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ABSTRACT
Metric learning aims to learn a good distance metric that can cap-

ture the relationships among instances, and its importance has long

been recognized in many fields. In the traditional settings of metric

learning, an implicit assumption is that the associated labels of the

instances are deterministic. However, in many real-world applica-

tions, the associated labels come naturally with probabilities instead

of deterministic values. Thus, the existing metric learning methods

cannot work well in these applications. To tackle this challenge,

in this paper, we study how to effectively learn the distance met-

ric from datasets that contain probabilistic information, and then

propose two novel metric learning mechanisms for two types of

probabilistic labels, i.e., the instance-wise probabilistic label and the

group-wise probabilistic label. Compared with the existing metric

learning methods, our proposed mechanisms are capable of learn-

ing distance metrics directly from the probabilistic labels with high

accuracy. We also theoretically analyze the two proposed mecha-

nisms and provide theoretical bounds on the sample complexity

for both of them. Additionally, extensive experiments based on

real-world datasets are conducted to verify the desirable properties

of the proposed mechanisms.
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1 INTRODUCTION
Calculating distances among data instances is an important basis

for many data mining and machine learning algorithms, and the

performance of such algorithms highly depends on the choice of

distance metric. Although some simple metrics, such as Euclidean

distance, can be used to measure the similarity between instances,

they cannot capture the statistical regularities in the data, which

largely degrades the performance of the algorithms [27]. To address

this challenge, the task ofmetric learning has beenwidely studied [1,

2, 5, 8, 13, 14, 20, 21, 25, 26, 28, 30, 31], and the importance of metric

learning has long been recognized in many fields. The distance

(or similarity) metric produced by metric learning techniques is

capable of capturing the important relationships among instances.

In the traditional settings of metric learning, each instance used

for training is usually associated with an attribute set denoting its

features and a target attribute called label. An implicit assumption

in these settings is that the associated labels of the instances are

deterministic (see Figure 1a). However, in many real-world appli-

cations, the associated labels in a training dataset come naturally

with probabilities due to various reasons, such as uncertainty [16]

or privacy issues [9], and the probabilistic labels usually exist in the

following two forms:

Instance-wise probabilistic label. As shown in Figure 1b, in-

stead of being associated with a deterministic label (e.g., positive or

negative in the binary case), each instance in the training dataset

comes with a probabilistic label, which represents the probability

that the instance has a particular deterministic label. This type of

probabilistic label is very common in many real-world applications.

For example, in crowdsourcing applications [17, 24, 32], a data re-

quester usually outsources the labeling task for each instance to a

large crowd of labelers in order to obtain reliable labels at a low

cost, then the proportion of the labelers who give a particular label

can be treated as the probability that the instance has this particu-

lar label. In the medical diagnosis applications, since a physician

routinely encounters diagnostic uncertainty in practice, she/he may

report a probability that a patient suffers from a disease after the

medical examination [16].

Group-wise probabilistic label. Figure 1c shows the dataset as-
sociated with group-wise probabilistic labels. The training dataset

here consists of several groups of instances, and each group is asso-

ciated with a probabilistic label, which represents the proportion of

the instances in this group that have a particular deterministic label

[9]. In this case, the label information for each instance is unknown,
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(a) (b) (c)

Figure 1: The datasets with different label information. (a) Each instance is associated with a deterministic label. (b) Each
instance is associated with a probabilistic label. (c) Each group is associated with a probabilistic label.

and we can only learn the distance metric from the group-wise

probabilities. This type of probabilistic label has many interesting

applications in real world. For example, in the application of analyz-

ing the outcomes of political elections [18, 22], it is important for

the observers of politics to analyze the connections among different

voters based on the variables such as age, income or education.

However, the voting result of each voter is usually confidential and

cannot be revealed to the public. What the observers can know

is the proportion of the votes per party in each electoral district.

Another example comes from the application of epidemic analysis,

where it is usually difficult to know whether a resident living in a

district suffers from a disease, but the proportion of the residents

who suffer from the disease in this district can be easily obtained.

Despite the prevalence of the probabilistic labels in real-world

applications, the existing work on metric learning cannot well ad-

dress the learning problems with such probabilistic information.

In order to deal with the instance-wise probabilistic label, the ex-

isting metric learning methods need to transform the associated

probability value of each instance to a deterministic label based

on a predefined threshold. However, since the probabilistic dataset

is usually more informative, many useful information may be lost

during the transformation process [16]. Additionally, it is usually

difficult to determine an accurate threshold in practice [17]. As for

the group-wise probabilistic label, to the best of our knowledge,

there is no existing work which can deal with such probabilistic

information. Note that the basic assumption behind metric learning

is that the distance between similar instances should be smaller

than the distance between dissimilar instances [26, 30]. To achieve

the goal, the metric is usually trained under sets of pairwise or

triplet constraints. However, based on the group-wise probabilistic

labels, the pairwise or triplet constraints can not be constructed,

which makes the learning task more challenging.

To tackle the above challenges, in this paper, we propose two

novel and effective metric learning mechanisms to deal with the

aforementioned two types of probabilistic labels, respectively. More

specifically, we first design a novel instance-level metric learning

mechanism (InML), based on which the distance metric can be

directly learned from the instance-wise probabilities. In this mech-

anism, we first construct distance constraints based on the rela-

tive comparison relationships that are derived through ranking

the instance-wise probabilities, and then we formulate the metric

learning process as an optimization problem according to the large

margin framework with the hinge loss. To learn a distance met-

ric directly from the group-wise probabilities, we propose a novel

group-level metric learning mechanism (GrML). In this mecha-

nism, the proportion of the similar instance pairs in each group

is first calculated based on the associated group-wise probability,

and then we model the latent unknown pairwise similarity labels

with the calculated proportions of the similar instance pairs in a

maximum likelihood estimation framework, based on which the

distance metric can be derived.

