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ABSTRACT
Drug side-e�ects become a worldwide public health concern, which
are the fourth leading cause of death in the United States. Phar-
maceutical industry has paid tremendous e�ort to identify drug
side-e�ects during the drug development. However, it is impossible
and impractical to identify all of them. Fortunately, drug side-e�ects
can also be reported on heterogeneous platforms (i.e., data sources),
such as FDA Adverse Event Reporting System and various online
communities. However, existing supervised and semi-supervised
approaches are not practical as annotating labels are expensive in
the medical �eld. In this paper, we propose a novel and e�ective un-
supervised model Si�er to automatically discover drug side-e�ects.
Si�er enhances the estimation on drug side-e�ects by learning
from various online platforms and measuring platform-level and
user-level quality simultaneously. In this way, Si�er demonstrates
be�er performance compared with existing approaches in terms of
correctly identifying drug side-e�ects. Experimental results on �ve
real-world datasets show that Si�er can signi�cantly improve the
performance of identifying side-e�ects compared with the state-of-
the-art approaches.

CCS CONCEPTS
•Information systems→ Data mining; •Applied computing
→ Health informatics;

KEYWORDS
Healthcare informatics, truth discovery, probabilistic graphical
model, drug side-e�ects

1 INTRODUCTION
Drug side-e�ects or adverse drug events (ADEs), de�ned as harmful
or unpleasant reactions resulted from drug related medical inter-
ventions, are a worldwide public health concern. According to the
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report from the U.S. Department of Health and Human Services in
20141, drug side-e�ects caused about one third of hospital adverse
events and 280,000 hospital admissions on average annually. More-
over, serious drug side-e�ects are the fourth leading cause of death
in the U.S., resulting in about 100,000 deaths per year [8]. �us, it
is imperative to discover unreported side-e�ects.

�e U.S. Food and Drug Administration uses the Adverse Event
Reporting System (FAERS)2 to monitor post-market usage of drugs
in order to discover unknown drug side-e�ects. It is a voluntary
system where doctors, patients, and pharmacists report unpleasant
reactions. However, a signi�cant portion of the ADEs have not
been reported by FAERS [11]. Fortunately, drug side-e�ects are also
studied, recorded and discussed in various uno�cial platforms (i.e.,
data sources), such as biomedical literatures, clinical documents,
electronic health records, and online healthcare forums. From these
sources, we can discover drug side-e�ects not reported by FAERS.

Several supervised and semi-supervised approaches have been
proposed to detect drug side-e�ects from the aforementioned plat-
forms [1, 4, 9, 12, 13, 25, 40]. For semi-supervised and supervised
methods, classi�ers are trained based on the features and labels
related to the drugs [13, 25]. However, in the medical �eld, it is
very expensive to annotate su�cient data to train a good classi�er.
�us, a practical problem in drug side-e�ect discovery is how to
automatically identify drug side-e�ects in an unsupervised way.

�e simplest way to identify drug side-e�ects is to set a threshold
for the number of reported ADEs so that the side-e�ects will be
recognized if it exceeds this threshold. However, this approach
fails to take reporters’ (e.g., users of a medical forum) reliability
degree into consideration, and thus would lead to poor performance
when there is a large number of low quality users. To solve this
problem, the idea of truth discovery [18] can be borrowed. Truth
discovery methods aim to infer the true information and learn
users’ reliability degrees simultaneously. Researchers in this area
focus on two fundamental questions: single truth discovery [5–
7, 16, 17, 19, 23, 24, 26, 27, 29, 31, 36, 38, 41, 44] and multiple truth
discovery [28, 32, 33, 47], in which single truth discovery assumes
that there is only one correct value for each object, while multiple
truth discovery allows multiple correct values. Since there may be
more than one side-e�ects for a drug, drug side-e�ect discovery

1h�p://health.gov/hcq/pdfs/ade-action-plan-508c.pdf
2h�p://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/
Surveillance/AdverseDrugE�ects/default.htm
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can be considered as a multiple truth discovery problem. However,
identifying drug side-e�ects is quite di�erent from traditional truth
discovery in the following aspects.
Truth Discovery for Single Object withMultiple Claims. Tra-
ditional truth discovery methods require users providing single
claim for each object and claiming on multiple objects. However,
for drug side-e�ect discovery problem, we focus on one drug’s
side-e�ects, i.e., single object. Moreover, users report multiple side-
e�ects (i.e., multiple claims) for the given drug. �ese lead to the
fact that existing methods may learn unreasonable user quality and
infer incorrect side-e�ects.
Inferring Truth from Multiple Platforms. Drug’s side-e�ects
can be collected or extracted from many platforms, but existing
truth discovery methods do not consider platform information. We
use the following example to illustrate the importance of consider-
ing multiple platforms’ information. Table 1 shows an example of
�yroxine’s side-e�ects extracted from FAERS and Healthboards3.
Each entry denotes a claim, i.e., a potential side-e�ect provided by a
user. Dysphaдia, Nausea and Dehydrated are the true side-e�ects
and the other three are incorrect ones. If only mining side-e�ects
from single platform, such as FAERS, we can obtain at most two
correct side-e�ects: Dysphaдia and Nausea. However, using data
from both FAERS and Healthboards, we can obtain all the three
correct side-e�ects. Consequently, taking multiple platforms into
account helps us to obtain more true side-e�ects.

Table 1: An Example of �yroxine Dataset.

FAERS Healthboards

User ID Side-E�ect User ID Side-E�ect

110696642 Dysphagia 2918 Migraine
108294651 Dysphagia 3171 Dysphagia
108294651 Nausea 3171 Nausea
108294651 Mood 3171 Anemia
108325471 Dysphagia 6871 Mood
108325471 Nausea 6871 Dehydrated
108325471 Migraine 27417 Dehydrated

Learning�ality for Di�erent Platforms and Users. �e data
quality of di�erent platforms contributed by users may be di�erent.
In Table 1, the overall quality of FAERS (5 correct claims) is be�er
than Healthboards’ (4 correct ones). However, only employing the
quality of platforms to infer side-e�ects is insu�cient. For example,
the low quality of Healthboards will decrease the probability of
Dehydrated being estimated as truth and lead to an incorrect result.
�erefore, we should also consider the quality of users in platforms
when discovering drug side-e�ects.
Two-Sided�ality of Platforms and Users. Most truth discov-
ery approaches assign a single quality for each user according to the
trustworthiness of claims (i.e., the number of correct claims), which
is not enough for drug side-e�ect discovery. For example, based
on the claims explicitly provided by users, named positive claims,
Dysphaдia and Nausea can be easily estimated as true information
with FAERS data in Table 1. Correspondingly, User 108294651 and
User 108325471 will be assigned high reliability degrees, which
leads to the increase of the probabilities of Mood and Miдraine

3h�p://www.healthboards.com

estimated as truth. However, they are not true side-e�ects. To
reduce the probabilities, we need to consider the side-e�ects not
claimed by the users or platforms, i.e., the negative claims. Since
user 110696642 and 108325471 do not report Mood in FEARS data,
the probability of Mood being true side-e�ect may be decreased.
�us, modeling two-sided platform-level and user-level quality (i.e.,
considering both positive and negative claims simultaneously) is
the key design for multiple truth discovery.

