this step, we randomly
sample |Sn| sources Sb

n from Sn with replacement. The
sampled data is denoted as Xb

n = {xn
s }s∈Sb

n
.

• Step 2: Truth Computation. Based on the sampled
data Xb

n = {xn
s }s∈Sb

n
, x̂b

n is calculated based on (2).

The final estimator (x̂Boot
n )1 for the n-th object’s truth is

further defined as:

x̂Boot
n =

1

B

B∑
b=1

x̂b
n. (5)

1We use ·Boot to represent the estimator obtained by Boot-
strapping throughout the paper.
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Compared with existing truth discovery methods which use
(2), the proposed ETBoot combines results from multiple
bootstrap samples instead of using all the sources at once.
This enables ETBoot to obtain more robust estimates and
confidence interval estimates as explained in Subsection 3.3.

The pseudo code of ETBoot for the n-th object is summa-
rized in Algorithm 1.

Algorithm 1 ETBoot

Input: Sn, Xn, {ωs}s∈Sn , and B

1: for the b-th iteration (b = 1, · · · , B) do
2: Bootstrap Sb

n from Sn;
3: Extract Xb

n from Xn;
4: Calculate x̂b

n according to (2);
5: end for
6: Calculate x̂Boot

n according to (5);

Output: x̂Boot
n .

3.3 Confidence Interval Construction
In this subsection, we introduce the procedure of con-

structing an α-level two-sided confidence interval of an objec-
t’s truth. We illustrate it for the n-th object. The procedure
is similar for other objects.

We denote the estimator we are interested in as θ̂(Xn) cor-
responding to the dataset Xn = {xs

n}s∈Sn . In our scenario,

θ̂(Xn) denotes the truth estimate. For simplicity, we ignore
the subscript ·n for Xn. In a truth discovery task, the truth

estimate is calculated as θ̂(X) =
∑

s∈Sn
ωsxs∑

s∈Sn
ωs

, yielding,

E(θ̂(X)) = x∗
n, and, Var(θ̂(X)) =

∑
s∈Sn

ω2
sσ

2
s

(
∑

s∈Sn
ωs)2

. (6)

The corresponding estimate of Var(θ̂(X)) is defined as

V̂ar(θ̂(X)) =
∑

s∈Sn
ω2
s σ̂

2
s

(
∑

s∈Sn
ωs)2

where σ̂2
s =

∑
n∈Ns

(xs
n−x̂Boot

n )2

Ns−1

and x̂Boot
n is obtained by ETBoot . To obtain a confidence

interval of the truth x∗
n, we first construct a statistic T which

is related to x∗
n, and then estimate the accumulated density

function of T ∼ F (t). In our scenario, T is defined as follows:

T =
θ̂(X)− x∗

n

[V̂ar(θ̂(X))]
1
2 /
√

|Sn|
, (7)

which measures the error between θ̂(X) and x∗
n. The confi-

dence interval of x∗
n is available once the distribution of T is

determined. More precisely, let T (α) indicate the (100 ·α)-th
percentile of T , i.e., α =

∫ T (α)

−∞ dF (t). Thus, we have that

P

(
T (α/2) ≤ θ̂(X)− x∗

n

[V̂ar(θ̂(X))]
1
2 /
√

|Sn|
≤ T (1−α/2)

)
= α. (8)

Moreover, an α-level two-sided confidence interval of x∗
n is

naturally implied in (8), that is,(
θ̂(X)− T (1−α/2)[V̂ar(θ̂(X))]

1
2√

|Sn|
, (9)

θ̂(X)− T (α/2)[V̂ar(θ̂(X))]
1
2√

|Sn|

)
. (10)

Thus, the width of the confidence interval is proportional to
1√
|Sn|

. It implies that if an object is claimed by more sources

then the width of its truth’s confidence level is smaller, and
vice versa. Especially, when the long-tail multi-source data
is involved, this phenomenon is clearer.
However, as the T -percentile is usually unknown a priori,

estimation of T (α) is required. One commonly used strategy
is bootstrap sampling [1, 6, 8, 10, 14]. Note that at the b-th
iteration of ETBoot (Algorithm 1), we have bootstrapped