In summary, the main contributions of this paper are:

• In order to address the metric learning problems with

the instance-wise probabilistic labels, we propose a novel

instance-level metric learning mechanism (InML) which can

fully utilize the probabilistic information so that the learned

metric can be more accurate.

• For the scenarios where the training datasets are associated

with group-wise probabilistic labels, we design a group-level

metric learning mechanism (GrML) based on which the dis-

tance metric can be directly learned from the group-wise

probabilities with high accuracy.

• Both theoretical analysis and extensive experiments on real-

world datasets demonstrate the advantages of the proposed

mechanisms.

2 PROBLEM SETTING
Suppose there is a set of instances X = {xi }Ni=1

, where xi ∈ Ru is

a u-dimensional feature vector. The goal of metric learning is to

learn a distance metric

d(xi ,x j ) = (xi − x j )
TW (xi − x j ) = (xi − x j )

TMTM(xi − x j ), (1)

which can effectively measure the similarity between any two

inputs (instances) xi and x j . Here, d(xi ,x j ) is parameterized by

a positive semidefinite matrixW , which can be decomposed as

W = MTM , andW (or M ∈ Ru×u ) is the parameter that needs to

be learned from the training dataset. If the deterministic label of

each instance, which belongs to one of two possible categories (e.g.,

positive or negative), is provided, the metric can be easily learned

in a supervised manner according to the existing metric learning

methods. However, in many real-world applications, the associated

labels in the training datasets come with probabilities instead of

deterministic values. Here we consider the following two cases:
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• If the case is for the instance-wise probabilistic label, we as-
sume that each instance xi ∈ X is associated with a proba-

bilistic label ci ∈ [0, 1], which represents the probability that

xi belongs to the positive category.

• If the case is for the group-wise probabilistic label, we assume

that the dataset X consists of K disjoint subsets (groups),

i.e., X = ∪{Xk }Kk=1
, and each group Xk is associated with a

probability πk ∈ [0, 1], which represents the proportion of

instances that belong to the positive category in this group.

Our goal in this paper is to learn the optimal distance function

d(xi ,x j ) which is parameterized byW = MTM from the probabilis-

tic labels provided in the above two cases, respectively.

3 METRIC LEARNING FROM
INSTANCE-WISE PROBABILISTIC LABELS

In this section, we present the proposed instance-level metric learn-

ing mechanism (i.e., InML) which can learn the distance metrics

from the instance-wise probabilistic labels (i.e., C = {ci }Ni=1
). The

details of the proposed mechanism are described in Section 3.1, and

the theoretical analysis is provided in Section 3.2.

3.1 Learning Framework
In the case where each instance is associated with a probabilistic

label (i.e., ci ) instead of a deterministic label, a straightforward way

to learn the distance metric is to assign each instance a determinis-

tic label based on a predefined threshold over the probabilities and

then conduct the existing metric learning methods. However, since

the probabilistic dataset is usually more informative, some useful

information may be lost during the transformation from proba-

bilities to deterministic labels, and this will degrade the accuracy

of the learned results. Additionally, it is usually difficult to deter-

mine an accurate threshold in reality. To address this challenge, we

propose to learn the distance metric directly from the instance set

X = {xi }Ni=1
and its associated probabilistic labels (i.e., {ci }Ni=1

). To

achieve the goal, we first construct the distance constraints based

on the relative comparison relationships that are derived through

ranking probabilities, and then we design an optimization function

to enforce the relative comparison of the constructed constraints.

Distance Constraint Construction.Without loss of general-

ity, in this paper we assume that c1 > c2 > · · · > cN−1 > cN . We

first construct a partially ordered triplet set

R = {(xi ,x j ,xk ), 1 ≤ i ̸= j ̸= k ≤ N , j < k}. (2)

For each triplet (xi ,x j ,xk ), it is obvious that c j > ck due to j < k .
Considering the relationships among ci , c j and ck , we can divide the
triplet set R into the following four subsets (R = R1∪R2∪R3∪R4):

• R1 = {(xi ,x j ,xk ), 1 ≤ i < j < k ≤ N }. For each triplet

(xi ,x j ,xk ) in R1, since i < j < k , the associated probabilities
satisfy ci > c j > ck . That is to say xi is more similar to x j
than to xk . Then we can know the distance between xi and
x j should not be larger than that between xi and xk (i.e.,

d(xi ,x j ) ≤ d(xi ,xk )).

• R2 = {(xi ,x j ,xk ), 1 ≤ j < k < i ≤ N }. In this subset, the

associated probabilities for each triplet (xi ,x j ,xk ) satisfy

c j > ck > ci . Then the distance between xi and xk should

not be larger than that between xi and x j (i.e., d(xi ,xk ) ≤
d(xi ,x j )).

• R3 = {(xi ,x j ,xk ), 1 ≤ j < i < k ≤ N , c j > ci > (c j +

ck )/2}. For each triplet (xi ,x j ,xk ) in this subset, the distance

between xi and x j should not be larger than that between

xi and xk (i.e., d(xi ,x j ) ≤ d(xi ,xk )).

• R4 = {(xi ,x j ,xk ), 1 ≤ j < i < k ≤ N , (c j + ck )/2 > ci >
ck }. For each triplet (xi ,x j ,xk ) in this subset, the distance

between xi and xk should not be larger than that between

xi and x j (i.e., d(xi ,xk ) ≤ d(xi ,x j )).

As we can see, for each triplet in the above subsets, there is

a distance constraint that is constructed according to the relative

comparison relationships among the associated probabilities. When

we conduct metric learning from the instance setX = {xi }Ni=1
, these

distance constraints should be satisfied. Next, we discuss how to

learn the distance metric based on these constructed constraints.