To solve the aforementioned challenges, in this paper, we propose
a novel and e�ective unsupervised model Si�er for drug side-effect
discovery problem. It can simultaneously estimate the correct
side-e�ects for given drugs and learn platform-level and user-level
reliability degrees (i.e., information quality) based on the side-e�ects
provided by users. To the best of our knowledge, Si�er is the �rst
unsupervised model to leverage the quality of platforms and users
for multiple truth discovery. By treating the truth as a latent random
variable, the proposed model can naturally model both positive and
negative claims, and learn platform-level and user-level quality in
a principled way. We also propose an e�cient inference algorithm
based on collapsed Gibbs sampling to estimate correct side-e�ects.
�e experiments on �ve real-world datasets show that the proposed
Si�er can signi�cantly improve the performance of identifying
drug side-e�ects compared with the state-of-the-art truth discovery
approaches.

In the following sections, we formulate the problem formally in
Section 2. In Section 3, we introduce the proposed model in details,
and the inference processes are discussed in Section 4. �e exper-
imental results are shown on four real-world datasets in Section
5. Section 6 gives a brief overview on the related work in drug
side-e�ect discovery and truth discovery. Finally, we conclude the
paper in Section 7.

2 PROBLEM FORMULATION
In this section, we introduce some basic terminologies used in this
paper and then de�ne our problem formally.
Input

�e inputs of the proposed model include the platform set, the
user set in each platform, and the claims provided by users.

De�nition 2.1. A platform s ∈ {1, . . . , S} is a database containing
potential side-e�ects of drugs, where S is the number of platforms.

De�nition 2.2. In each platform s , there are a set of users {u}Us1
who provide potential side-e�ects for drugs, whereUs is the number
of users in s .

FDA Adverse Event Reporting System (FAERS) can be seen as
a platform, in which all the data are structured. In FAERS, each
reporter or patient can be regarded as a user. Since we focus on
single drug side-e�ect discovery, side-e�ects are collected when
patients only take the given drug (i.e., one drug). Online forum
Healthboards can be seen as another platform where the data are
unstructured. On Healthboards, each user can write posts, answer
questions and communicate with others. Here we assume that users
are independent when writing or reporting drugs’ side-e�ects, and
there are no common users among platforms.

Since forum users are not experts in the medical area, side-e�ects
collected from these users are colloquial and informal. In order to
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model these side-e�ects reasonably and fairly, we use MetaMap4, a
natural language processing tool for recognizing medical concepts
in raw text, to convert all the potential side-e�ects collected from
di�erent platforms into Concept Unique Identi�er (CUI) codes5,
such as Nausea → C0027497. �e bene�t of using CUIs is that
di�erent expressions of side-e�ects can be mapped into the same
CUI code. In this way, we can extract structured representations of
side-e�ects collected from both FAERS and Healthboards.

In Section 1, we already introduced the bene�t of considering
both positive and negative claims when inferring true side-e�ects.
�ere is a challenge that has to be addressed, i.e., the number of
negative claims for each user may be large as users usually provide
only a few side-e�ects for one drug. To decrease the e�ect caused
by negative claims, we randomly sample negative claims with no
replacement to ensure there are comparable numbers of positive
and negative claims. Here we use observations to denote the values
of claims de�ned as follows:

De�nition 2.3. An observation osum (m ∈ {1, . . . ,M}) provided
by user u in platform s is a Boolean value True or False, where M is
the total number of side-e�ects for a given drug. If user u reports
the m-th side-e�ect (i.e., positive claim), then the corresponding
observation osum is 1; if this is a negative claim, osum = 0; otherwise,
osum does not exist.

In Table 1, there are 6 side-e�ects, i.e., M = 6. User 6871 in
platform Healthboards reports side-e�ects Mood and Dehydrated ,
butDysphaдia, Nausea,Miдraine andAnemia are not reported. We
randomly sample two potential side-e�ects, for example Dysphaдia
and Anemia, as negative claims. Correspondingly, the observations
provided by User 6871 are shown in Table 2.

Table 2: Observations of User 6871.

Platform User ID Side-E�ect CUI Observation

Healthboards 6871 Dysphagia C0011168 False
Healthboards 6871 Mood C0026516 True
Healthboards 6871 Anemia C0002871 False
Healthboards 6871 Dehydrated C0001721 True

Output
Given input raw data from multiple platforms, the proposed

model aims to derive true side-e�ects for a given drug. We de�ne
truth indicators as follows:

De�nition 2.4. Truth indicators {tm }Mm=1 are used to denote the
correctness of side-e�ects, where tm is a Boolean value, i.e., True
or False. If the �nal output of the m-th side-e�ect tm is True, i.e.,
tm = 1, then it is considered to be a true side-e�ect of the given
drug; otherwise, it is not a side-e�ect.

Besides inferring true side-e�ects for a given drug, we also want
to automatically estimate the quality of di�erent platforms and
users in platforms. Platform-level quality information can be seen
as a global indicator to measure how reliable each platform is for a
certain drug, and user-level quality information can be seen as a
local indicator to evaluate how credible each user is.
4h�ps://metamap.nlm.nih.gov
5h�ps://www.nlm.nih.gov/research/umls/new users/online learning/Meta 005.html

In order to model platform- and user-level quality, we �rst intro-
duce the confusion matrix of platforms or users as shown in Table 3.
Precision is de�ned as the probability of positive observations being
correct, i.e., T Ps

T Ps+F Ps . Sensitivity or Recall is the probability of true
observations being estimated as truth, i.e., T Ps

T Ps+FNs
. Speci f icity

is the probability of false observations not being estimated as truth,
i.e., T Ns

T Ns+F Ps , and the False Positive Rate (FPR) is 1 - Speci�city.

Table 3: Confusion Matrix.

t = T rue t = False

o = T rue True Positives (T Ps ) False Positives (F Ps )
o = False False Negatives (FNs ) True Negatives (T Ns )

From Table 1, we can observe that the platform FAERS has a high
precision but low recall compared with Healthboards. Obviously,
we need to take both precision and recall into consideration when
measuring platforms’ quality. However, a drawback of modeling
platform-level quality with precision is that it ignores negative
observations. In order to take both positive and negative obser-
vations into account, we use False Positive Rate and Sensitivity to
characterize platform-level quality and user-level quality. False Pos-
itive Rate is associated with false positives and true negatives, and
Sensitivity is related to false negatives and true positives. With
these two measures, we are able to characterize the complete spec-
trum of platform- and user-level quality.

De�nition 2.5. False Positive Rate and Sensitivity are used to mea-
sure the reliability degrees of platforms and users. False Positive
Rate {ϕ0

s }
S
s=1 and Sensitivity {ϕ1

s }
S
s=1 are assigned to each plat-

form s . User-level quality {θ0
su }

S,Us
s=1,u=1 (False Positive Rate) and

{θ1
su }

S,Us
s=1,u=1 (Sensitivity) are learned for each user u in each plat-

form s .

Intuitively, whether an observation osum is a true side-e�ect is
determined by platform-level quality and user-level quality. In
order to make the proposed model more general and simple, we
de�ne a reliability indicator as follows:

De�nition 2.6. Reliability indicator ym is used to denote whether
the observation osum is related to platform-level or user-level quality.
If ym = 0, then platform-level quality is used; otherwise, user-level
quality is selected.

Based on these de�nitions, we can formally de�ne our problem as
follows: Given a platform set {s}S1 , user set {u}Us1 of each platform
s , side-e�ect set {m}M1 , and observations {osum }Mm=1 provided by
users, our goal is to learn platform-level reliability degrees {ϕ0

s }
S
s=1

and {ϕ1
s }

S
s=1, user-level reliability {θ0

su }
S,Us
s=1,u=1 and {θ1

su }
S,Us
s=1,u=1,

truth indicators {tm }Mm=1, and reliability indicators {ym }Mm=1 for
drug side-e�ects.