Xb
n. Based on Xb

n, we are able to calculate both θ̂(Xb
n) and

V̂ar(Xb
n), yielding an estimator T̂b for the statistic T , that

is,

T̂b =
θ̂(Xb

n)− θ̂(X)

[V̂ar(θ̂(Xb
n))]

1
2 /
√

|Sn|
. (11)

Moreover, the estimate of T (α) is defined as follows:

T̂ (α) = sup

{
t ∈ {T̂1, · · · , T̂B} :

#(T̂b ≤ t)

B
≤ α

}
. (12)

(12) provides estimates of (9) and (10). Thus, the estimate of
an α-level two-sided confidence interval is defined as follows:(

θ̂(X)− T̂ (1−α/2)[V̂ar(θ̂(X))]
1
2√

|Sn|
, (13)

θ̂(X)− T̂ (α/2)[V̂ar(θ̂(X))]
1
2√

|Sn|

)
. (14)

We summarize the procedure of constructing confidence in-
tervals as CIC , i.e., Confidence Interval Construction. Its
pseudo is presented in Algorithm 2 for the n-th object.

Algorithm 2 CIC

Input: {Xb
n}Bb=1, x̂

Boot
n , and α.

1: Calculate σ̂2
s for s ∈ Sn;

2: for the iteration b (b = 1, · · · , B) do

3: Calculate V̂ar(θ̂(Xb
n)) and T̂b according to (11);

4: end for
5: Choose T̂ (1− α/2) and T̂ (α/2) according to (12);

Output: Endpoints calculated based on (13) and (14).

3.4 ETCIBoot Algorithm
So far, we introduce the update for source weights (i.e.,

(1)), a new truth estimation strategy, ETBoot , and the con-
struction of confidence intervals for truths via CIC . Com-
bining them together, we propose a novel truth discovery
approach, Estimating Truth and Confidence Interval via
Bootstrapping (ETCIBoot), to automatically construct con-
fidence intervals as well as identify objects’ truths. The main
component of the proposed ETCIBoot consists of the follow-
ing three steps:

(i) Weight Update. Given initialization of truth {x0
n},

source weights are updated based on (1).

(ii) Truth Estimation. With source weights computed
from previous step, for each object n, we obtain truth
estimators via ETBoot at this step to obtain x̂Boot

n as-
sociated with {Xb

n}Bb=1.

(iii) Confidence Interval Construction. For all objects,
the estimation of confidence intervals for their truths
are obtained via CIC .
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The above two steps are executed iteratively until no truth
estimates change anymore. The pseudo code of the proposed
ETCIBoot algorithm is shown in Algorithm 3.

Algorithm 3 ETCIBoot

Input: the whole data collection X , confidence level α, and
the number of bootstrapping samples B.

1: Initialize truths x∗,0
1 , · · · , x∗,0

N as average;
2: while the convergence condition is not satisfied do
3: Compute ωs for each source s according to (1);
4: for each object n (n = 1, · · · , N) do
5: Conduct ETBoot to obtain x̂Boot

n ;
6: Calculate the confidence interval CIn(α) via CIC ;
7: end for
8: end while

Output: {x̂Boot
n }N1 and confidence interval {CIn(α)}N1 .

3.5 Theoretical Analysis
In this subsection, we present the theoretical analysis on

the confidence interval estimates, i.e., (13) and (14), ob-

tained via ETCIBoot . We first prove that T̂ converges to
T in distribution and present it in Proposition 1.

Proposition 1. Assume that xs
n ∼ N (x∗

n, σ
2
s), for any

s ∈ Sn. Let T and T ∗ be defined as (7) and (11), respectively.
Then, we have that

lim
|Sn|→∞

∥P∗(T̂ ≤ t)− P (T ≤ t) ∥ = 0, a.s., (15)

where P∗ is the probability calculated based on the bootstrap-
ping sample distribution, |Sn| is the Cardinality of Sn, t is
any real number, and a.s. means ‘almost surely’.

Proof. See Appendix A for a detailed proof.

Proposition 1 is a straightforward result from Theorem 1
in [14], where the author provides sufficient conditions to
guarantee the convergence of the bootstrapping samples.
Thus, the proof of Proposition 1 is to testify whether the
ETCIBoot satisfies these sufficient conditions, as shown in
Appendix A. Proposition 1 shows that the bootstrapping es-

timator T̂ converges to T in distribution. It enables us to use
the bootstrapping distribution to approximate the unknown
distribution F for confidence interval construction.