Optimization Formulation. In our proposed mechanism, we

formulate the metric learning process as an optimization problem

based on the large margin framework with the hinge loss. Suppose

R ′
1

= R1 ∪ R3 and R ′
2

= R2 ∪ R4. For each triplet (xi ,x j ,xk ) ∈ R,
we first reformulate the above constructed distance constraints as{

d(xi ,x j ) + д ≤ d(xi ,xk ) if (xi ,x j ,xk ) ∈ R ′
1

d(xi ,xk ) + д ≤ d(xi ,x j ) if (xi ,x j ,xk ) ∈ R ′
2
,

(3)

where d(xi ,x j ) = (xi − x j )
TW (xi − x j ), and д is a parameter that

regularizes the gap (or margin) between d(xi ,x j ) and d(xi ,xk ). In

this paper, we choose a unit margin. To monitor the inequality

constraints in Eqn. (3), we then propose to minimize the following

hinge loss function

min

W

∑
(xi ,x j ,xk )∈R′

1

max{0,d(xi ,x j ) − d(xi ,xk ) + д} (4)

+

∑
(xi ,x j ,xk )∈R′

2

max{0,d(xi ,xk ) − d(xi ,x j ) + д} + α ∥W ∥∗,

where ∥W ∥∗ represents the nuclear norm to promote low-rankness,

and α is the regularization parameter. The operator max{0, ·} in
Eqn. (4) denotes the hinge loss function, which penalizes the triplets

that violate the inequality constrains in Eqn. (3). Note that if the

inequality does hold, then its hinge loss has a negative argument and

makes no contribution to the overall loss function. Since there exist

triplets violating the above constraints, we relax these constrains by

incorporating nonnegative slack variables to monitor these margin

violations. Then we formulate the metric learning process as the

following optimization problem.

min

W , {ξ 1

i jk }, {ξ
2

i jk }

∑
(xi ,x j ,xk )∈R′

1

1

|R ′
1
| ξ

1

i jk +

∑
(xi ,x j ,xk )∈R′

2

1

|R ′
2
| ξ

2

i jk

+ α ∥W ∥∗ (5)

s.t. ∀(xi ,x j ,xk ) ∈ R ′
1

: max{0,d(xi ,x j ) − d(xi ,xk ) + д} ≤ ξ 1

i jk ,

∀(xi ,x j ,xk ) ∈ R ′
2

: max{0,d(xi ,xk ) − d(xi ,x j ) + д} ≤ ξ 2

i jk ,

∀(xi ,x j ,xk ) ∈ R ′
1

: ξ 1

i jk ≥ 0,

∀(xi ,x j ,xk ) ∈ R ′
2

: ξ 2

i jk ≥ 0,

where ξ 1

i jk ’s, ξ
2

i jk ’s are the introduced slack variables that allow

the large margin inequality in Eqn. (3) to violate the margin. Then,
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we solve the optimization problem via the sub-gradient descent

method. Finally, we can derive the distance function d(xi ,x j ) =

(xi − x j )
TW (xi − x j ).

Discussion. In our proposed mechanism, we construct the dis-

tance constraints by comparing d(xi ,x j ) with d(xi ,xk ) for each

triplet. In fact, the constraints can also be derived from the compari-

son relationship betweend(xk ,x j ) andd(xk ,xi ). Additionally, when
there are some instances whose associated probabilities are close

(or equal) to each other, we can incorporate the binning method

into our proposed mechanism and divide the instance sequence (i.e.,

x1,x2, ...,xN ) into disjoint bins. Then only the constrains for the

triplets whose instances are in different bins are enforced. In this

way, the constraint complexity can be reduced and the proposed

mechanism will be robust to noise inherent in the probabilities.

3.2 Theoretical Analysis
In this section, we theoretically analyze the error bound that is

generated by the proposed mechanism (InML). Suppose R(W ) is an

unbiased estimator of the true risk andW ∗
is the true risk minimizer

which is estimated from R(W ) (i.e.,W ∗
= arg minW R(W )). Let Ŵ

be the distance metric learned based on the optimization problem

described in Eqn. (5). Then we have the following theorem.

Theorem 3.1. Let N denote the number of the instances in the
training dataset (i.e., |X|) and r denote the rank of Ŵ . Assume that
∥XXT ∥ = O(N /u) and maxi (x

T
i Ŵ xi ) = O(r logN ). Then, with the

probability at least 1−δ , where δ ∈ (0, 1), we have the following error
bound:

R(Ŵ ) − R(W ∗
) = O(

√
ru(logu + log

2 N log(2/δ ))

N 3 − 3N 2
+ 2N

), (6)

where u is the dimension of the feature vector.

Theorem 3.1 can be proved based on Rademacher analysis

[19]. Due to the space limit, we here omit the proof of the

above theorem. According to this theorem, it is easy to verify

that the error bound generated by the proposed mechanism is

O(

√
log

2 N /(N 3 − 3N 2
+ 2N )), where N > 3. Since logN <

3
√
N ,

we can get that the above generated error bound is smaller than

the existing best-known bound O(

√
1/N ) that is derived from the

datasets with binary class labels [3]. That is to say our mechanism

can learn a good metric with a smaller number of instances than

the existing metric learning methods.

4 METRIC LEARNING FROM GROUP-WISE
PROBABILISTIC LABELS

As described in Section 2, in the case where the probabilistic label

is group-wise, we only have access to the group-wise probabilities

(i.e., {πk }Kk=1
) instead of the instance-wise label information, which

makes it more difficult to learn an accurate metric. To address this

challenge, we propose a novel and effective learning mechanism

(i.e., GrML) which can learn the distance metric directly from the

group-wise probabilities. We first formulate the learning frame-

work as an optimization problem and discuss how to effectively

solve this problem in Section 4.1 and Section 4.2, respectively. Then

we conduct theoretical analysis for the proposed mechanism in

Section 4.3.