3 SIFTER MODEL
In this section we formally introduce the proposed model, called
Si�er, for discovering drug side-e�ects from various platforms. We
�rst brie�y summarize the proposed model Si�er, and then provide
details about the proposed model.
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Figure 1: �e Probabilistic Graphical Model of Si�er.

3.1 Model Overview
In contrast to existing methods in multiple truth discovery, we con-
sider the di�erences among diverse platforms and learn platform-
level reliability degrees. Within each platform, we learn user-level
reliability degrees based on observations provided by users. Taking
both platform-level and user-level reliability degrees into consider-
ation, we estimate correct side-e�ects of drugs using observations
reported by users from di�erent platforms.

Figure 1 shows the proposed probabilistic graphical model for
discovering drugs’ side-e�ects. �e inputs are S platforms, M
side-e�ects of a given drug, {Us }Ss=1 users, and their correspond-
ing observations {osum }

S,Us ,M
s=1,u=1,m=1. �e shaded circles represent

hyper-parameters6 except osum . �e outputs are truth indicators
{tm }

M
m=1, reliability indicators {ym }Mm=1, two-sided platform re-

liability degrees {ϕ0
s }

S
s=1 and {ϕ1

s }
S
s=1, and two-sided user qual-

ity {θ0
su }

S,Us
s=1,u=1 and {θ1

su }
S,Us
s=1,u=1. �e remaining {βm }Mm=1 and

{φm }
M
m=1 are the intermediate variables learned by the proposed

model. �e detailed generating process is introduced in the follow-
ing subsections.

3.2 Truth & Reliability Indicator Generation
Since Si�er is an unsupervised model, each side-e�ect being true
or false is unknown. We model the probability of each side-e�ect
being true as a latent Boolean random variable. If the truth indicator
is 1, then the side-e�ect is correct; otherwise, the drug cannot cause
this side-e�ect. Moreover, the truth indicator is a switch to select
False Positive Rate or Sensitivity used in the process of generating
observations provided by users. In addition, the proposed model
allows to set prior distributions on the truth probability. �e truth
indicator generating process is as follows.

We �rst generate prior probability βm from a Beta distribution
with parameter γ = (γ1,γ0), where γ1 denotes the prior true pseu-
docount, and γ0 is the prior false pseudocount for each side-e�ect
m:

βm ∼ Beta(γ1,γ0).

Based on the prior distribution βm , the truth indicator tm (a
Boolean variable) can be generated from a Bernoulli distribution:

tm ∼ Bernoulli(βm ).

Note that if there is no prior belief on side-e�ects, we can use a
uniform priori.
6γ , η, αu

0 , αu
1 , α s

0 , and α s
1 denote hyper-parameters of Beta distributions.

�e reliability indicator ym is used to select quality measure
(platform-level or user-level) when generating observations. We
model the probability of user-level quality being selected as a latent
Boolean random variable. A Beta distribution with parameter η =
(η1,η0) is used to generate a prior probability φm , where η1 denotes
the prior pseudocount of the side-e�ect generated with user-level
quality, and γ0 is the prior pseudocount for each side-e�ect m
generated with platform-level quality.

φm ∼ Beta(η1,η0).

�e reliability indicator ym is generated from a Bernoulli distri-
bution according to the prior distribution φm :

ym ∼ Bernoulli(φm ).

3.3 Platform-Level�ality Generation
Considering the di�erences among platforms, we generate platform-
level quality for each platform. �e quality of platforms a�ects side-
e�ects’ trustworthiness. If users in a platform s seldom provide
erroneous side-e�ects, then platform s has a low False Positive Rate.
�us, the probability of a side-e�ect provided by a user in platform
s being true is high. On the other hand, if platform s provides most
of the true side-e�ects, it has a high Sensitivity. It leads to a larger
probability for a side-e�ect being false if it is not posted by s .

We use two independent factors - False Positive Rate and Sensi-
tivity - to characterize the quality of platforms, and two separate
random variables are introduced to describe them. Moreover, we
may have prior belief or assumptions with regard to each platform
in practice. For example, users in the FAERS dataset typically pro-
vide correct side-e�ects, i.e., the Sensitivity of this platform should
be high. On the contrary, users in online healthcare communities
tend to provide noisy answers. �us, they may have high False
Positive Rate (i.e., low Speci�city). In these cases, the model allows
us to set such prior belief that characterizes platforms reasonably.

�e generating process of platform-level quality is as follows.
For each platform s ∈ S , we generate its False Positive Rate ϕ0

s from
a Beta distribution with hyperparameter α s

0 = (α
s
0,1,α

s
0,0), where

αs0,1 denotes the prior false positive pseudocount, and αs0,0 is the
prior true negative pseudocount for platform s:

ϕ0
s ∼ Beta(αs0,1,α

s
0,0).

Similar with the generation ofϕ0
s , the Sensitivity of s ,ϕ1

s , is drawn
from a Beta distribution with hyperparameter α s

1 = (α
s
1,1,α

s
1,0),

where αs1,1 denotes the prior true positive pseudocount, and αs1,0 is
the prior false negative pseudocount for platform s:

ϕ1
s ∼ Beta(αs1,1,α

s
1,0).

3.4 User-Level�ality Generation
Similar with the generating process of platform-level quality, for
each user u in platform s , we generate the user’s False Positive Rate
θ0
su from a Beta distribution with hyperparameterαu

0 = (α
u
0,1,α

u
0,0)

and the user’s Sensitivity θ1
su from a Beta distribution with hyper-

parameter αu
1 = (α

u
1,1,α

u
1,0) as follows:

θ0
su ∼ Beta(αu0,1,α

u
0,0),
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and
θ1
su ∼ Beta(αu1,1,α

u
1,0),

where αu0,1 denotes the prior false positive pseudocount, αu0,0 is the
prior true negative pseudocount, αu1,1 denotes the prior true positive
pseudocount, and αu1,0 is the prior false negative pseudocount.

3.5 Observation Generation
According to the above analysis, each observation osum from user
u in platform s is associated with a truth indicator tm , a reliability
indicator ym , platform-level quality, and user-level quality.

For the observation osum , truth indicator tm indicates that False
Positive Rate (tm = 0) or Sensitivity (tm = 1) is employed to generate
observations. If ym = 1, the observation is generated with user-
level quality, and the generating process of observation osum is as
follows:

osum ∼ Bernoulli(θ tmsu ).

If ym = 0, osum is generated based on platform-level reliability
degrees:

osum ∼ Bernoulli(ϕtms ).

�e generating process is quite di�erent from that of existing
truth discovery methods. First, we draw the claim osum from a
Bernoulli distribution with the parameters θ tmsu and ϕtms , which
shows that di�erent types of reliability degrees are considered when
generating claims. However, traditional truth discovery methods
only consider user-level quality measure. Moreover, we assign
macroscopical reliability degrees to platforms, which is also di�er-
ent from existing methods. Existing methods do not distinguish
the characteristic of platforms and treat all the platforms equally.

4 INFERENCE AND LEARNING
In this section, we present the joint likelihood function of the pro-
posed model Si�er and discuss how to perform inference to estimate
the truth of side-e�ects, and the quality of platforms and users from
Si�er, given the observations.