Next, in Proposition 2, we show that the upper end point
of an α-level one-sided confidence interval obtained via ET-
CIBoot is close to that from the theoretical distribution.

Proposition 2. Given T ∼ F (x), T̂ ∼ F̂ (x) and a
dataset X, we have that

θ̂T̂ ,X(α) = θ̂T,X(α) +Op(n
−3/2), (16)

where P∗(θ(X) ≤ θ̂T̂ ,X(α)) = α, P(θ(X) ≤ θ̂T,X(α)) = α,

n = |X|, and Op means the order holds in probability.

Proof. See Appendix B for a detailed proof.

Proposition 2 shows that the endpoint of an α-level one-sided

confidence interval obtained by bootstrapping T̂ is close to
that obtained by T , provided that there are enough samples.
As any α-level two-sided confidence interval can be obtained
by two one-sided confidence intervals, the results ((16)) also

hold for (13) and (14). In truth discovery tasks, ETCIBoot
is able to provide more accurate confidence intervals for the
objects’ truths, if they receive more claims. This result is
more obvious especially on long-tail data.

4. EXPERIMENTS
In this section, we evaluate the proposed ETCIBoot

method on both simulated and real-world datasets. We first
introduce the experimental setup in Subsection 4.1. Then,
we test the ETCIBoot and baselines on simulated datasets
generated in different scenarios and real-world datasets in
Subsections 4.2 and 4.3, respectively. Experimental results
show that: (1) ETCIBoot outperforms the state-of-the-art
truth discovery methods in most cases, and (2) ETCIBoot
can provide accurate confidence interval estimates.

4.1 Experimental Setup
In this part, we introduce the baseline methods and discuss

the measurements for evaluation.
Baseline Methods. For all truth discovery methods, we

conduct them on the same input data in an unsupervised
manner. Although ground truths are available, we only use
them for evaluation. For different data types, different base-
lines are adopted, including both the naive conflict resolution
methods and the state-of-the-art truth discovery methods.
More precisely, for continuous data we use Median, Mean,
CATD [11], CRH [12] and GTM [22]. Baselines used for
categorical data include: Voting, Accusim [5], 3-estimate [7],
CRH [12], Investment [18], CATD [11], ZenCrowd [3], Daw-
id&Skene [2], and TruthFinder [21]. Details of baselines are
discussed in the related work (Section 5).
Measurements. As the experiments involve both con-

tinuous and categorical data, we introduce different measure-
ments. For data of continuous type, we adopt both the mean
of absolute error (MAE) and the root of mean square error
(RMSE); Error Rate is used for date of categorical type. The
details of the measurements are:

• MAE : MAE measures the L1-norm between the meth-
ods’ output and the ground truths. It tends to penalize
more on small errors.

• RMSE : RMSE measures the L2-norm between the
methods’ output and the ground truths. It tends to
penalize more on the large distance and less on the
small distance comparing with MAE.

• Error Rate: Error Rate is defined as the percentage of
mismatched values between the output of each method
and the ground truths.

Note That: the smaller the measurement value, the closer to
ground truths the methods’ output. Therefore, for all mea-
surements, the smaller the value, the better the method.

4.2 Simulated Datasets
In this subsection, we test the proposed ETCIBoot on sev-

eral simulated datasets, which capture different scenarios in-
volving various distributions of source reliability. We first in-
troduce the procedure of generating simulated datasets, and
then test the effectiveness of ETCIBoot in identifying truths
comparing with baselines on these datasets. Last but not
least, we compare the confidence intervals obtained by ET-
CIBoot with that by theoretical distribution and show the
advantage of bootstrapping.
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Table 2: Comparison on simulated data: all scenarios

Method

Scenario 1 Scenario 2 Scenario 3 Scenario 4
(Uniform(0, 1)) (Gamma(1, 3)) (FoldedNormal(1, 2)) (Beta(1, 1

2
))

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
(10−3) (10−1) (10−3) (10−1) (10−3) (10−1) (10−3) (10−1)

