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ABSTRACT
Soliciting answers from online users is an efficient and effective

solution to many challenging tasks. Due to the variety in the qual-

ity of users, it is important to infer their ability to provide correct

answers during aggregation. Therefore, truth discovery methods

can be used to automatically capture the user quality and aggregate

user-contributed answers via a weighted combination. Despite the

fact that truth discovery is an effective tool for answer aggrega-

tion, existing work falls short of the protection towards the privacy

of participating users. To fill this gap, we propose perturbation-

based mechanisms that provide users with privacy guarantees and

maintain the accuracy of aggregated answers. We first present a

one-layer mechanism, in which all the users adopt the same prob-

ability to perturb their answers. Aggregation is then conducted

on perturbed answers but the aggregation accuracy could drop

accordingly. To improve the utility, a two-layer mechanism is pro-

posed where users are allowed to sample their own probabilities

from a hyper distribution. We theoretically compare the one-layer

and two-layer mechanisms, and prove that they provide the same

privacy guarantee while the two-layer mechanism delivers better

utility. This advantage is brought by the fact that the two-layer

mechanism can utilize the estimated user quality information from

truth discovery to reduce the accuracy loss caused by perturbation,

which is confirmed by experimental results on real-world datasets.

Experimental results also demonstrate the effectiveness of the pro-

posed two-layer mechanism in privacy protection with tolerable

accuracy loss in aggregation.

CCS CONCEPTS
• Information systems → Data mining; • Security and pri-
vacy → Privacy protections;
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1 INTRODUCTION
Nowadays, crowdsourcing gains an increasing popularity as it can

be adopted to solve many challenging question answering tasks.

For example, crowds of users can help search engines to answer

the question on whether a website is relevant to a search query

[36]; patients who are taking new drugs can answer the question

on whether a specific drug has a certain side-effect [25]; and stu-

dents involved in massive open online courses can help instructors

answer the question on which grade the other students should

earn during peer grading [2]. In these and many more applications,

crowds of users can contribute their efforts to answer questions

of interest, which largely reduces the financial cost and benefits

various application domains.

However, the information quality of the crowdsourced answers

varies significantly among different users. Some users may have

sufficient domain knowledge and thus can provide accurate and

meaningful answers, while others may submit biased or wrong an-

swers. The situation becomes even worse when some users disperse

deceptive answers driven by the financial incentives. The diversity

of users motivates an important task for crowdsourced question

answering: how to aggregate the noisy candidate answers from

crowds of users to infer accurate answers?

A straightforward approach to aggregate the crowdsourced an-

swers is to conduct majority voting in which the answer that has

the highest number of occurrences will be selected as the final an-

swer. Unfortunately, this naive approach assumes that all the users

are equally reliable, so it cannot distinguish high-quality users from

low-quality ones.

In order to provide more accurate answers, it is necessary to

capture the variety of user quality and incorporate such quality

information into aggregation. However, prior knowledge of user

quality is not available, and it is a challenge to estimate user quality

without groundtruth information. To tackle this challenge, truth
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discovery [8, 19, 20, 32, 35] emerges as a hot topic due to its ability

to estimate user quality without any supervision. As both accurate

answers and user quality are unknown, truth discovery approaches

adopt the following two principles: If a candidate answer is sup-

ported by many high-quality users, it is more likely to be the true

answer; Meanwhile, if a user provides many accurate answers,

he will be assigned a high weight. These two principles rely on

each other, and they are tightly coupled together. Based on these

principles, various truth discovery methods have been proposed

for different scenarios, and the existing work [18, 22] has demon-

strated the advantages of adopting truth discovery to aggregate

crowdsourced answers.

Privacy Concerns. However, one missing part in the aforemen-

tioned existing work is the protection of user privacy: individual

users may have privacy concern when sharing their own answers

with others. For example, individual users can report the relevance

between a search query and a webpage, but the answers may leak

their personal preferences. Patients’ reactions to drugs are valuable

for physicians to discover drugs’ side-effects, but contain sensitive

information that patients might not want to share. Peer grading

serves as a useful tool for massive open online courses, but individ-

ual students’ judgment towards others’ work should be protected.

Without a convincing privacy-preserving mechanism, users may

not be willing to contribute their sensitive information for question

answering tasks, or even worse, they may provide untruthful infor-

mation to protect their privacy, which degrades the performance

of crowdsourced question answering.