4.1 Joint Likelihood Function
According to the generative process in Section 3, given the Si�er
parameters, the probability of each observation osum provided by
user u in platform s is:
p(osum |tm ,ym ,θ

0
su ,θ

1
su ,ϕ

0
s ,ϕ

1
s ) = ym [p(o

s
um |θ

0
su )(1 − tm )

+ p(osum |θ
1
su )tm ] + (1 − ym )[p(osum |ϕ0

s )(1 − tm ) + p(osum |ϕ1
s )tm ].

�en the joint likelihood of all observations, latent variables,
and unknown parameters given all the hyperparameters Ω =

(γ ,η,α s
0 ,α

s
1 ,α

u
0 ,α

u
1 ) is:

p(o, t , β,y,φ,ϕ0,ϕ1,θ0,θ1 |Ω) =
S∏
s=1

p(ϕ0
s |α

s
0 )p(ϕ

1
s |α

s
1 )

Us∏
u=1

p(θ0
su |α

u
0 )p(θ

1
su |α

u
1 )

M∏
m=1

p(osum |tm ,ym ,θ
0
su ,θ

1
su ,ϕ

0
s ,ϕ

1
s )

p(tm |βm )p(βm |γ )p(ym |φm )p(φm |η).

Obviously, it is intractable to perform exact inference on the
posterior distribution of all the latent variables. �erefore, we
employ collapsed Gibbs sampling algorithm to iteratively sample

each variable from its full conditional distribution given all the
other variables.

4.2 Latent Variable Inference
In the proposed model Si�er, there are two latent variables: truth
indicator tm and reliability indicator ym . In the inference process,
we use o to replace osum for simplicity.
Truth Indicator Inference. Let t−m be the truth of all side-e�ects
except m. We iteratively sample for each side-e�ect given the
current truth indicator of the other side-e�ects:

p(tm = i |t−m ,o,y)

∝γi ·
S∏
s=1

Us∏
u=1

[
αsi,o + n

−m
s,u,i,o,ym=0

αsi,1 + n
−m
s,u,i,1,ym=0 + α

s
i,0 + n

−m
s,u,i,0,ym=0

]ym=0

[
αui,o + n

−m
s,u,i,o,ym=1

αui,1 + n
−m
s,u,i,1,ym=1 + α

u
i,0 + n

−m
s,u,i,0,ym=1

]ym=1

,

(1)

where n−ms,u,i, j,k = |{m
′ ∈ {1, · · · ,m − 1,m + 1, · · · ,M}|∆}| and

∆ = {sm′ = sm ,um′ = um , tm′ = i,om′ = j,ym′ = k}. Here,
sm′ = sm and um′ = um denote the side-e�ects provided by the
same user u in platform s . From Eq. (1), we can observe that the
truth indicator is related to both platform and user information.
Reliability Indicator Inference. Similar with the truth indicator
inference process, let y−m be the reliability indicators of all side-
e�ects except m. We can sample the current reliability indicator
when given other indicators of side-e�ects:

p(ym = k |y−m , t ,o)

∝ηi ·
S∏
s=1

Us∏
u=1

[ αutm,o + n
−m
s,u,tm,o,k

αutm,1 + n
−m
s,u,tm,1,k + α

u
tm,0 + n

−m
s,u,tm,0,k

]k
[ αstm,o + n

−m
s,u,tm,o,1−k

αstm,1 + n
−m
s,u,tm,1,i−k + α

s
tm,0 + n

−m
s,u,tm,0,1−k

]1−k
,

(2)

where n−ms,u,tm, j,k = |{m
′ ∈ {1, · · · ,m − 1,m + 1, · · · ,M}|Λ}| and

Λ = {sm′ = sm ,um′ = um , tm′ = tm ,om′ = j,ym′ = k}. Here,
sm′ = sm , um′ = um and tm′ = tm denote that the side-e�ects
provided by user u in platform s have the same truth indicator with
tm . From Eq. (2), we can observe that when k = 1, the reliability
indicator is inferred with user-level information; otherwise, it is
sampled using platform information.

4.3 Parameter Estimation
In the proposed model Si�er, we utilize the conjugacy of exponen-
tial families when modeling the platform-level quality ϕ0 and ϕ1,
user-level quality θ0 and θ1, so that they can be integrated out in
the sampling process. We derive these parameters and make the
following parameter estimations:

θ0
su ∝

∑M
m=1 ns,u,tm=0,o=1,ym=1 + αu0,1∑M

m=1
∑
j ∈{0,1} ns,u,tm=0,o=j,ym=1 + αu0,1 + α

u
0,0
, (3)

θ1
su ∝

∑M
m=1 ns,u,tm=1,o=1,ym=1 + αu1,1∑M

m=1
∑
j ∈{0,1} ns,u,tm=1,o=j,ym=1 + αu1,1 + α

u
1,0
, (4)
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ϕ0
s ∝

∑Us
u=1

∑M
m=1 ns,u,tm=0,o=1,ym=0 + αs0,1∑Us

u=1
∑M
m=1

∑
j ∈{0,1} ns,u,tm=0,o=j,ym=0 + αs0,1 + α

s
0,0
, (5)

ϕ1
s ∝

∑Us
u=1

∑M
m=1 ns,u,tm=1,o=1,ym=0 + αs1,1∑Us

u=1
∑M
m=1

∑
j ∈{0,1} ns,u,tm=1,o=j,ym=0 + αs1,1 + α

s
1,0
, (6)

where ns,u,tm=i,o=j,ym=k denotes the number of side-e�ects pro-
vided by user u in platform s , and each side-e�ect satis�es that the
truth indicator is i , the observation is j , and the reliability indicator
is k .

4.4 Algorithm Flow
�e model inference and parameter learning process are described
in Algorithm 1. We �rst randomly assign the truth indicator tm and
the reliability indicator ym for each side-e�ect, and then calculate
the initial counts for each user. �en in each iteration, we re-sample
each truth indicator (reliability indicator) from its distribution con-
ditioned on all the other truth indicators (reliability indicator) and
update the quality counts for each user accordingly. For the �nal
prediction, discarding the �rst I = 40 samples (burn-in period),
we use the results sampled from every λ = 5 iterations in the last
several rounds to calculate the expectation of true side-e�ects (thin-
ning). If the expectation of a potential side-e�ect equals to or is
greater than 0.5, the estimated side-e�ect is true; otherwise, it is
false. �e time complexity of Algorithm 1 is O(NMSUs ), which
is linear in the number of observations, where N = 100 is the
maximum of iterations.

5 EXPERIMENTS
In this section, we describe a thorough evaluation of the proposed
Si�er compared with state-of-the-art methods on real-world date-
sets.

5.1 Datasets
In our experiments, we select �ve widely used drug families
(based on WebMD7), including �yroxine, Metformin, Omeprazole,
Alprazolam and Ibuprofen [25]. We extract the �ve drug families’
data from two platforms: FAERS and Healthboards. �e ground
truth data are collected from SIDER8. Next, we describe these data
sources.
�e SIDER Ground Truth Data. We rely on the data from SIDER
as the ground truth for drug side-e�ects, which contains infor-
mation on marketed medicines and their recorded adverse drug
reactions. �e information is extracted from public documents and
package inserts. �e last release, SIDER 4, contains data on 1,430
drugs, 5,880 side-e�ects and 140,064 drug-side-e�ect pairs. We �rst
collect side-e�ects for �ve drug families, then extract CUIs and
their corresponding semantic types, and �nally select CUIs with
four semantic types9 as ground truth data.
�e FAERS Platform. FDA Adverse Event Reporting System
(FAERS) is a database or platform that contains information on ad-
verse event (i.e., side-e�ect) and medication error reports submi�ed
to FDA. It is designed to support the FDA’s post-marketing safety
7h�p://www.webmd.com
8h�p://sidee�ects.embl.de
9Four semantic types include Sign or Symptom, Disease or Syndrome, Mental or Behav-
ioral Dysfunction, and Mental Process.