ETCIBoot 1.200 2.724 0.700 1.599 0.400 0.973 0.600 .1351
CATD 1.300 2.903 0.800 1.708 0.500 1.043 0.600 0.141
CRH 6.300 13.560 6.900 14.781 1.700 3.729 4.500 0.968

Median 4.000 9.275 2.800 6.648 1.300 2.914 2.400 0.551
Mean 8.000 17.224 11.700 24.988 2.000 4.369 6.400 1.362
GTM 4.000 8.549 4.000 8.593 1.200 2.597 2.700 0.583

Data Generation. The procedure of generating simulat-
ed data is shown as follows:

(i) We first generate a vector of the number of claims C,
e.g., C = (5, 10, 15, · · · , 50).

(ii) For each ci ∈ C, there are oi = e7 · c−1.5
i objects which

will receive ci claims. This power law function is used
to create the long-tail multi-source data. Thus, there
are totally O =

∑
i

oi objects and S = max
i

{ci} sources.

(iii) For each source, we randomly generate its reliabili-
ty σ2

s ∼ F , where F is a pre-defined distribution.
Thus, for each source, its claims are generated from
Normal(0, σ2

s). Here, σ2
s captures reliability degree of

the s-th source’s information. The larger value the σ2
s ,

the lower reliability degree of the s-th source.

Experiments. In the following experiments, we simulate
different scenarios via different source reliability distribution-
s F . We set C = 70 : 100; thus, there are 31 objects and
100 sources. Note that the number of objects is not large.
This is used to better display the experimental results on the
confidence interval estimates. To reduce the randomness, we
repeat the experiment 100 times and report the average re-
sults. As the simulated data is continuous, MAE and RMSE
are used for evaluation. We simulate 4 scenarios and the de-
tail of each scenario is discussed as follows. Note that σ2

s

represents the source reliability degree. The larger value the
σ2
s , the lower reliability degree the source.
Scenario 1: σ2

s ∼ Uniform(0, 1). In this scenario, all
source reliability degrees are uniformly distributed in (0, 5).

Scenario 2: σ2
s ∼ Gamma(1, 3). In this scenario, most of

the sources are reliable with high reliability degrees. Howev-
er, there are a few unreliable sources with very small relia-
bility degrees.

Scenario 3: σ2
s ∼ FoldedNormal(1, 2). As Folded Normal

is a long-tail distribution, in this scenarios, it generates a few
unreliable sources. Compared with Scenarios 1 and 2, the
reliable sources have higher reliability degrees.

Scenario 4: σ2
s ∼ Beta(1, 1

2
). In this scenario, source re-

liability degrees are within 0 ∼ 1. Compared with other
scenarios, there are much more reliable sources.

We show the histograms of the source variances in Fig-
ure 2, which implies that the simulated data covers various
scenarios with varying source reliability distributions. We
report the results in terms of MAE and RMSE in Table 2.

Comparison with Baselines. Table 2 shows that the
proposed ETCIBoot outperforms all baselines in all scenar-
ios in terms of both MAE and RMSE. When estimating the
truth for each object n, ETCIBoot obtains multiple truth
estimates which are calculated according to (2) based on the
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Figure 2: Histograms of source variances

bootstrapped claims. Then, the final truth estimator is de-
fined as the average of these estimates. Experimentally, we
generate 10 ∗ |Sn| bootstrapping samples. Due to the prop-
erties of bootstrapping, ETCIBoot is robust to the outlying
claims provided by some sources. However, as existing truth
discovery methods typically compute weighted mean to ob-
tain one single point estimate, they are more sensitive to
the outlying claims. So, the ETCIBoot performs better than
baselines as confirmed in the experimental results. Moreover,
as there are more reliable sources in Scenarios 3 and 4, the
results are better compared with those in Scenarios 1 and 2.
It confirms the underlying intuition of truth discovery: the
more the reliable sources, the better the results.
Confidence Interval Comparison. For confidence in-

terval comparison, we compare the results of ETCIBoot with
that obtained by theoretical distribution, i.e., normal distri-

bution. Note that x̂n ∼ Normal(x∗
n,

∑
s∈Sn

ω2
sσ

2
s

(
∑

s∈Sn
ωs)2

) (based on

(2)). As the true σ2
s is known for each source, we know

the theoretical distribution for x̂n, based on which we can
further obtain the 95%-level confidence interval. We term
the confidence interval obtained in this way as CI-Normal.
The confidence interval (i.e., (13) and (14)) for the truths’
estimators, which is obtained by the ETCIBoot using the
bootstrapping technique, is referred to as CI-ETCIBoot .
We report the results in Scenarios 1 ∼ 4 in Figures 3 ∼