One possible solution to tackle this challenge is to adopt encryp-

tion or secure multi-party computation techniques to protect the

privacy of users [16, 23, 24, 34]. Unfortunately, these techniques

require expensive computation resources and intensive communi-

cations among users. Therefore, due to the large scale of users in

most crowdsourcing applications, encryption or secure multi-party

computation techniques are not suitable for privacy-preserving

crowdsourced question answering.

Privacy-Preserving Mechanisms. In the light of this challenge,

we start by presenting a simple yet efficient mechanism to protect

the user privacy using perturbation technique. This mechanism

allows users to randomly perturb their candidate answers with a

pre-defined probability, and then the perturbed answers are sub-

mitted for weighted aggregation. To provide users with a strong

privacy guarantee, it is required to set the pre-defined perturba-

tion probability to be a large value, and thus the accuracy of the

aggregated answers may not be satisfactory.

In order to guarantee both aggregation accuracy and user pri-

vacy, we propose another privacy-preserving mechanism. In this

mechanism, users are allowed to independently sample their pri-

vate probabilities from a hyper distribution, and then perturb their

candidate answers according to the sampled probabilities. As the

perturbation is controlled by two layers of distributions, we refer to

this proposed mechanism as two-layer mechanism, and accordingly

the aforementioned simple mechanism as one-layer mechanism.

The major difference between these two privacy-preserving

mechanisms is that the one-layer mechanism forces all the users to

adopt the same probability to perturb their candidate answers, while

the two-layer mechanism allows users to sample their own proba-

bilities. Recall that estimating user quality is a key factor in truth

discovery. Thus the personalized noise introduced by the two-layer

mechanism can be largely reduced by the user quality estimation

component in truth discovery. In this way, the proposed two-layer

mechanism can wisely take advantage of truth discovery, and they

are coupled together to ensure that the aggregation accuracy only

drops slightly even when strong privacy is guaranteed.

To theoretically compare the one-layer and two-layer mecha-

nisms, we first quantify the user privacy based on local differential

privacy definition [9, 11, 15], and prove that these two mechanisms

can provide the same level of strong privacy guarantee. We then

compute the accuracy loss under the privacy-preserving mecha-

nisms, and show that the two-layer mechanism can give better

utility (less accuracy loss) than the one-layer mechanism when

they provide users with the same level of privacy protection.

We further confirm the theoretical analysis by conducting ex-

periments on two real-world crowdsourced datasets. The experi-

mental results demonstrate that with the same privacy guarantee,

the proposed two-layer mechanism delivers better utility than the

one-layer mechanism due to the fact that the proposed two-layer

mechanism can fully utilize the benefits of user quality estimation

in truth discovery. We also demonstrate that the proposed two-

layer mechanism is a general framework and performs well under

various scenarios.

Contributions. To summarize, the following contributions are

made in this paper:

• Motivated by the strong need to protect user privacy, we pro-

pose a two-layer mechanism that is tightly combined with

truth discovery. The proposed privacy-preserving method

can make users feel comfortable to share their sensitive an-

swers with others and thus enables more real-world applica-

tions.

• After formally defining the privacy and utility, we theoreti-

cally compare the two privacy-preserving mechanisms, and

prove that the two-layer mechanism can give better utility

compared to the one-layer mechanism when they provide

the same level of privacy guarantee.

• Experiments on two real-world crowdsourced datasets are

conducted to confirm the theoretical analysis, and the results

clearly demonstrate the advantages of the proposed two-

layer mechanism.

The rest of the paper is organized as follows. We review the re-

lated work in Section 2 and then formally define our task in Section

3. Preliminaries on crowdsourced question answering are intro-

duced in Section 4. We present the proposed privacy-preserving

mechanisms in Section 5 and then theoretically analyze them in

Section 6. The experiments on real-world datasets are summarized

in Section 7. We conclude the paper in Section 8.

2 RELATEDWORK
Crowdsourced Data Aggregation. Recent years have witnessed
the growing popularity of crowdsourcing in question answering [2,

25, 36], and thus many efforts have been attracted and contributed.

One important component of crowdsourced question answering

is to wisely aggregate the candidate answers from users. As the
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quality of users varies significantly, existing work develops various

methods to capture the user quality [7, 28, 36]. Among them, truth

discovery [8, 13, 19–21, 32, 35] is a category of algorithms that can

automatically estimate user weights from the data, and incorporate

such weights into aggregation to derive more accurate answers.

However, none of the above work considers the privacy concern

of users. Recently some mechanisms [16, 23, 24, 34] are proposed

to protect user privacy in truth discovery based on encryption or

secure multi-party computation techniques. Compared to them, the

proposed mechanism in this paper is the first perturbation-based

solution to protect user privacy when applying truth discovery

to aggregate answers from crowds of users, which is much more

efficient.