4.1 Learning Framework
Suppose the instance set X consists of K disjoint groups, i.e.,

X = ∪{Xk }Kk=1
, where Xk = {xki }

|Xk |
i=1

is the k-th group and xki
represents the i-th instance in group Xk . For each instance pair

(xki ,x
k
j ) in group Xk , we assume that there is a label yki j ∈ {1,−1}

that denotes whether the two instances are similar (i.e., have the

same class label) or not. If xki and xkj are similar, yki j is equal to

1, otherwise it is equal to −1. Here we associate each group Xk
with another probability π̂k , which represents the proportion of

the instance pairs whose similarity labels (i.e., yki j ) are equal to 1 in

group Xk . Then π̂k can be derived as

π̂k = 1 − 2|Xk |πk (1 − πk )

|Xk |−1

. (7)

Since πk is a known probability value for group Xk . π̂k can be

treated as a constant during the training process of the group-wise

metric learning model.

Our goal in this section is to learn the distance metric d(xi ,x j ) =

(xi − x j )
TMTM(xi − x j ), which is parameterized by M . Here, we

seek an alternative approach by decomposing matrixW asMTM
[31]. To achieve the goal, we adopt maximum likelihood estimation

here. That is to say, we need to find a matrixM that can maximize

the likelihood of the instance pairs in each group Xk . We model the

probability for each instance pair (xki ,x
k
j ) and the corresponding

unknown label yki j as

Pr(yki j |x
k
i ,x

k
j ;M,b) =

1

1 + exp(−yki j (d(xi ,x j ) − b))

, (8)

where yki j ∈ {−1, 1} and b is the bias, which also works as a thresh-

old. The two instances xki and xkj are treated as similar (i.e., yki j = 1)

only when d(xki ,x
k
j ) is greater than or equal to b, otherwise they

are treated as dissimilar (i.e., yi j = −1). In this paper, we set b as 1.

Then we can formulate the following optimization problem

min

I,M

K∑
k=1

∑
i<j

2 log(1 + exp(−yki j (d(xki ,x
k
j ) − b)))

|Xk |(|Xk |−1)

+

∥M ∥2

F
2

,

s.t.

∑
i<j

yki j

|Xk |(|Xk |−1)

+

1

2

= π̂k , k = 1, 2, ...,K (9)

where I = {yki j |i < j,k = 1, ...,K}. The objective function in this

optimization problem contains two terms. The first term is derived

from the negative log likelihood of the instance pairs and the second

term is the Frobenius-norm regularization. Since the elements (i.e.,

yki j ’s) in set I are not known a priori, we also need to estimate them

during the optimization process, and the estimated yki j ’s should

satisfy the constraint in Eqn. (9). However, the categorical property

of yki j makes it difficult to solve this optimization problem.

In order to address the above challenge, we relax each yki j to

a continuous probability-like variable pki j ∈ [0, 1]. This idea is

inspired from the Deterministic Annealing (DA) technique [4] and

the variable pki j can be interpreted as probability that yki j is equal

to 1. Obviously, the probability that yki j = −1 is 1 − pki j . Then the
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optimization problem in Eqn. (9) can be rewritten as

min

P,M

K∑
k=1

∑
i<j

2pki j

|Xk |(|Xk |−1)

log(1 + exp(−(d(xki ,x
k
j ) − b)))

+

K∑
k=1

∑
i<j

2(1 − pki j )

|Xk |(|Xk |−1)

log(1 + exp((d(xki ,x
k
j ) − b)))

+

1

2

∥M ∥2

F ,

s.t.

∑
i<j

2pki j

|Xk |(|Xk |−1)

= π̂k , k = 1, 2, ...,K (10)

where P = {pki j |i < j,k = 1, 2, ...,K}. To mitigate local minima, an

entropy term [4] for the distributions defined by pki j is also added

to the above objective function. Finally, we formulate the metric

learning process as the following optimization problem

min

P,M
L(P ,M) =

K∑
k=1

∑
i<j

2pki j

|Xk |(|Xk |−1)

log(1 + exp(−(d(xki ,x
k
j ) − b)))

+

K∑
k=1

∑
i<j

2(1 − pki j )

|Xk |(|Xk |−1)

log(1 + exp((d(xki ,x
k
j ) − b)))

+

K∑
k=1

2T

|Xk |(|Xk |−1)

∑
i<j

(pki j logpki j + (1 − pki j ) log(1 − pki j ))

+

1

2

∥M ∥2

F ,

s.t.

∑
i<j

2pki j

|Xk |(|Xk |−1)

= π̂k , k = 1, 2, ...,K (11)

where T is a penalty parameter.

4.2 Optimization
In this section, we discuss how to solve the optimization problem

described in Eqn. (11). The solution we adopted here is a two step

iterative procedure.

Step 1:We first fix P , which is estimated in the previous iteration.

If it is the first iteration, the elements in P are randomly initialized.

Then we solve the following optimization problem

min

M
L1(M) =

K∑
k=1

∑
i<j

2pki j

|Xk |(|Xk |−1)

log(1 + exp(−(d(xki ,x
k
j ) − b)))

+

K∑
k=1

∑
i<j

2(1 − pki j ) log(1 + exp((d(xki ,x
k
j ) − b)))

|Xk |(|Xk |−1)

+

∥M ∥2

F
2

.

(12)

Here we adopt gradient descent method to updateM , and the gra-

dient is calculated as

∂L1

∂M
=

K∑
k=1

∑
i<j

2pki j

|Xk |(|Xk |−1)

2(−M)(xki − xkj )
T

(xki − xkj )

1 + exp(d(xki ,x
k
j ) − b)

+

K∑
k=1

∑
i<j

2(1 − pki j )

|Xk |(|Xk |−1)

2M(xki − xkj )
T

(xki − xkj )

1 + exp(−(d(xki ,x
k
j ) − b))

+ M, (13)

where d(xki ,x
k
j ) = (xki − xkj )

TMTM(xki − xkj ).