6, respectively. From Figures 3 ∼ 6, we can draw the fol-
lowing conclusions: (1) The CI-ETCIBoot is much smaller
than CI-Normal in all simulated scenarios. Note that the
smaller the confidence interval, the more confident the es-
timator. For example, in Scenario 1 the shaded area (i.e.,
the area between the lower and upper bound curves) of CI-
Normal in Figure 3(a) is larger than that of CI -ETCIBoot
in Figure 3(b). Similar conclusions can be drawn in other
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Figure 3: Scenario 1: Uniform(0, 5)
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Figure 4: Scenario 2: Gamma(1, 3)
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Figure 5: Scenario 3: FoldedNormal(1, 2)
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Figure 6: Scenario 4: Beta(1, .5)

scenarios. Thus, the experimental results show the power
of the ETCIBoot on constructing effective confidence inter-
vals. (2) As most sources are reliable in Scenarios 2 ∼ 4,
comparing with Scenario 1, the width of CI-ETCIBoot or
CI-Normal in other scenarios is smaller, which indicates the
higher overall confidence in these scenarios.

Next we conduct experiments to illustrate the relationship
between the width of confidence interval and the number of
claims on long-tail data. We follow the same procedure to
generate the simulated data, except that we choose the num-
ber of claims as 2 to 30. If there is only one claim, it is
impossible to construct the confidence interval. We present
the width of CI-Normal and CI-ETCIBoot in all scenarios
in Figures 7(a) and 7(b), respectively. Meanwhile, we also

fit them into a polynomial function of N (N− 1
2 ), respective-

ly. The red line with square marker represents the fitting
line, averaging over all scenarios. From Figure 7, we can see
that the width of the 95% confidence interval, obtained via
either normal distribution or ETCIBoot , decreases with re-

spect to the number of claims at an error rate N− 1
2 , where

N is the number of claims. It confirms the theoretical anal-
ysis that if an object receives more claims then its estimator
is more accurate. Moreover, the width of CI-ETCIBoot is
much smaller than that of CI-Normal, which demonstrates
that ETCIBoot is able to provide a more confident estimator.
This advantage is achieved by incorporating bootstrapping
techniques into truth discovery procedure in ETCIBoot .

4.3 Real-World Datasets
In this subsection, we present the experimental results on

two continuous datasets and two categorical datasets. Exper-
iments show that the proposed ETCIBoot is able to obtain
more accurate estimates of truths comparing with baselines.
We first introduce the description of the datasets and then
report the results.

Continuous Data
Dataset Description. The following datasets of continu-
ous data type are used in experiments:
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Figure 7: Simulated data in all scenarios: Confidence
Interval width w.r.t. the number of claims (N)

• Indoor Floorplan Dataset: We develop an Android Ap-
p that can estimate the walking distances of smart-
phone users though multiplying their step sizes by step
count inferred using the in-phone accelerometer. There
are totally 247 users and 129 objects (i.e., indoor hall-
ways). The ground truth of the hallway length is
obtained by manually measuring the indoor hallways.
The goal is to estimate the distance of indoor hallways
from the data provided by a crowd of users.

• Flight Status Dataset: The flight data [13] is collected
by extracting departure/arrival information for 11, 512
flights from 38 sources on every day in December 2011.
We present the time in terms of the minutes from 00:00.
There are 11, 146 flights that have departure/arrival
ground truths. The goal is to estimate the depar-
ture/arrive time for each flight.
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Results Analysis. We present the results of ETCIBoot
and baselines with respect to MAE and RMSE on the con-
tinuous datasets in Table 3. The experimental results show
that the proposed ETCIBoot can achieve the best perfor-
mance on both datasets.