Algorithm 1 Si�er Learning Algorithm.
1: while iter < N do
2: for them-th side-e�ect (m = 1, 2, · · · ,M)
3: ptm ← γtm , p1−tm ← γ1−tm ;
4: for the s-th platform (s = 1, 2, · · · , S)
5: for the u-th user (u = 1, 2, · · · ,Us )
6: Calculate ptm and p1−tm according to Eq. (1);
7: end for
8: end for
9: if random() < p1−tm

ptm+p1−tm
then

10: tm ← 1 − tm and update counts;
11: end if
12: end for
13: for them-th side-e�ect (m = 1, 2, · · · ,M)
14: pym ← ηym , p1−ym ← η1−ym ;
15: for the s-th platform (s = 1, 2, · · · , S)
16: for the u-th user (u = 1, 2, · · · ,Us )
17: Calculate pym and p1−ym according to Eq. (2);
18: end for
19: end for
20: if random() < p1−ym

pym+p1−ym
then

21: ym ← 1 − ym and update counts;
22: end if
23: end for
24: if iter > l and iter % λ == 0 then
25: p(tm = 1) ← p(tm = 1) + tm

samplesize ;
26: end if
27: end while
28: for the s-th platform (s = 1, 2, · · · , S) do
29: Calculate ϕ0

s and ϕ1
s according to Eq. (5) and Eq. (6);

30: for the u-th user (u = 1, 2, · · · ,Us ) do
31: Calculate θ0

su and θ1
su according to Eq. (3) and Eq. (4);

32: end for
33: end for

surveillance program for drug and therapeutic biologic products.
Side-e�ects are coded to preferred terms in the Medical Dictionary
for Regulatory Activities (MedDRA) disclaimer icon terminology.
We convert side-e�ects from MedDRAs to CUIs using MetaMap
and select CUIs with the four semantic types. �e collected data
are reported from September 2012 to September 2015.
�e Healthboards Platform. Healthboards.com is one of the
largest online health communities, with 850,000 members and over
4.5 million posts. We extract users’ posts on the �ve drug families,
then recognize side-e�ect terms, and �nally covert these terms to
CUIs using MetaMap and select CUIs included in the four semantic
types.

Since all the datasets only contain positive claims, we randomly
add negative claims for each user, which have the same quantities
with positive claims. Table 4 lists the statistics of the �ve drug
families, including the number of users, side-e�ects, observations
and ground truth for each platform. From Table 4, we can observe
that only the FAERS platform contains all the true side-e�ects for
the drug family Metformin, which means that it is essential to
account for di�erent platforms when discovering drug side-e�ects.
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Table 4: Data Statistics.

Dataset FAERS Platform Healthboards Platform SIDER

# Users # Side-E�ects # Observations # Truth # Users # Side-E�ects # Observations # Truth # Ground Truth

�yroxine 399 210 3,734 37 78 258 5,524 34 42
Metformin 1,327 356 9,560 69 109 247 5,720 32 69

Omeprazole 1,460 553 19,014 137 198 476 14,040 79 139
Alprazolam 1,310 525 8,108 127 524 1,154 33,769 117 143
Ibuprofen 2,142 465 6,948 149 683 868 22,919 97 157

5.2 Experiment Setup
We compare the proposed Si�er model against several state-of-the-
art algorithms brie�y summarized as follows: Voting is a naive
baseline, which regards a side-e�ect as truth if the proportion of
the users that provide this side-e�ect (i.e., positive claims) exceeds
a certain threshold. Ranking is a straightforward method, which
selects side-e�ects with high frequency. In our experiments, we
select side-e�ects ranked in the top 100 as the estimated truth. 3-
Estimates [7] iteratively computes reliability degrees of users and
trustworthiness of each observation. It also considers negative
claims. MLE [32] is based on Expectation Maximization (EM) algo-
rithm to quantify the reliability of users and the trustworthiness of
their observations. MBM [33] is an integrated Bayesian approach
to discover multiple truths, which clusters users and observations
into di�erent groups to improve truth-�nding e�ciency. LTM [47]
is a probabilistic approach to discover multiple truth and take sen-
sitivity and speci�city as source quality, which is a special case of
the proposed Si�er.

Note that since all the baselines do not distinguish observations’
platforms, we merge observations provided by users in the FAERS
platform and the Healthboards platform into one dataset and run
them on this new dataset. Parameters for the baselines are set
according to the best performance a�er running a series of ex-
periments. For our method, we simply use a generic parameter
se�ing for η = (10, 10) and γ = (10, 10). For both the FARES
and Healthboards platform, we set αu

0 = α
s
0 = (100, 1000) and

αu
1 = α

s
1 = (5000, 100).

We select three commonly used metrics to evaluate all the base-
lines and the proposed Si�er.
Precision, Recall and F1-score. Precision (P) measures the prob-
ability of the output side-e�ects being correct. Recall (R) measures
the probability of real true side-e�ects being estimated as �nal out-
puts. F1-score (F1) computes the harmonic of precision and recall,
i.e., F1 = 2·Precision ·Recall

Precision+Recall .

5.3 Performance Validation
Since we randomly sample negative claims and arbitrarily initial-
ize the parameters in the proposed model, in order to show the
robustness of Si�er, we run the algorithm 10 times and report the
average of precision, recall and F1-score in Table 5. �e experimen-
tal results show that the proposed Si�er can signi�cantly improve
the performance when identifying drug side-e�ects compared with
baselines on the �ve drug families.

From Table 5, we can observe that the proposed Si�er is be�er
than all the baseline methods in terms of F1-score. Voting-25 means
that the side-e�ects is selected as the estimated truths if there are

at least 25% users claimed them. On the three datasets (�yroxine,
Metformin and Ibuprofen), all the measures are 0, which means
that none of side-e�ects is claimed by ≥ 25% users. Even though
on the Alprazolam dataset, the precision of Voting-25 is 0.667, it
only returns 6 side-e�ects in which four ones are correct. Since
the number of real side-e�ects of Alprazolam is 143 in Table 4, the
recall of Voting-25 is very low (0.028). From this observation, we
can safely conclude that the �ve datasets are very noisy. �erefore,
it is di�cult to identify the correct drug side-e�ects on them.

Compared with Ranking-100, the proposed Si�er outperforms
this simple baseline. However, the performance of Ranking-100 is
be�er than that of other baselines on the precision. �is also shows
that there exits much noisy information in these datasets.

Some single truth discovery methods, such as TruthFinder [41],
Investment and PooledInvestment [26], cannot achieve good per-
formance due to the low quality of the �ve datasets. �erefore, we
only select 3-Estimates as a baseline which takes both positive and
negative claims into consideration. Compared with 3-Estimates,
the precision of Si�er is higher, but the recall is lower on the Ibupro-
fen dataset. �at is because 3-Estimates uses accuracy to measure
users’ quality, and some negative claims would be assigned higher
trustworthiness than they should be.