Step 2: In this step, we fixM that is estimated in step 1, and then

update P . Through introducing the Lagrange multipliers {λk }Kk=1
,

we get the Lagrange form of the optimization problem for P :

L2(P ) = L(P ,M) −
K∑
k=1

λk (

∑
i<j

2pki j

|Xk |(|Xk |−1)

− π̂k ). (14)

Let the partial derivative of L2(P ) with respect to pki j be zero, and
we can get

pki j =

1

1 + exp(
1

T log

1+exp(−(d (xki ,x
k
j )−b))

1+exp((d (xki ,x
k
j )−b))

− λk
T )

. (15)

Combining Eqn. (15) with the constraint in Eqn. (11), we get∑
i<j

2

|Xk |(|Xk |−1)(1 + exp(
1

T log

1+exp(−(d (xki ,x
k
j )−b))

1+exp((d (xki ,x
k
j )−b))

− λk
T ))

= π̂k ,

(16)

where the the Lagrange multiplier λk can be calculated by solving

the root finding problem. Finally, the calculated λk is plugged into

Eqn. (15) such that pki j can be updated.

The above two steps will be iteratively conducted until the con-

vergence criterion is satisfied. In this paper, we calculate the KL-

divergence of P in two consecutive iterations and set a threshold

(e.g., 10
−6
) of the KL-divergence as the convergence criterion [4].

The optimization procedure is summarized in Algorithm 1.

Algorithm 1 Metric learning from group-wise probabilities

Input: Instance groups {Xk }Kk=1
and group-wise probabilities

{πk }Kk=1

Output: The parameterM

1: Calculate π̂k according to Eqn. (7);

2: Initialize P = {pki j |i < j,k = 1, 2, ...,K};
3: repeat
4: UpdateM according to step 1 in Section 4.2;

5: Update P according to step 2 in Section 4.2;

6: until The convergence criterion is satisfied;

7: return The parameterM .

4.3 Theoretical Analysis
As the only available label information, the associated probabilities

{πk }Kk=1
play an important role during the learning process. In this

section, we first provide an intuitive understanding about what

kinds of πk ’s can generate the most informative groups, and then

give the sample complexity analysis.

Recall that we introduce π̂k , i.e., the proportion of the instance

pairs whose similarity labels are equal to 1 in group Xk , as the su-
pervision information during the learning process. For each group

Xk , the larger (or less) the value of π̂k , the more informative the

group. When π̂k equals to 0 or 1, group Xk is the most informa-

tive for metric learning because we can know the similarity labels

(i.e.,{yki j }’s) of all the instance pairs in this group. In order to ana-

lyze the effect of πk on π̂k , we plot the graph of Eqn. (7) in Figure 2,

from which we can see π̂k reaches its minimum values (around
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0.5) when πk = 0.5, and π̂k approaches its maximum values (i.e., 1)

when πk approximates 0 or 1. This means that if πk approaches 0 or

1, Xk will be an informative group and provide more information

for the metric learning process. Next, we provide the following

theorem to show the upper bound of the size of the training dataset

that is used for generating an informative group.

0.4

1
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0.6

0.75 300

0.7

π̂
k

0.8

250

πk

0.5
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200
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1

150
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50
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Figure 2: π̂k w.r.t. πk and |Xk |.

Theorem 4.1. Suppose that the instance set X is randomly split
into K groups with equal group size m, and Γ ∈ [0, 1] denotes the
proportion of the positive instances in X. Let η (η ̸= Γ and η ̸= 1 −
Γ) be a positive constant that is close to 0. For the k-th group, the
probability that min{1 − πk ,πk } ≤ η is O(e−βm ). Thus the number
of the instances in set X is at most O(meβm ), where β is a constant
that depends on Γ and η.

Proof. For random sampling, we assume that the probability

that the number of positive instances in Xk is less thanmη or more

thanm(1 − η) is denoted as P = Pr(

∑m
i=1

qki ≤ mη or ≥ m(1 − η)),

where qki ∈ {0, 1} is a random variable which indicates whether

xki is a positive instance and takes 1 with probability Γ. Based on

Bernstein inequality, we have

Pr(

m∑
i=1

qki ≥ m(1 − η)) ≤ exp(− 3m(1 − η − Γ)
2

2Γ(1 − Γ) + 2(1 − η − Γ)

) = e−β1m

and

Pr(

m∑
i=1

qki ≤ mη) ≤ exp(− 3m(Γ − η)
2

2Γ(1 − Γ) + 2(Γ − η)

) = e−β2m ,

where β1 = 3m(1−η − Γ)
2/(2Γ(1− Γ) + 2(1−η − Γ)) and β2 = 3m(Γ−

η)
2/(2Γ(1−Γ)+2(Γ−η)). Then, there exists a constant β satisfying P =

e−βm . Therefore, in order to satisfy min{1 − πk ,πk } ≤ η, the total

number of instances in set X is N = m/P, i.e. N = O(meβm ). □

The above theorem shows that once the size of set X (i.e., N )

is fixed, the increase of the group sizem will lead to the decrease

of the probability that min{1 − πk ,πk } ≤ η. In other words, for a

fixed dataset X, when it is divided into subsets with larger group

size, the proportion of informative groups becomes smaller, and

then the performance of the proposed mechanism is degraded due

to the less informative training data.

5 EXPERIMENTS
We conduct experiments on real-world datasets to evaluate the

performance of the proposed mechanisms. The experimental setup

is first described in Section 5.1. Then we show the experimental

results for the instance-level mechanism (InML) and the group-level

mechanism (GrML) in Section 5.2 and Section 5.3, respectively.