Privacy-Preserving Data Aggregation. Nowadays, the problem
of privacy-preserving data aggregation has been widely studied,

and various techniques can be applied: (1) Randomized response
[1, 5, 31] is a survey technique that can provide privacy protec-

tion for individual users. When a user participates in a survey, his

true answers can be protected via the added randomness in the

data collection process. Compared to randomized response, the

proposed two-layer mechanism provides a personalized flipping

probability and enables better privacy-utility trade-off. The differ-

ence between the proposed two-layer mechanism and randomized

response work is discussed in detail in Section 5.2. (2) Differential
privacy mechanisms [10, 11, 17] have also been applied to protect

the sensitive information from users when publishing statistical

information about the data. (3) Further, encryption [3, 26] and secure
multi-party computation [27] techniques provide secure protocols

that enable the computation on sensitive data while the privacy

can be guaranteed.

The existing work of privacy-preserving data aggregation [4, 6,

33] focuses on tasks such as the computation of statistics [12, 27],

or user location privacy protection [14, 29]. However, these work

treats all the users equally, and their tasks are different from ours.

As mentioned before, an important component of truth discovery

is to estimate user weights from the data and conduct weighted

aggregation. Thus these privacy-preserving data aggregation meth-

ods cannot be easily applied to privacy-preserving crowdsourced

question answering in which the unique characteristics of user

weights should be taken into account.

3 TASK DEFINITION
We start by formally defining the task. Conceptually, two parties,

server and user, are involved in the crowdsourced question answer-

ing. The server, who conducts data collection, is interested in a set

of questions where each of them is associated with a finite num-

ber of possible answers. The users, who represent the individual

participants, provide their own answers to these questions. After

collecting the candidate answers from users, the server aggregates

these candidate answers to derive final answers.

The main privacy concern of users is that the submitted answers

may contain their sensitive information, and thus users are not will-

ing to leak these answers to any other parties. This prevents users

from sharing their own answers with the server. The server, who

is assumed to be untrusted, may try to infer additional knowledge

about users from their submitted answers. This unfaithful behavior

of server can be driven by financial incentives or other benefits.

Motivated by the strong need to provide users with privacy

protection, we aim to design privacy-preserving mechanisms for

crowdsourced question answering. The developedmechanismsmay

enable more people to share their data, which will further unleash

the power of crowdsourcing in question answering.

Formally speaking, our task can be formulated as follows:

Definition 3.1. Suppose there is a set of questions Q, and the can-

didate answers (categorical data) are collected from a set of users

U. Let xuq represent the candidate answer of user u for the q-th
question. The goal of our task is to get accurate final answers by

jointly conducting user weight estimation and weighted aggrega-

tion on the user-provided answers. Meanwhile, the users’ privacy

should be protected so that the probability of inferring users’ true

answers based on the user-provided answers is low.

4 PRELIMINARY: TRUTH DISCOVERY
Crowdsourcing provides an efficient way to answer questions of

interest by utilizing the wisdom of crowds. The questions will be

distributed to multiple users, and multiple candidate answers can

be collected for each question. Thus an important component of

crowdsourced question answering is how to aggregate multiple

answers for each question to get an accurate final answer. Formally

speaking, for each question q ∈ Q, we collect a set of candidate
answers {xuq }u ∈U from the user setU, and the goal is to aggregate

these candidate answers to derive an accurate final answer x∗q .

Majority Voting. A straightforward way is to conduct majority

voting, that is, the candidate answer that has the most occurrences

among all possible answers will be chosen as the aggregated result.

Mathematically, the aggregated answer x∗q is calculated as follows:

x∗q = argmax

x ∈X

∑
u ∈U

1(x ,xuq ), (1)

where X is the set of all possible answers, and 1(·, ·) is an indicator

function.

The main drawback of this aggregation strategy is that it treats

all the users equally. In practice, the information quality varies

significantly among different users. The aggregated answers can

be greatly improved by distinguishing high-quality users from the

others and relying on these identified high-quality users.

Truth Discovery. However, the challenge is that the user quality
is usually unknown a priori in practice. To tackle this challenge,

truth discovery [8, 19, 20, 32] emerges as a hot topic due to its

ability to automatically estimate user quality from data in the form

of user weights. Truth discovery has been successfully applied in

crowdsourced question answering, and the existing work [18, 22]

has demonstrated the advantages of truth discovery on this task.