Since MLE only considers the positive claims and ignores the
negative ones, the performance of MLE is worse than Si�er’s on
the �ve datasets. MBM considers both positive and negative claims,
and groups users based on the observations. LTM models user
quality based on sensitivity and speci�city. Since both MBM and
LTM are sensitive on the noisy data, these two approaches return
most of side-e�ects with high frequency as the estimated truth.
�us, the recalls of MBM and LTM are be�er than that of Si�er,
but the precisions and F1-scores are much worse.

5.4 Model Validation
Since the proposed Si�er considers the di�erences among di�erent
platforms. We illustrate the bene�t of distinguishing platforms
when identifying drug side-e�ects by comparing with the methods
that conduct drug side-e�ect discovery on di�erent platforms sepa-
rately. We �rst run all the baselines on each platform and obtain
the possible correct side-e�ects for a given drug. �en, we combine
all the estimated side-e�ects into a set as the �nal output.

Table 6 shows the results of model validation on the �ve drug
families. We can see that the performance of Voting-25 improves
signi�cantly. �is is because the number of users decreases when
we run Voting-25 on each platform’s data. For Ranking-100, the
number of output side-e�ects improves, so the precisions and F1-
scores decrease on the �rst three datasets but the recalls improve on

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

973



Table 5: Performance on the Five Drug Families.

Method �yroxine Metformin Omeprazole Alprazolam Ibuprofen

P R F1 P R F1 P R F1 P R F1 P R F1

Voting-25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.028 0.054 0.000 0.000 0.000
Ranking-100 0.250 0.595 0.352 0.350 0.507 0.414 0.530 0.381 0.444 0.340 0.238 0.280 0.350 0.223 0.272
3-Estimates 0.199 0.643 0.303 0.187 0.681 0.293 0.298 0.662 0.411 0.287 0.650 0.398 0.299 0.758 0.429

MLE 0.075 0.548 0.132 0.073 0.435 0.124 0.093 0.417 0.152 0.052 0.322 0.090 0.090 0.414 0.148
MBM 0.109 1.000 0.196 0.131 0.986 0.231 0.160 0.993 0.276 0.103 1.000 0.186 0.140 1.000 0.246
LTM 0.108 1.000 0.195 0.132 1.000 0.234 0.161 1.000 0.277 0.102 1.000 0.185 0.140 1.000 0.246
Si�er 0.360 0.738 0.484 0.463 0.693 0.555 0.561 0.727 0.633 0.427 0.728 0.538 0.520 0.680 0.589

Table 6: Results of Model Validation.

Method �yroxine Metformin Omeprazole Alprazolam Ibuprofen

P R F1 P R F1 P R F1 P R F1 P R F1

Voting-25 0.163 0.167 0.165 0.074 0.029 0.042 0.241 0.050 0.083 0.279 0.119 0.167 0.111 0.019 0.033
Ranking-100 0.199 0.810 0.319 0.240 0.609 0.344 0.387 0.468 0.424 0.352 0.427 0.386 0.382 0.420 0.340
3-Estimates 0.199 0.643 0.303 0.187 0.681 0.293 0.298 0.662 0.411 0.105 0.923 0.188 0.299 0.758 0.429

MLE 0.107 0.976 0.193 0.115 0.812 0.201 0.157 0.842 0.265 0.095 0.636 0.165 0.134 0.675 0.223
MBM 0.113 0.976 0.201 0.133 0.986 0.235 0.163 0.993 0.289 0.103 0.986 0.186 0.142 0.994 0.248
LTM 0.108 1.000 0.195 0.132 1.000 0.234 0.161 1.000 0.277 0.102 1.000 0.185 0.140 1.000 0.246
Si�er 0.360 0.738 0.484 0.463 0.693 0.555 0.561 0.727 0.633 0.427 0.728 0.538 0.520 0.680 0.589

the �ve datasets. Since the amount of noisy information decreases
in model validation experiment, the performance of LTM improves
signi�cantly. However, the performance of MBM changes slightly,
and the results of LTM do not change. Compared with all the
baseline approaches, Si�er assigns di�erent quality for platforms,
which consequently performs be�er than baselines.

5.5 Estimated Truth Analysis
To validate the bene�t of utilizing the information from multiple
platforms in drug side-e�ect discovery task, we analyze the cor-
rectly estimated side-e�ects by the proposed Sifer and summarize
the number of correct side-e�ects learned from the FAERS and
Healthboards platform in Table 7. “Both” represents the correct
side-e�ects from two platforms, “FAERS Only” denotes the number
of correct side-e�ects only discovered from the FAERS platform,
“Healthboards Only” is the number of correct side-e�ects only ob-
tained from the Healthboards platform, and “Total” is the number
of side-e�ects correctly estimated by the proposed Si�er. We can
observe that the �nal correct side-e�ects come from di�erent plat-
forms, which is in accord with our motivation of the proposed
model.

Table 7: Results of the Estimated Truth Analysis.

Dataset Estimated Truth From Total
Both FAERS Only Healthboards Only

�yroxine 25 3 3 31
Metformin 26 21 0 47

Omeprazole 64 35 2 101
Alprazolam 82 12 10 104
Ibuprofen 67 30 8 105

5.6 Platform�ality Validation
From Table 4, we can observe that the ratio of #T ruths

#Side−Ef f ects on the
FAERS platform is greater than that on the Healthboards platform.
It means that the overall quality of the FAERS platform is be�er than
that of the Healthboards platform. To analyze the learned quality
of each platform on the Ibuprofen dataset, we show the learned
Sensitivity and Speci�city of FAERS and Healthboards in Figure
2. We can observe that Si�er assigns FAERS higher Sensitivity,
which corresponds to the fact that the data provided by the FAERS
platform contains more correct side-e�ects (149 of 157) for the drug
family Ibuprofen in Table 4. In Figure 2, the learned Speci�city (1 -
False Positive Rate) of FAERS is higher than that of Healthboards.
It is con�rmed by the fact that the FAERS platform just has 316
incorrect side-e�ects, but Healthboards contains 771 incorrect side-
e�ects shown in Table 4, i.e., the data provided by the Healthboards
platform contains a lot of noisy information. �ese observations
show that the learned platform-level quality is reasonable, and also
validate the intuition that modeling di�erent platforms’ quality
with Sensitivity and Speci�city is essential.

Sensitivity Specificity
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Figure 2: Platform�ality on the Ibuprofen Dataset.
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6 RELATEDWORK
In this section, we review some work related to drug side-e�ect
discovery and truth discovery.
Drug Side-E�ect Discovery. With the thriving growth of online
social networks and forums, more and more health related data
can be collected easily. Healthcare data mining has become a hot
research topic [2, 3, 9, 10, 12, 20, 22, 30, 34, 35, 37, 42, 43, 45, 46].
Especially, drug side-e�ect discovery has become an active research
area. Leman et. al. [14] use healthcare forum data to identify drug
side-e�ects. Liu et. al. [21] extract a complete set of side e�ect
expressions from patient-submi�ed drug reviews, and construct
a hierarchical ontology of side e�ects to quantify associations be-
tween drugs and symptoms. Yang et. al. [39] employ association
mining to identify side-e�ects. Yates et. al. [40] use the support
and strength of co-occurrence of each drug-symptom interaction
to train a classi�er. Chee et. al. [4] use ensemble based classi�er
to classify drug side-e�ects. Bian et. al. [1] utilize SVM as classi-
�er to classify whether drug-symptom interactions are side-e�ects.
Katragadda et. al. [13] introduce a link classi�cation method to
detect drug side-e�ects on Twi�er data. Mukherjee et. al. [25]
propose a semi-supervised method, which uses linguistic features,
user features and part of labels to learn user trustworthiness, state-
ment credibility and language objectivity simultaneously. Some
researchers also use large-scale web queries to identify adverse
drug reactions [35, 43]. Since the aforementioned methods are su-
pervised or semi-supervised approaches, they use drugs’ features
and labels as inputs. Di�erent from these methods, we propose an
unsupervised model to automatically identify side-e�ects.
Truth Discovery. �ere is extensive work in the area of truth
discovery [15, 18, 49], including single truth discovery and multiple
truth discovery. In this paper, we focus on the work for multiple
truth discovery.