Table 3: Comparison on continuous data

Method
Indoor Floorplan Flight Status
MAE RMSE MAE RMSE
(100) (101) (100) (103)

ETCIBoot .9219 1.2992 .0310 .9933
CATD 0.9960 1.3845 1.077 8.120
CRH 1.1929 1.5955 1.074 8.094

Median 1.3797 1.7860 1.070 8.020
Mean 1.7851 2.2846 1.055 7.893
GTM 1.2845 1.6823 1.078 8.132
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Figure 8: Indoor Floorplan dataset: CI-ETCIBoot

On Indoor Floorplan dataset, as the number of objects is
small, we also present the confidence intervals obtained by
ETCIBoot for each object in Figure 8. The figure shows that
in most cases the confidence intervals provided by ETCIBoot
contains the corresponding objects’ truths. However, there
are some confidence intervals which do not contain truth-
s. A possible reason is: These objects are claimed by a
few sources and the information provided by these sources is
far away from the truth. Take the 9-th object for example.
There are only 4 sources which provide claims, among which
the smallest value is 14.3 that is still very larger than the
ground truth 10.8. As a result, it is impossible to correctly
identify these objects’ truths for any truth discovery method.
Therefore, the confidence interval estimates obtained by ET-
CIBoot do not contain the truths for these objects.

On Flight Status dataset, the data on each day is treated
as a single data collection. As there are many flights only
claimed by a few sources, the performance of baselines is not
satisfactory. We conduct a case study on Day 1 dataset. We
count the statistics on how many claims of an object receives
to show the long-tail phenomenon: (1) there are about 61.1%
of flights which only receives claims from at most 5 out of 38
sources; (2) only 2.3% of flights have received claims from
more than 25 sources. Similar phenomenon can be found on
other days’ data. Consequently, we can see that the proposed
ETCIBoot outperforms all baselines, as shown in Figure 9.
We do not present the confidence interval for the flights due
to the page limit and the large number of flights.
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Figure 9: Comparison on Flight data over 30 days

Categorical Data
Dataset Description. We introduce the details of two
categorical datasets and their tasks as follows:

• SFV Dataset: SFV dataset is built upon the annal
Slot Filling Validation (SFV) competition of the NITS
Text Analysis Conference Knowledge Base Population
track [9]. In this task, given a query (an object), e.g.,
the birthday of Obama, 18 slot filling systems (sources)
extract useful claims independently from a large-scale
corpus. The 2011 SFV dataset2 contains 2, 538 claims
from 18 sources for 328 objects. The goal is to extract
the true answer for each query from the systems’ claims.

• Game Dataset: Game dataset [11] collects answers
from multiple users based on a TV game show “Who
Wants to Be a Millionaire” via an Android App. There
are 37, 029 Android users and 2, 103 questions. Ground
truths are available for evaluation. The goal is to iden-
tify each question’s answer from the users’ answers.

Results Analysis. For categorical data, we first encode
the claims into probability vectors and then apply the meth-
ods proposed for continuous data, such as ETCIBoot , CATD,
etc. The detailed procedure is: For a question with 4 possi-
ble choices, the first choice is encoded into a 4-element vector
(1, 0, 0, 0). In Tables 4 and 5, we present the experimental
results of the proposed ETCIBoot as well as baselines on the
SFV and Game datasets, respectively.
On SFV dataset, there are only 18 sources, so we have

a limited number of sources to bootstrap at each iteration
of ETCIBoot . Thus, the result of the proposed ETCIBoot
(.0945) is not the best, but still comparable with the two best
methods: AccuSim (.0701) and TruthFinder (.0793).
On Game dataset, the number of sources (37, 029) is suf-

ficient for bootstrapping. Although CATD performs best
among all baselines, the proposed ETCIBoot achieves even
better performance compared with CATD. Especially, on the
Levels 8, 9, and 10, the proposed ETCIBoot improves the
results by 33.28%, 50.00% and 33.30%, respectively, when

2http://www.nist.gov/tac/2011/

1942



Table 5: Comparison on Game dataset

Method
Error Rate

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 All Levels
(303) (295) (290) (276) (253) (218) (187) (138) (99) (44) (2103)

ETCIBoot .0165 .0271 .0241 .0217 .0395 .0505 .0481 .0870 .0707 .1364 .0385
CATD .0132 .0271 .0276 .0290 .0435 .0596 .0481 .1304 .1414 .2045 .0485
CRH .0264 .0271 .0345 .0435 .0593 .0872 .0856 .2609 .3535 .4545 .0866