Although different truth discovery methods have been proposed

to deal with various scenarios, they follow the same general princi-

ple: the candidate answers from high-quality users will be counted

more in the aggregation, and the users who provide accurate an-

swers more often will be assigned higher weights. Following this

principle, the process of answer aggregation and weight estimation

are tightly coupled. Truth discovery methods start with a uniform
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initialization of user weights, and then iteratively conduct the fol-

lowing steps until convergence:

• Answer Aggregation: In this step, the user weightswu are

assumed to be known. The aggregated answer for each ques-

tion x∗q is calculated based on the following weighted voting:

x∗q = argmax

x ∈X

∑
u ∈U

wu · 1(x ,xuq ). (2)

• Weight Estimation: In this step, the aggregated answers are

fixed. For each user, his weight is estimated based on the ac-

curacy of his provided answers, comparing with the current

aggregated answers. That is,

wu = д(pu ) = д(
∑
q∈Q 1(x∗q ,xuq )

|Q| ), (3)

where pu is the probability that user u provides correct an-

swers, and д(·) is a monotonically increasing function. This

user weight estimation formula follows the idea that if a user

provides correct answers more often, he will be assigned a

higher weight.

5 PRIVACY-PRESERVING MECHANISMS
Compared to the simple majority voting, truth discovery methods

estimate user weights and incorporate such weights into aggrega-

tion, and thus the final answers are more accurate. However, the

existing work on crowdsourced answer aggregation either fails

to consider the user privacy issue or introduces expensive com-

putational cost. Users’ contributions are valuable for the question

answering tasks, but the candidate answers from users may contain

their sensitive information, and thus users have privacy concern

to share such personal information with the server. Motivated by

the strong need to protect user privacy, we present two privacy-

preserving truth discovery mechanisms for crowdsourced question

answering. The goals of these mechanisms are two-fold: providing

users with privacy guarantees and achieving accurate final answers.

5.1 One-Layer Mechanism
To protect the privacy of users, the one-layer mechanism adopts

perturbation technique. More specifically, users can perturb their

original answers to other possible ones, and then submit the per-

turbed answers to the server. As the server does not know original

answers of users, the privacy of individual users can be guaranteed.

Mathematically, the perturbation method can be defined as:

Definition 5.1. The answer perturbation methodM is a function

with domain X, and its range is the same with the domain. Let

pf be the probability to perturb the original answer x . ∀x , x̂ ∈ X,

M(x) = x̂ with probability 1 − pf if x = x̂ , and with probability

p f
s−1 if x , x̂ , where s is the size of the range.

The one-layer mechanism uses the above answer perturbation

method to allow users to perturb their answers with the same pre-

defined probability pf . After receiving perturbed answers from

users, the server aggregates these answers by applying truth dis-

covery. The general flow of one-layer mechanism is summarized in

Algorithm 1. In addition, we illustrate the concrete procedure by

Example 1.

Algorithm 1 One-layer Mechanism for Privacy-Preserving
Crowdsourced Question Answering

Input: Question set Q, and the set of users U
Output: Aggregated answers {x̂∗q }q∈Q

1: Server distributes the question set to each user;

2: Users prepare his/her candidate answers;

3: Users perturb their candidate answers {xuq } according to the

perturbation method (Definition 5.1) with the pre-defined pf ,
and submit the perturbed answers {x̂uq } to the server;

4: Server applies truth discovery to get aggregated answers

{x̂∗q }q∈Q .
5: return Aggregated answers {x̂∗q }q∈Q .

Example 1: Consider a question with two possible answers {Y ,N },
i.e., s = 2. A particular user’s answer to this question is Y . Following
the one-layer mechanism, this user will flip his answer with pre-
defined probability pf = 0.4 before submitting his answer to the
server. Let’s assume that the perturbed answer of this particular user
to the considered question is N , and then this user will submit the
perturbed answer N to the server. However, from the perspective of
the server, it can only see the submitted answer from this user (i.e., N ),
and it does not know his original answer (i.e., Y ). Thus the privacy of
this user is protected.

5.2 Two-Layer Mechanism
The above one-layer mechanism provides users with privacy pro-

tection. However, in order to provide a strong privacy guarantee,

the pre-defined perturbation probability pf needs to be set as a

large value. In this case, all the users perturb their answers with

the same large probability. Thus the accuracy of the aggregated

answers can decrease dramatically and the utility may not be sat-

isfied. This motivates us to improve the one-layer mechanism so

that guarantees of both privacy and utility can be provided.