Single Truth Discovery. Yin et. al. [41] formally de�ne the truth
discovery problem and propose TruthFinder, a heuristic method,
to compute the probability of each object being correct given the
estimated user reliability degrees. Investment is proposed by Paster-
nack et. al. [26] in which sources “invest” their reliability uniformly
on the observations they provide, and collect credits back from the
con�dence of those observations. In turn, the con�dence of obser-
vations grows according to a non-linear function de�ned based on
the sum of invested reliability from their providers. 3-Estimates [7]
iteratively computes reliability degrees of users and trustworthi-
ness of each observations, which also uses positive observations
only. Li et. al. [17] propose an optimization framework, CRH, to
model di�erent data types jointly, and estimate source reliability
and truth simultaneously. �ey also propose CATD [16] method to
automatically estimate truth from con�icting data with long-tail
phenomenon. Li et. al. [19] consider the temporal relations among
both object truths and source reliability and propose an incremental
truth discovery framework. Pasternack et. al. use a set of proba-
bilistic model parameters to estimate the source credibility in [27].
Dong et. al. [6] focus on source selection problem in truth �nding.
Vydiswaran et. al. [31] propose models to estimate users’ reliability
and discover credible claims on unstructured data. Qi et. al. [29]
propose a model to jointly learn group level source reliability and
estimate true answers. Zheng et. al. [48] study how to leverage

domain knowledge to accurately model a source�s quality. Ma et.
al. [23] incorporate text information and propose a probabilistic
graphical model to learn �ne-grained source reliability and estimate
the true answers.

Multiple Truth Discovery. �ere is extensive work in the area of
truth discovery, and we mainly review the work for multiple truth
discovery. Zhao et. al. [47] present a probabilistic graphical model
LTM to resolve the problem of existence of multiple truths for a
single entity in truth discovery tasks. Wang et. al. [32] propose
a Maximum Likelihood Estimation (MLE) method, which deals
with Boolean positive observations. Wang et. al. [33] propose an
integrated Bayesian approach, named MBM, to the multiple truth
discovery problem. PRECREC is proposed by Pochampally et. al.
[28], which compute the trustworthiness using precision and recall
of each source, but it needs a gold standard data to get source
precision and recall.

All the above discussed methods cannot estimate platform-level
and user-level reliability, and infer true information simultaneously.
To the best of our knowledge, we are the �rst to build an unsuper-
vised model to identify drug side-e�ects across multiple platforms.

7 CONCLUSIONS
Drug side-e�ect discovery is an important and practical issue in the
world. Many existing work proposes supervised or semi-supervised
methods to identify drug side-e�ects. However, the performance
of these methods depends on the quality of the provided labels.
If the known information’s quality is low, the performance drops
signi�cantly. How to detect accurate side-e�ect in an unsupervised
way is a promising research problem. Borrowing the idea of truth
discovery, we can estimate true information in an unsupervised
manner, but identifying drug side-e�ects is more challenging. Drug
side-e�ect discovery focuses on single object with multiple claims,
which is di�erent from the problem se�ing of existing multiple
truth discovery approaches. Since single data source or platform
may not provide all the correct side-e�ects, it is important to col-
lect data from multiple platforms. Moreover, the quality of data
collected from di�erent platforms should be di�erent. To solve the
aforementioned challenges, in this paper, we propose a probabilistic
graphical model to identify the correct drug side-e�ects without
any supervision. By modeling platform-level and user-level quality,
the proposed model Si�er can characterize the quality of platforms
and users accurately and estimate correct drug side-e�ect e�ec-
tively. Experimental results on �ve real-world datasets show that
the proposed Si�er can signi�cantly improve the performance of
identifying drug side-e�ects compared with the state-of-the-art
truth discovery approaches.
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[7] Alban Galland, Serge Abiteboul, Amélie Marian, and Pierre Senellart. 2010.
Corroborating information from disagreeing views. In Proc. of WSDM. ACM,
131–140.

[8] Kathleen M Giacomini, Ronald M Krauss, Dan M Roden, Michel Eichelbaum,
Michael R Hayden, and Yusuke Nakamura. 2007. When good drugs go bad.
Nature 446, 7139 (2007), 975–977.

[9] Aron Henriksson, Jing Zhao, Henrik Boström, and Hercules Dalianis. 2015.
Modeling electronic health records in ensembles of semantic spaces for adverse
drug event detection. In Proc. of BIBM. IEEE, 343–350.

[10] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: High-throughput
phenotyping from electronic health records via sparse nonnegative tensor fac-
torization. In Proc. of KDD. ACM, 115–124.

[11] Yanqing Ji, Hao Ying, Peter Dews, Ayman Mansour, John Tran, Richard E Miller,
and R Michael Massanari. 2011. A potential causal association mining algorithm
for screening adverse drug reactions in postmarketing surveillance. IEEE ITB 15,
3 (2011), 428–437.

[12] Isak Karlsson and Henrik Boström. 2016. Predicting adverse drug events using
heterogeneous event sequences. In Proc. of ICHI. IEEE, 356–362.

[13] Satya Katragadda, Harika Karnati, Murali Pusala, Vijay Raghavan, and Ryan
Benton. 2015. Detecting adverse drug e�ects using link classi�cation on twi�er
data. In Proc. of BIBM. IEEE, 675–679.

[14] Robert Leaman, Laura Wojtulewicz, Ryan Sullivan, Annie Skariah, Jian Yang, and
Graciela Gonzalez. 2010. Towards internet-age pharmacovigilance: Extracting
adverse drug reactions from user posts to health-related social networks. In
Proc. of Workshop on Biomedical Natural Language Processing. Association for
Computational Linguistics, 117–125.

[15] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J Franklin. 2016. Crowd-
sourced data management: A survey. IEEE TKDE 28, 9 (2016), 2296–2319.

[16] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and Jiawei
Han. 2014. A con�dence-aware approach for truth discovery on long-tail data.
PVLDB 8, 4 (2014), 425–436.

[17] Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and Jiawei Han. 2014. Resolv-
ing con�icts in heterogeneous data by truth discovery and source reliability
estimation. In Proc. of SIGMOD. 1187–1198.

[18] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, and Jiawei
Han. 2016. A Survey on Truth Discovery. SIGKDD Explor. Newsl. 17, 2 (2016),
1–16.

[19] Yaliang Li, Qi Li, Jing Gao, Lu Su, Bo Zhao, Wei Fan, and Jiawei Han. 2015. On
the discovery of evolving truth. In Proc. of KDD. ACM, 675–684.

[20] Chuanren Liu, Fei Wang, Jianying Hu, and Hui Xiong. 2015. Temporal pheno-
typing from longitudinal electronic health records: A graph based framework.
In Proc. of KDD. ACM, 705–714.