5.1 Experimental Setup
In this section, we first describe the adopted real-world datasets for

the two proposed mechanisms, respectively. Then we introduce the

baselines which are compared with the proposed mechanisms.

Datasets for the instance-level mechanism. To verify the

advantages of InML, we adopt eight real-world datasets which are

grouped into the following three categories:

• Regression Datasets. We first adopt three UCI datasets (i.e.,

Concrete, Housing, and Energy) that are used in the regres-

sion task. For each instance in these datasets, we normalize

its real-valued output to [0, 1] and take the normalized value

as the probability (i.e., ci ) that this instance belongs to the

positive category. In order to adapt these datasets to the

baseline methods, we also define a threshold based on these

probabilities to distinguish the positive and negative cate-

gories. For example, in the housing dataset, the real-valued

outputs represent the attractiveness of houses to the cus-

tomers. After normalizing the real-valued outputs, we sort

the instances (i.e., houses) by the probability (i.e., ci ) in a

descending order. Then we label the top 30% of the instances

with positive category (high attractiveness) and the remain-

ing instances with negative category (low attractiveness).

• Ordinal Classification Datasets. We also adopt three other

real-world datasets
1
(i.e., Cancer, Stock, and Machine) which

come with multiple classes and full-order relations among

classes. For each dataset, the associated probabilities (i.e.,

{ci }Ni=1
) are generated by utilizing the min-max normaliza-

tion strategy on the ordinal class labels. Additionally, we also

define a binary threshold for each dataset according to the

meaning of ordinal classes. For example, the Cancer dataset

contains six ordinal classes {1, 2, 3, 4, 5, 6}. After the normal-

ization, the class labels are transformed to the probabilities

{0, 0.2, 0.4, 0.6, 0.8, 1}. Since {1, 2} represent benignancy and
{3, 4, 5, 6} represent the different stages of malignancy, we

can set the threshold as 0.3 for the binary label.

• Crowdsourced Datasets. Finally, we adopt two crowdsourced

datasets, i.e., the movie review dataset and the music genre

dataset [17]. The movie review dataset contains 5000 movies

and the task of the workers is to judge whether the review

of a movie is positive or negative. In the music genre dataset,

there are 700 pieces of music and the workers need to judge

whether a piece of music is rock (positive) or non-rock (neg-

ative). For each instance (a movie or a piece of music), the

associated probability (i.e., ci ) is defined as the fraction of

the workers who provide positive labels for this instance.

Additionally, we set a threshold (0.5 in this paper) over the

probabilities to generate the binary label for each instance.

Datasets for the group-level mechanism. As for GrML, we

evaluate its performance on three popular datasets: the Ionosphere

dataset, the Heart dataset and the Diabetes dataset [29], which are

widely used in the settings with group probabilities.

The details of the adopted datasets are described in Table 1.

1
http://www.gagolewski.com/resources/data/ordinal-regression/
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Table 1: The statistics of the adopted datasets.

Dataset Size Dimension Dataset Size Dimension
Concrete 1,030 8 Movie 5,000 1,199

Housing 506 13 Music 700 123

Energy 768 8 Ionosphere 351 34

Cancer 194 32 Heart 303 23

Stock 950 9 Diabetes 768 9

Machine 199 6 - - -

Baseline Methods. In this paper, we compare the proposed

mechanisms with the following state-of-the-art metric learning

methods. GMML [30] learns the distance metric by formulating an

unconstrained smooth and convex optimization problem. ITML [5]

aims to learn a Mahalanobis distance function, and the authors for-

mulate the problem as minimizing the differential relative entropy

between two multivariate Gaussians. LMNN [26] learns the dis-

tance metric by letting the k-nearest neighbors always belong to the
same class while instances from different classes are separated by a

large margin. LowRank [31] takes into account the sparse feature

selection, which is implemented by encoding a low-rank structure

to the distance metric learning process. R2ML [8] is a local dis-

tance metric learning method in which a sparse-inducing matrix

norm is introduced to control the rank of the involved mappings.

Additionally, Cosine and Euclidean are also taken as baselines,

which adopt cosine similarity and l2-norm distance to measure the

similarity between two instances.

5.2 Experiments for the Instance-level metric
learning Mechanism

In this section, we evaluate the performance of InML. The experi-

ments are conducted for 10 times and we report the average results.

Performance comparison. We first compare the accuracy of

InML with that of the baseline methods under different training

dataset size. Here we consider two cases where the training set size

is set as 50 and 100, respectively. For each dataset, we first randomly

select half of all instances as the testing set, and then randomly

extract the training dataset from the remaining instances. For the

case where the training dataset size is set as 100, if the number of

the instances used for training is less than 100, we will randomly

select some instances from the testing set and add them into the

training dataset. The results for the two cases are shown in Table 2.

In this paper, the accuracy is calculated based on the instance labels

in the testing set and the KNN classifier is adopted to evaluate the

performance of the methods [8, 26, 30]. From Table 2, we can see

InML performs much better than the baselines in all cases. The

reason is that InML can extract more information from instance

probabilities, while the baselines can only derive limited knowledge

using the class labels.

Convergence. In order to evaluate the convergence of InML, we

calculate the objective value in each iteration. Figure 3 reports the

evolution of the objective value on the Concrete dataset. The results

in this figure show that the objective value gradually converges to

0 with the increase of the iteration number, and this verifies that

the convergence of InML can be guaranteed.

Performance on unbalanced datasets.We also evaluate the

performance of InML when the datasets are unbalanced, i.e., there
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Figure 3: Convergence of InML on the Concrete dataset.

are only a small number of instances that belong to the positive (or

negative) category in the dataset. In this experiment, we adopt the

regression datasets (i.e., Concrete, Housing and Energy) and set the

binary threshold as 10% instead of 30%. That is to say, only 10% of

the instances in each dataset are positive. For each dataset, we still

randomly select half of all instances as the training dataset and take

the remaining instances as the testing set. Then we calculate the G-

mean which is used for performance assessment over unbalanced

dataset and is defined as the square root of the product of the

sensitivity and specificity for each method. The results are shown in

Figure 4, fromwhich we can see InML still has the best performance

when the datasets are unbalanced. The reason is that the proposed

mechanism can extract more information through the ranking-

based relative comparisons while the baseline methods can only

exploit the binary class labels.
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Figure 4: G-mean on unbalanced datasets.