In truth discovery, user weights are automatically estimated, and

such weights are incorporated into the aggregation. To improve

the utility of the privacy-persevering mechanism, we fully utilize

this unique property of truth discovery, and propose a two-layer

mechanism (Algorithm 2).We also provide an example (i.e., Example

2) to further illustrate the two-layer mechanism.

Example 2: Consider the scenario in Example 1. Following the two-
layer mechanism, that particular user will also perturb his answer
before submitting to the server. The difference here is that the user
needs to sample his own flipping probability pfu from a hyper distri-
bution, instead of using the pre-defined flipping probability pf for all
the users.

Benefit of The Two-Layer Mechanism. Compared to the one-

layer mechanism, the main difference is that in the two-layer mech-

anism, each user samples his own private probability to perturb his

answers. This novel design of two-layer perturbation fully explores

the property of truth discovery, which makes it possible to achieve

high accuracy even when the added noise is large. Truth discov-

ery is a weighted aggregation in which the weight of each user is

dynamically adjusted based on their information quality. In this
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Algorithm 2 Two-layer Mechanism for Privacy-Preserving
Crowdsourced Question Answering

Input: Question set Q, and the set of users U
Output: Aggregated answers {x̂∗q }q∈Q

1: Server distributes the question set to each user;

2: Users prepare his/her candidate answers;

3: Each user samples a private probability p
f
u from a pre-defined

hyper distribution f ;
4: Users perturb their candidate answers {xuq } according to the

perturbation method (Definition 5.1) with their own

probabilities p
f
u ’s, and submit the perturbed answers {x̂uq } to

the server;

5: Server applies truth discovery to get aggregated answers

{x̂∗q }q∈Q .
6: return Aggregated answers {x̂∗q }q∈Q .

way, the effect of added noise can be absorbed in the weight and

thus will not affect the final aggregation much. In the following

section, rigorous analysis and proof show how accurate aggregation

results are obtained by the proposed two-layer mechanism even if

significant noise is added to the data.

Comparison with Randomized Response. Randomized re-

sponse is a well-known privacy protection mechanism which also

allows users to randomly flip their answers to sensitive survey ques-

tions. However, the proposed two-layer mechanism differs from

randomized response in terms of the general goal: Randomized

response is adopted to compute some statistics of the data [1, 5, 31],

while our goal is to find the correct answers by jointly conducting

user weight estimation and weighted aggregation. Among the re-

lated work about randomized response, the FRAPP framework [1]

also provides a way to randomize the perturbation probabilities.

However, in FRAPP framework, the utility is degraded by such

randomization, as the aggregation component does not consider

the diversity of quality among users. While in the proposed two-

layer mechanism, the utility can be improved by the personalized

flipping probability, and such benefit is brought by the weighted

combination component in truth discovery. The estimated weights

can reduce the effect of perturbation, and this leads to unique theo-

retical analysis that we will present in next section.

6 THEORETICAL ANALYSIS
In this section, we theoretically compare the one-layer and two-

layer mechanisms from the perspectives of privacy and utility. It

is proven that the proposed two-layer mechanism can provide the

same privacy guarantee as the one-layer mechanism while the

utility can be significantly improved.

6.1 Privacy Analysis
We start by formally defining the user privacy. Differential privacy

[10, 11, 17] is widely adopted to quantify the privacy. However, it

assumes that the server is trustable, which is different from our

problem setting. Recently, local differential privacy [9, 11, 15] is

proposed to deal with the scenario where users do not trust the

server. Thus we adopt this privacy definition:

Definition 6.1 (ϵ-Local Differential Privacy). A randomized algo-

rithmM is ϵ-locally differentially private if for all x1 and x2 in X
that are different, and all S ⊆ X,

P{M(x1) ∈ S} ≤ eϵ × P{M(x2) ∈ S}. (4)

Intuitively, the local differential privacy quantifies the probability

that two different values x1 and x2 can be perturbed to the same

range. We hope that the server cannot distinguish the perturbed

values of two different original values. Note that local differential

privacy can be regarded as a special case of traditional differential

privacy where each dataset only contains one tuple. Thus, for the

same privacy parameter ϵ , local differential privacy provides a

stronger privacy guarantee than traditional differential privacy.

Next we analyze and compare the privacy guarantees provided

by the one-layer and two-layer mechanisms in terms of the above

privacy definition.

6.1.1 One-Layer Mechanism. The following theorem states that

the one-layer mechanism satisfies ϵ-local differential privacy:

Theorem 6.2. When all the users perturb their candidate answers

with probability pf , the one-layer mechanism is (ln (1−p f )(s−1)
p f

)-
locally differentially private, where s is the number of possible answers.