ZenCrowd .0330 .0305 .0345 .0471 .0593 .0872 .0856 .2754 .3636 .5227 .0899
AccuSim .0264 .0305 .0345 .0507 .0632 .0963 .0909 .2826 .3636 .5000 .0913

3-Estimates .0264 .0305 .0310 .0507 .0672 .1055 .0963 .2971 .3737 .5000 .0942
Dawid&Skene .0297 .0305 .0483 .0507 .0672 .1101 .0963 .2971 .3636 .5227 .0975

Voting .0297 .0305 .0414 .0507 .0672 .1101 .1016 .3043 .3737 .5227 .0980
Investment .0330 .0407 .0586 .0761 .0870 .1239 .1283 .3406 .3838 .5455 .1151
TruthFinder .0693 .0915 .1241 .0942 .1581 .2294 .2674 .3913 .5455 .5455 .1816

Table 4: Comparison on SFV dataset

Method Error Rate

ETCIBoot .0945
CATD .1037
CRH .0854

ZenCrowd .1010
AccuSim .0701

3-Estimates .1128
Voting .1128

Dawid&Skene .0985
Investment .2896
TruthFinder .0793

compared with the best baseline CATD. As ETCIBoot in-
tegrates bootstrapping techniques into the truth discovery
procedure, it is more robust to the wrong claims compared
with baselines. Thus, ETCIBoot can obtain better results
as the experiments show. Note that there are 81 objects on
which no sources provide correct answers. Therefore, the
lowest error rate for any truth discovery method is .0380.
ETCIBoot can achieve error rate at .0385, which shows its
effectiveness in identifying truths.

5. RELATED WORK
Truth discovery has become an eye-catching term recent-

ly and many truth discovery methods have been proposed
to identify true information (i.e., truths) from the conflict-
ing multi-source data. The advantage of truth discovery over
the naive aggregation methods such as averaging or voting is
that it can capture the variance in sources’ reliability degrees.
Therefore, truth discovery methods can estimate source reli-
ability automatically from the data, which is integrated into
truth computation as source weight. Consequently, the more
reliable sources contribute more in the final aggregation step.

A large variety of truth discovery methods have been
designed to jointly estimate truths and source reliability.
In [12], the authors formulate the truth discovery task into an
optimization framework (CRH). They propose to minimize
the overall weighted distance between claims from sources
and aggregated results. CATD [11] is a statistical method
that has been proposed to deal with long-tail phenomenon
in truth discovery tasks, where confidence interval is incorpo-
rated in source weight estimation. However, CATD does not
consider the long-tail phenomenon on objects, which can be

solved by ETCIBoot . In [22], the authors propose a proba-
bilistic model based truth discovery framework (GTM). Both
AccuSim [5] and TruthFinder [21] adopt Bayesian analysis
to estimate source reliability and update truths iteratively.
In [18], the authors take the prior knowledge on truth and
background information into consideration and propose a
truth discovery method Investment. In [7], 3-Estimate con-
siders the difficulty of getting the truth for each object when
calculating source weights as well as complement vote. Daw-
id&Skene [2] and ZenCrowd [3] propose to use Expectation-
Maximization technique to update source weights and truths
simultaneously, based on a confusion matrix.
However, most existing truth discovery methods have the

following limitations: (1) As most of them apply weighted
averaging, they are sensitive to outlying claims, and (2) they
focus on point estimation of the truth, where important con-
fidence information is missing. To the best of our knowledge,
this is the first paper to illustrate the importance of confi-
dence interval estimation in truth discovery, and proposes an
effective method (ETCIBoot) to address it. By integrating
bootstrapping into truth discovery, ETCIBoot is robust com-
pared with the state-of-the-art truth discovery methods.