[21] Jingjing Liu, Alice Li, and Stephanie Sene�. 2011. Automatic drug side e�ect
discovery from online patient-submi�ed reviews: Focus on statin drugs. In Proc.
of IMMM. 23–29.

[22] Fenglong Ma, Radha Chi�a, Jing Zhou, �anzeng You, Tong Sun, and Jing
Gao. 2017. Dipole: Diagnosis Prediction in Healthcare via A�ention-based
Bidirectional Recurrent Neural Networks. In Proc. of KDD. ACM.

[23] Fenglong Ma, Yaliang Li, Qi Li, Minghui Qiu, Jing Gao, Shi Zhi, Lu Su, Bo Zhao,
Heng Ji, and Jiawei Han. 2015. Faitcrowd: Fine grained truth discovery for
crowdsourced data aggregation. In Proc. of KDD. ACM, 745–754.

[24] Chuishi Meng, Wenjun Jiang, Yaliang Li, Jing Gao, Lu Su, Hu Ding, and Yun
Cheng. 2015. Truth discovery on crowd sensing of correlated entities. In Proc. of
SenSys. ACM, 169–182.

[25] Subhabrata Mukherjee, Gerhard Weikum, and Cristian Danescu Niculescu Mizil.
2014. People on drugs: Credibility of user statements in health communities. In
Proc. of KDD. ACM, 65–74.

[26] Je� Pasternack and Dan Roth. 2010. Knowing what to believe (when you already
know something). In Proc. of Coling. Association for Computational Linguistics,
877–885.

[27] Je� Pasternack and Dan Roth. 2013. Latent credibility analysis. In Proc. of WWW.
International World Wide Web Conferences Steering Commi�ee, 1009–1020.

[28] Ravali Pochampally, Anish Das Sarma, Xin Luna Dong, Alexandra Meliou, and
Divesh Srivastava. 2014. Fusing data with correlations. In Proc. of SIGMOD. ACM,
433–444.

[29] Guo-Jun Qi, Charu C Aggarwal, Jiawei Han, and �omas Huang. 2013. Mining
collective intelligence in diverse groups. In Proc. of WWW. International World
Wide Web Conferences Steering Commi�ee, 1041–1052.

[30] Qiuling Suo, Fenglong Ma, Giovanni Canino, Jing Gao, Aidong Zhang, Pierangelo
Veltri, and Agostino Gnasso. 2017. A Multi-task Framework for Monitoring
Health Conditions via A�ention-based Recurrent Neural Networks. In Proc. of
AMIA.

[31] VG Vydiswaran, ChengXiang Zhai, and Dan Roth. 2011. Content-driven trust
propagation framework. In Proc. of KDD. ACM, 974–982.

[32] Dong Wang, Lance Kaplan, Hieu Le, and Tarek Abdelzaher. 2012. On truth
discovery in social sensing: A maximum likelihood estimation approach. In Proc.
of IPSN. ACM, 233–244.

[33] Xianzhi Wang, �an Z Sheng, Xiu Susie Fang, Lina Yao, Xiaofei Xu, and Xue Li.
2015. An integrated Bayesian approach for e�ective multi-truth discovery. In
Proc. of CIKM. ACM, 493–502.

[34] Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You
Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik: Knowledge guided tensor
factorization and completion for health data analytics. In Proc. of KDD. ACM,
1265–1274.

[35] Ryen W White, Nicholas P Tatone�i, Nigam H Shah, Russ B Altman, and Eric
Horvitz. 2013. Web-scale pharmacovigilance: listening to signals from the crowd.
JAMIA 20, 3 (2013), 404–408.

[36] Houping Xiao, Jing Gao, Qi Li, Fenglong Ma, Lu Su, Yunlong Feng, and Aidong
Zhang. 2016. Towards con�dence in the truth: A bootstrapping based truth
discovery approach. In Proc. of KDD. ACM, 1935–1944.

[37] Houping Xiao, Jing Gao, Long Vu, and Deepak S. Turaga. 2017. Learning Tempo-
ral State of Diabetes Patients via Combining Behavioral and Demographic Data.
In Proc. of KDD. ACM.

[38] Houping Xiao, Jing Gao, Zhaoran Wang, Shiyu Wang, Lu Su, and Han Liu. 2016.
A truth discovery approach with theoretical guarantee. In Proc. of KDD. ACM,
1925–1934.

[39] Christopher C Yang, Ling Jiang, Haodong Yang, and Xuning Tang. 2012. Detect-
ing signals of adverse drug reactions from health consumer contributed content
in social media. In Proc. of ACM SIGKDD Workshop on Health Informatics.

[40] Andrew Yates and Nazli Goharian. 2013. ADRTrace: Detecting expected and
unexpected adverse drug reactions from user reviews on social media sites. In
Advances in Information Retrieval. Springer, 816–819.

[41] Xiaoxin Yin, Jiawei Han, and Philip S Yu. 2008. Truth discovery with multiple
con�icting information providers on the web. IEEE TKDE 20, 6 (2008), 796–808.

[42] Elad Yom-Tov, Diana Borsa, Andrew C Hayward, Rachel A McKendry, and
Ingemar J Cox. 2015. Automatic identi�cation of web-based risk markers for
health events. JMIR 17, 1 (2015).

[43] Elad Yom-Tov and Evgeniy Gabrilovich. 2013. Postmarket drug surveillance
without trial costs: discovery of adverse drug reactions through large-scale
analysis of web search queries. JMIR 15, 6 (2013), e124.

[44] Hengtong Zhang, Qi Li, Fenglong Ma, Houping Xiao, Yaliang Li, Jing Gao, and
Lu Su. 2016. In�uence-aware truth discovery. In Proc. of CIKM. 851–860.

[45] Jingyuan Zhang, Bokai Cao, Sihong Xie, Chun-Ta Lu, Philip S. Yu, and Ann B.
Ragin. 2016. Identifying Connectivity Pa�erns for Brain Diseases via Multi-side-
view Guided Deep Architectures. In Proc. of SDM. SIAM, 36–44.

[46] Ping Zhang, Fei Wang, Jianying Hu, and Robert Sorrentino. 2015. Label Prop-
agation Prediction of Drug-Drug Interactions Based on Clinical Side E�ects.
Scienti�c Reports 5 (2015).

[47] Bo Zhao, Benjamin IP Rubinstein, Jim Gemmell, and Jiawei Han. 2012. A Bayesian
approach to discovering truth from con�icting sources for data integration.
PVLDB 5, 6 (2012), 550–561.

[48] Yudian Zheng, Guoliang Li, and Reynold Cheng. 2016. DOCS: a domain-aware
crowdsourcing system using knowledge bases. PVLDB 10, 4 (2016), 361–372.

[49] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. 2017.
Truth inference in crowdsourcing: is the problem solved? PVLDB 10, 5 (2017),
541–552.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

976


	Abstract
	1 Introduction
	2 Problem Formulation
	3 Sifter Model
	3.1 Model Overview
	3.2 Truth & Reliability Indicator Generation
	3.3 Platform-Level Quality Generation
	3.4 User-Level Quality Generation
	3.5 Observation Generation

	4 Inference and Learning
	4.1 Joint Likelihood Function
	4.2 Latent Variable Inference
	4.3 Parameter Estimation
	4.4 Algorithm Flow

	5 Experiments
	5.1 Datasets
	5.2 Experiment Setup
	5.3 Performance Validation
	5.4 Model Validation
	5.5 Estimated Truth Analysis
	5.6 Platform Quality Validation

	6 Related Work
	7 Conclusions
	Acknowledgments
	References