Proof. According to the privacy definition 6.1, we can calculate

the probability ratio
P {M(x1)∈S}
P {M(x2)∈S} and find its maximum. The prob-

ability ratio is maximized when we have two different inputs and

the output range is identical to one of them. Mathematically, when

x1 , x2 and S = x1, the probability ratio achieves its maximum.

According to the perturbation method in Definition 5.1, we have:

P{M(x1) ∈ S}
P{M(x2) ∈ S} ≤ P(M(x1) = x1)

P(M(x2) = x1)
=

1 − pf

p f
s−1

= eϵ . (5)

Thus we get ϵ = ln
(1−p f )(s−1)

p f
. □

As all the users adopt the same probability to perturb their an-

swers in the one-layer mechanism, the above privacy analysis is

applicable to all the users.

6.1.2 Two-Layer Mechanism. For the two-layer mechanism,

each user samples his own probability p
f
u to perturb his original

answers. The server does not know the sampled probability p
f
u , and

the prior knowledge the server has is the hyper distribution f . Here
we adopt the widely used uniform distributionU (a,b) as a specific
instantiation of hyper distribution f , as the uniform distribution

can provide stronger privacy protection than any other distribution.

Based on these assumptions, we derive the following theorem:

Theorem 6.3. When users sample private perturbation proba-
bility pfu from uniform distribution U (a,b), the proposed two-layer
mechanism is (ln (2−a−b)(s−1)

a+b )-locally differentially private.

The proof of this theorem is similar to the proof of Theorem 6.2,

and we omit it due to space limitation. This theorem shows that
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when a is fixed, more privacy can be preserved as we increase the

value of b. In the two-layer mechanism, all the users follow the

same procedure to sample their private perturbation probability

independently, so the above analysis holds for all the users.

6.1.3 Comparison. Here, we compare the privacy guarantees

provided by one-layer and two-layer mechanisms.

Theorem 6.4. The proposed two-layer mechanism provides the
same privacy guarantee as the one-layer mechanism when a+b

2
= pf .

This theorem proves that the two-layer mechanism can provide

the same level of privacy guarantee to users compared to the one-

layer mechanism. In the following, we analyze these mechanisms

from the utility perspective, and show that the two-layer mecha-

nism can provide better utility than the one-layer mechanism.

6.2 Utility Analysis
For utility analysis, we adopt the error rate change as the metric.

That is, we compare the error rate of aggregated answers derived

from the original answers and perturbed answers. The smaller error

rate change, the better utility.

6.2.1 Error Bound Before Perturbation. We first quantify the

error rate of the aggregated answers derived from original crowd-

sourced answers.

According to truth discovery, the aggregated answers for

binary-choice questions are obtained by weighted voting x∗q =

H ({xuq }, {wu })
def
= siдn(∑u ∈U xuq ·wu ), wherewu is the estimated

weight for user u. This equation holds as xuq is either +1 or −1 and
thus the sign of the weighted sum determines the final aggregated

answer x∗q . Let pu be the probability of user u providing correct an-

swers, then the estimated weightwu is a monotonically increasing

function of pu :wu = д(pu ).
Assume that we have a set of usersU. Let tq be the true answer

for question q ∈ Q. Then the expectation of the error rate based on

the candidate answers from users is:

Error (H ) =
1

|Q|
∑
q∈Q
I(tq ,x∗q )

=
1

|Q|
∑
q∈Q
I(tq , siдn(

∑
u ∈U

xuq ·wu ))

≤ 1

|Q|
∑
q∈Q

exp{−tq ·
∑
u ∈U

xuq ·wu }

=
1

|Q|
∑
q∈Q

∏
u ∈U

exp{−tq · xuq ·wu }

=
1

|Q|
∑
q∈Q

∏
u ∈U

(
pu · e−1 + (1 − pu ) · e

)wu

=
∏
u ∈U

(
pu · e−1 + (1 − pu ) · e

)wu

=
∏
u ∈U

(
pu · e−1 + (1 − pu ) · e

)д(pu )
. (6)

If we adopt the monotonically increasing function д(pu ) =
log

pu
1−pu to calculate user weight, then we have:

Error (H ) ≤
∏
u ∈U

(
pu · e−1 + (1 − pu ) · e

)
log

pu
1−pu . (7)

This equation bounds the error rate of the aggregated results x∗q =
H ({xuq }, {wu }).