6. CONCLUSIONS
In this paper, we first illustrate the importance of confi-

dence interval estimation in truth discovery, which has never
been discussed in existing work. To address the problem, we
propose a novel truth discovery method (ETCIBoot) to con-
struct confidence interval estimates as well as identify truths.
The bootstrapping techniques are nicely integrated into the
truth discovery procedure in ETCIBoot . Due to the proper-
ties of bootstrapping, the estimators obtained by ETCIBoot
are more accurate and robust compared with the state-of-
the-art truth discovery approaches. Theoretically, we prove
that the confidence interval obtained by ETCIBoot is asymp-
totically consistent. Experimentally, we demonstrate that
ETCIBoot is not only effective in constructing confidence
intervals but also able to obtain better truth estimates.
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APPENDIX
A. PROOF OF PROPOSITION 1

For the object n, we have Sn with |Sn| = n. Denote the dis-
tribution of a sample xi

n as Gi(·). Based on the assumption,
xi
n ∼ Normal(x̂∗

n, σ
2
i ) = Gi(x

i
n). As shown in [14], to prove

Proposition 1 we only need to prove the following conditions:

(a) There exists a non-lattice distribution H with mean
0 and variance 1, and a sequence kn with kn

logn
→ ∞,

such that kn of the population G′
is are of the form

Gi(x) = H(x−µi
σi

) with σi’s bounded away from 0;

(b) E
(
|Xi|3+δ0

)
≤ M1 < ∞ for some δ0 > 0;

(c) lim inf
n→∞

v2n > 0 and 1
n

∑n
i=1(µi − µ̄n)

2 = o(n− 1
2 );

(d) H is continuous; (∃δ > 0) E
(
|Xi|6+δ

)
≤ M2 < ∞,

where µi = x̂∗, and µ̄ = 1
n

∑
i∈Sn

µi. Namely, ∀i, µ̄ = x̂∗ =
µi. Next, we prove the sufficient conditions point by point.
Proof of (a). As introduced in Section 2, xs ∼

Normal(x∗, σ2
s), where σ2

s > 0. Let H be the standard nor-
mal distribution, i.e., Normal(0, 1). As any continuous distri-
bution is non-lattice, H is a non-lattice distribution. More-
over, let kn = n and Gi = H(x−µi

σi
). We have n

logn
→ ∞.

Proof of (b). For the normal distribution, we have that

E (|Xi|p) = σp
i

2
p
2 Γ( p+1

2
)

√
π

, (17)

where Γ(·) is the gamma function, i.e., Γ(n+1) = nΓ(n). Let

δ0 = 1, we have that E
(
|Xi|4

)
= σ4

i
4Γ( 5

2
)

√
π

= 3σ4
i , M1 < ∞.

Proof of (c). (i)∀s, σ2
s > 0 and v2n = 1

n

∑n
i=1 σ

2
n > 0. (ii)

∀i, µi = µ̄n.
Proof of (d). As shown in the proof of (a), H is a normal

distribution which is continuous. Let δ = 1 and combine

with (17), yielding that E
(
|Xi|8

)
= σ8

i
2
8
2 Γ( 9

2
)

√
π

= 105σ8
i < ∞.

As shown above, all the conditions are satisfied. Thus,

P(T ≤ t) = Φ(t) +
µ̄3,n

6v3
n

√
n
(2t2 + 1)ϕ(t) + o(n−1/2);

P∗(T̂ ≤ t) = Φ(t) +
K̂3,n

6V 3
n

√
n
(2t2 + 1)ϕ(t) + o(n−1/2).

(18)

Proofs of (b) and (c) also show that K̂3,n−µ̄3,n → 0, yielding

that P∗(T̂ ≤ t) = P(T ≤ t) +Op(n
−1/2). Then, Proposition

1 has been proven.

B. PROOF OF PROPOSITION 2

Note that P[θ(X) ≤ θ̂(X) − F−1(1−α)[V̂ar(θ̂(X))]
1
2√

|Sn|
] =

α. as P(T ≤ t) = α. So, θ̂T,X(α) = θ̂(X) −
F−1(1−α)[V̂ar(θ̂(X))]

1
2√

|Sn|
. For the bootstrapping, θ̂T̂ ,X(α) =

θ̂(X)− F̂−1(1−α)[V̂ar(θ̂(X∗))]
1
2√

|Sn|
. Combing the facts that F̂−1 =

F−1 + Op(n
−1) and V̂ar(θ̂(X∗)) = V̂ar(θ̂(X)) + Op(n

−1)
from [6], the proof of Proposition 2 is straightforward.
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