Robustness. In reality, the instance-wise probabilistic labels

may be noisy due to various reasons [16]. Thus, it is important

to evaluate the robustness of InML when probabilistic labels are

perturbed by different levels of noise. In this experiment, we con-

sider three levels of noise: weak noise, moderate noise and strong

noise, which are generated from 0.05 ∗ N(0, 1), 0.15 ∗ N(0, 1) and

0.30 ∗ N(0, 1), respectively. Then we add the generated noise to

the associated probability for each instance. Please note that the

summation would be projected to range [0, 1] if it is larger than

1 or less than 0. For each dataset, we randomly select half of all

instances as the training dataset and take the remaining instances

as the testing set. Table 3 shows the accuracy of all the methods

on Concrete, Stock, and Machine datasets. The results in this table

show that InML significantly outperforms the baseline methods

in all cases. More importantly, compared with the baselines, InML

performs more stably when the level of the noise varies, and this
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Table 2: The accuracy of the instance-level mechanism (InML) under different training dataset sizes.

Regression Datasets Ordinal Datasets Crowdsourced Datasets

Training set size Methods Concrete Housing Energy Cancer Stock Machine Movie Music

InML 0.8002 0.8268 0.8969 0.6531 0.8887 0.9233 0.6997 0.7604
Cosine 0.6996 0.7001 0.6905 0.5000 0.5767 0.3200 0.5234 0.6557

Euc 0.7387 0.7283 0.8468 0.5306 0.8655 0.8717 0.5173 0.7091

GMML 0.7400 0.7835 0.8831 0.5514 0.8782 0.8733 0.5180 0.7343

50 ITML 0.7117 0.7500 0.7719 0.3299 0.6279 0.8132 0.5524 0.7296

LMNN 0.7713 0.8255 0.8890 0.6474 0.8799 0.8840 0.6767 0.7588

LowRank 0.6957 0.7746 0.8779 0.5340 0.8739 0.3300 0.5440 0.7091

R2ML 0.7707 0.7395 0.8368 0.5629 0.8666 0.8900 0.5652 0.6777

InML 0.8123 0.8596 0.9251 0.6759 0.9139 0.9300 0.7020 0.7868
Cosine 0.7031 0.7113 0.7056 0.5510 0.6155 0.3500 0.5352 0.6792

Euc 0.7542 0.7434 0.8727 0.5680 0.8866 0.8767 0.5290 0.7248

GMML 0.7471 0.8019 0.9030 0.5710 0.8939 0.8983 0.5358 0.7374

100 ITML 0.7335 0.7569 0.8021 0.3544 0.6674 0.8191 0.5673 0.7563

LMNN 0.7845 0.8425 0.9123 0.6533 0.9007 0.8872 0.6787 0.7781

LowRank 0.7193 0.7962 0.8983 0.5663 0.8575 0.3500 0.5652 0.7233

R2ML 0.7774 0.8110 0.8883 0.5714 0.9097 0.8933 0.6020 0.6934

Table 3: The accuracy of the instance-level mechanism (InML) under different noise levels.

Weak noise Moderate noise Strong noise

Methods Concrete Stock Machine Concrete Stock Machine Concrete Stock Machine

InML 0.7926 0.8739 0.9050 0.7917 0.8718 0.8800 0.7915 0.8717 0.8767
Cosine 0.6922 0.5756 0.3250 0.6715 0.5745 0.2950 0.6641 0.4636 0.2500

Euc 0.7293 0.7962 0.8400 0.7232 0.7721 0.8250 0.7080 0.7718 0.8017

GMML 0.7345 0.8221 0.8400 0.7322 0.8197 0.8342 0.7025 0.8109 0.8167

ITML 0.7112 0.6081 0.7965 0.7049 0.5960 0.7889 0.7002 0.5463 0.7345

LMNN 0.7688 0.8401 0.8550 0.7568 0.8272 0.8411 0.7479 0.7850 0.8052

LowRank 0.6667 0.7871 0.3300 0.5568 0.7535 0.2950 0.5326 0.7710 0.2517

R2ML 0.7526 0.7920 0.8400 0.7329 0.7917 0.8398 0.7145 0.8116 0.8300

verifies that the proposed mechanism is more robust against the

noise. This is mainly because we construct the relative constraints

based on the ranking technique, instead of using concrete numerical

probabilities which are usually subject to noise in real world.

5.3 Experiments for the Group-level Metric
Learning Mechanism

In this section, we evaluate the performance of GrML on three

real-world datasets [29] (i.e., Ionosphere, Heart and Diabetes). To

generate the probabilistic examples, we randomly split the training

dataset into groups of data sizem. For each group, the associated

probability (i.e., πk ) is the fraction of positive instances in this

group, and it can be easily calculated based on the true label infor-

mation of the datasets. In this experiment, we only take Cosine
and Euclidean as baselines. The reason is that other baselines need

to access each instance’s label during the learning process and they

cannot address the group-wise probability. Additionally, we mea-

sure each method’s performance by the relative accuracy, which is

defined as the accuracy of GrML relative to the accuracy that can

be achieved by a metric learning method (we use LMNN in this

paper) that has full access to the deterministic labels. Note that the

accuracy calculated here is based on the predicted similarity labels

of the instance pairs in the testing set, and these similarity labels

are derived based on the learned distance metric.