Let’s consider two users. User 1 provides correct answers with

probability p1 where p1 ∈ [0, 0.5], and user 2 provides correct

answers with probability p2 where p2 = 1 − p1. If all the answers
from user 2 are flipped to the opposite ones, user 2 will also have

the probability p1 to provide correct answers. Therefore x2q = −x1q .
According to the above weight calculation function, the weight

of user 2 is w2 = log
p2

1−p2 = log
1−p1
p1 = − log

p1
1−p1 = −w1. When

we aggregate the answers from all the users, for question q, the
weighted vote from user 2 is x2q · w2 = (−x1q ) · (−w1) = x1q · w1,

which equals to the weighted vote from user 1. This indicates that

user 2 is equivalent to user 1. Thus without loss of generality, we

assume that for each user u, pu ∈ [0, 0.5].

6.2.2 Error Bound after Perturbation. Consider a user who pro-

vides correct information with probability pu . If this user perturbs

his binary answers with probability p
f
u , then his probability to

provide correct information after perturbation is:

p̂u = pu · (1 − p
f
u ) + (1 − pu ) · pfu = pu + p

f
u · (1 − 2 · pu ). (8)

Assume that a set of users U is involved, and each of them

provides correct answers with probability pu . In order to protect

the privacy of users, they will perturb their answers based on the

proposed mechanisms. According to Eq. (7) and (8), the error rate

of the aggregated results derived from the perturbed data will be:

Error (Hper turbed ) ≤
∏
u ∈U

(
p̂u · e−1 + (1 − p̂u ) · e

)
log

p̂u
1−p̂u . (9)

Let’s denote

(
pu · e−1 + (1 − pu ) · e

)
log

pu
1−pu as function G(pu ).

In order to compare Error (H ) and Error (Hper turbed ), we use

G ′(pu ) = 2 · pu to approximate function G(pu ) for the purpose

of simplification as these two functions are very close to each other.

Plugging this approximation into Eq. (9), we can simplify

Error (Hper turbed ) as:

Error (Hper turbed ) ⪅
∏
u ∈U

G ′(p̂u ) =
∏
u ∈U

2 · p̂u

=
∏
u ∈U

2 · (pu + pfu · (1 − 2 · pu ))

= (
∏
u ∈U

2 · pu ) + ∆

= Error (H ) + ∆, (10)

where ∆ denotes the error rate change.

6.2.3 Important Users. From Eq. (7), we can see that the users

will not equally affect the error bound. If a user’s pu is close to 0.5,

he will not contribute too much to lower the error bounds Error (H )
and Error (Hper turbed ). This motivates us to focus on important

users who will affect the error bound significantly.
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In order to define the important users, we first define the metric

to calculate the importance score of user u: Im(u) = Error (H−u )
Error (H ) ,

where Error (H−u ) denotes the error rate of aggregated answers

without considering the information from useru. That is, the impor-

tance score is the ratio between error rates of aggregated answers

with and without a particular user’s information. If a user is impor-

tant, his answers will greatly reduce the error rate of aggregated

results, and thus the important score Im(u) will be large. On the

other hand, if the important score of a user is close to 1, it is indicated

that this user makes a negligible contribution to the aggregation.

According to Eq. (7), Im(u) = 1

G(pu ) .
Based on the important score, we define the set of important

users as Uimpor tant = {u : Im(u) ≥ c · maxu′∈U Im(u ′)}, where
c ∈ (0, 1] is a threshold to determine whether a user is important

or not. When c is set to be 1, Uimpor tant only includes the best

user(s). When c is close to 1,Uimpor tant will also include the users

who have importance scores close to the best user(s).

Let’s replace the user set U in Eq. (10) with Uimpor tant :

Error (Hper turbed ) ≤
∏

u ∈Uimpor tant

G(p̂u ) ≈
∏

u ∈Uimpor tant

G ′(p̂u )

=
∏

u ∈Uimpor tant

2 · (pu + pfu · (1 − 2 · pu ))

= (
∏

u ∈Uimpor tant

2 · pu ) + ∆ = Error (H ) + ∆,

where ∆ is:

∆ =
∏

u ∈Uimpor tant

p
f
u · (1 − 2 · pu ))

+
∑

u ∈Uimpor tant

(
pu

∏
u′,u

p
f
u′ · (1 − 2 · pu′)

)
+ · · · (11)

For important users, their corresponding pu is close to 0 (note

we have demonstrated that users with pu = 0 are equivalent to

users with pu = 1), so the error rate change ∆ is dominated by the

term

∏
u ∈Uimpor tant p

f
u .