Performance comparison.We first compare the relative accu-

racy of GrML with that of the baselines when the training dataset

size and the group size vary. Here we consider eight cases where

the training dataset size varies from 8 to 64. For each case, we first

randomly select half of all instances in each dataset as the testing

set, and then extract the training dataset from the remaining in-

stances. Values ofm = 4, 8 and 16 are chosen in this experiment.

The results on the three datasets are shown in Figure 5, from which

we can see GrML performs much better than the baselines in all

cases, and the advantage of GrML becomes large when the training

set size increases. Since Cosine and Euclidean only adopt cosine

similarity and l2-norm distance to measure the similarity of the in-

stance pairs in the testing set, the performance of the two baselines
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(c) Ionosphere dataset

Figure 5: Relative accuracy of the group-level mechanism w.r.t. the size of training dataset.

keeps stable when the training set size varies. Additionally, we can

see that GrML achieves very high relative accuracy (the minimum

value is lager than 0.8). This means that the performance of GrML

is almost equivalent to that of the learning method which has full

access to the instance labels. The results in Figure 5 also show that

the relative accuracy of GrML decreases when the group size (i.e.,

m) becomes larger. This is mainly because the groups become less

informative when the group size increases, which is consistent with

the theoretical analysis in Section 4.3.

Distribution of the group-wise probabilities.Next, we study
the effect of the group size (i.e.,m) on the distribution of the group

probabilities. In this experiment, we adopt the Diabetes dataset and

the Ionosphere dataset. We first split each dataset into subsets (or

groups) with equal size (m = 4, 16), and then compute the associated

probability for each group based on the true label information. Then,

we use histograms to provide visual displays of the distribution

of group probabilities. To construct a histogram, we firstly divide

the entire range of group probabilities (i.e., [0, 1]) into a series of

consecutive and non-overlapping intervals (bins) and then compute

the proportion of the groups that fall into each bin, with the sum

of the heights equal to 1. Figure 6 shows the histograms of the

two datasets, and each solid line represents a fit to the exponential

distribution. As Figure 6 shows, the proportion of groups whose

group probabilities are closer to 0 and 1 decreases when we increase

the group size (i.e.,m) from 4 to 16, which means the groups become

less informative. This is consistent with the theoretical analysis and

the experimental results in Figure 5. From Figure 5, we can also see

that GrML can achieve good performance even in the challenging

situation wherem = 16, which means that the proposed mechanism

is insensitive to the changes of the group size.
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Figure 6: The distribution of the group-wise probabilities.

Convergence. Last but not least, we evaluate the convergence
of GrML. In this experiment, the training dataset size and the group

size is set as 48 and 8, respectively. Then we calculate the KL-

divergence between values of {pki j } in consecutive iterations. Fig-

ure 7 shows the results on the Ionosphere dataset. Here we conduct

the experiment for three times (i.e., Trail 1, Trail 2 and Trail 3). Each

time the instances in the training dataset are randomly selected.

From this figure, we can see the KL-divergences gradually converge

to 0 with the increase of the iteration number, and this confirms

that the convergence of GrML can be guaranteed.
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Figure 7: Convergence of the group-level mechanism on the
Ionosphere dataset.

6 RELATEDWORK
The past few years have witnessed a great increase in the number

of metric learning works [1, 2, 5–8, 10–14, 20, 23, 25, 26, 28, 30, 31].

Traditional supervised metric learning algorithms [7, 8, 13, 20, 23,

25, 26, 30, 31] optimize the similarity metrics with the assump-

tion that a fully labeled training dataset is available. The works in

[7, 8, 23, 26, 30, 31] use the binary labels to generate sets of con-

straints which are then used as the supervised information. The au-

thors in [20] deal with the metric learning problem with multi-class

data. [25] presents a metric learning method to address the scenar-

ios where some class labels in the training dataset are mislabeled.

[13] proposes a method to learn a distance metric for multi-label

problems where each instance in the training dataset is associated

with a set of labels. There are also some other works [1, 2, 5, 14, 28]

which address the problems of semi-supervised metric learning.

[14] proposes a method which maximizes the entropy of the proba-

bility on labeled data and minimizes it on unlabeled data following
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entropy regularization. Meanwhile, the semi-supervised informa-

tion for metric learning problems can also be given in terms of a

set of pairwise similarity and dissimilarity constraints [1, 2, 5, 28].

A well-known metric learning method with these constrains was

proposed by Xing et al. [28]. Following this work, there are several

emerging works [1, 2, 5] which study the metric learning problems

by exploiting the given relevant constraints. Additionally, there are

some works [6, 10–12] that address the multiple instance metric

learning problem where the training dataset is provided as a set

of labeled bags. They aim to learn a distance metric, which makes

bags that share a label closer, and pushes bags that do not share any

label apart [6, 11]. However, the above discussed metric learning

works fail to deal with the probabilistic class labels.

Learning from such probabilistic information is of great impor-

tance [29]. Someworks in other fields [9, 15, 16, 18, 29] also consider

how to learn models from the probabilistic labels. However, the

problem settings in these papers are quite different from ours. For

example, the authors in [9] present class ratio models, which take

as input an unlabeled set of data and predict the proportions of

instances in the set belonging to different classes.

7 CONCLUSIONS
In this paper, we first propose an instance-level metric learning

mechanism (InML), based on which the distance metrics can be

learned directly from the instance-wise probabilistic labels. Com-

pared with the existing metric learning methods, InML can fully

utilize the probabilistic information and learn a more accurate met-

ric. For the cases where the datasets are associated with group-wise

probabilistic labels, we design a group-level metric learning mecha-

nism (GrML), which can learn distance metrics directly from the

group-wise probabilistic labels with high accuracy. Both theoreti-

cal analysis and extensive experiments on real-world datasets are

provided to demonstrate the advantages of the proposed metric

learning mechanisms.
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