One-Layer Mechanism. In the proposed one-layer mechanism,

all the users are forced to adopt the same probability to perturb

their answers, i.e., p
f
u = pf . Thus the difference of Error (H ) and

Error (Hper turbed ) can be calculated as ∆ =
∏

u ∈Uimpor tant p
f
.

Recall that in the one-layer mechanism, the parameter pf is

pre-defined by the server. When pf is small (weak privacy), the

error rate change of the one-layer mechanism will be small (good

utility). However, to provide users with strong privacy guarantees,

pf needs to be set as a large value. As a result, the error rate change

∆ increases quickly as we increase the parameter pf . This will be
confirmed by the experiments on various datasets in Section 7.

Two-Layer Mechanism. In the proposed two-layer mechanism,

{pfu } are independently sampled from an identical uniform distri-

butionU (a,b), and thus ∆ is the product of n independent uniform

random variables. When a is set to be 0, the probability density

function (PDF) of ∆ is:

f (∆) =
{

1

bn ·(n−1)! (log
bn
∆ )n−1, ∆ ∈ [0,bn ]

0, otherwise,

where b is the maximum probability that can be sampled from the

hyper distribution, and n is the number of important users.

In Figures 1, we plot the PDFs by varying parameters b and n.

∆
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Figure 1: PDF of f (∆)

Based on the above analysis, the following claims can be in-

ferred for the proposed two-layer mechanism, and they will be

experimentally confirmed in Section 7.

• The error rate change ∆ of the two-layer mechanism follows

a long-tail distribution: the probability of observing a small

∆ is high, while a large ∆ occurs with very low probability.

In other words, good utility can be guaranteed with high

probability.

• The above analysis reveals the relationship between the

utility and the hyper distribution f = U (a,b). Let’s assume

that a is fixed. Figure 1a shows that when the parameter b
decreases, the probability of the error rate change (∆) being
small will increase, and thus better utility can be guaranteed.

• The above analysis also indicates the relationship between

the utility and important users: more important users can

lead to better utility. In Figure 1b, the probability of ∆ being

small increases as more important users are available (large

n).

6.3 Summarization
In section 6.1, we first conduct privacy analysis and Theorem 6.4

states that the one-layer and two-layer mechanisms can provide the

same privacy guarantee if pf = a+b
2

. Then in the following section

6.2, we show that when they provide the same privacy guarantee,

their utility (error rate change ∆) is quite different. For the one-layer

mechanism, the error rate change is ∆ = (pf )n = (b
2
)n (a is set to be

0), while for the two-layer mechanism, the error rate change follows

a long-tail distribution in which ∆ is small with high probability.

This difference is caused by the fact that users sample their own

probabilities to perturb their answers. Such diversity in the flipping

probabilities is the key to better utility. Among the users, there are

some users who have relatively good quality, and their answers can

guide the weight estimation even when b is quite large. In contrast,

in the one-layer mechanism, all the users are forced to perturb

their answers with the same probability pf , and the benefit of user

weight estimation is limited. Thus the two-layer mechanism has a

higher probability to achieve better utility compared to one-layer

mechanism.
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7 EXPERIMENTS
In the previous section, we theoretically compare the one-layer

mechanism and the two-layer mechanism in terms of both privacy

and utility. In this section, we conduct experiments on two real-

world datasets to confirm the theoretical analysis.

7.1 Experiment Setup
7.1.1 Datasets. To validate the advantages of the proposed

privacy-preserving mechanism, we adopt the following real-world

crowdsourced datasets.

Peer Grading Dataset. This dataset is collected from a graduate

level course, which involves 72 students (users). In this course, all

the students are divided into 26 groups and each group gives a pre-

sentation for their course project. During each group’s presentation,

the other students fill an evaluation form for this group based on the

guidelines from the instructor to evaluate whether the performance

of this group is satisfactory or not. The instructor also provides

her grades for each group, which can be regarded as groundtruth.

Although peer grading is an effective way to assess students’ course

projects, the graders (students) may have privacy concern to share

their evaluations for other students. Thus this dataset is a perfect

testbed to evaluate the proposed privacy-preserving mechanisms.

Some statistics of this dataset are summarized in Table 1.

Duchenne Smile Dataset. This dataset is also collected from a

real-world application, in which each question is to judge whether

the smiling face in an image is Duchenne or Non-Duchenne. The

authors in [30] also obtain the labels (candidate answers) from

workers (users) on Amazon Mechanical Turk. Part of groundtruth

labels are provided by certified experts in the Facial Action Coding

System. Statistics about this dataset can also be found in Table 1.

Table 1: Statistics of Real-world Datasets

Peer Grading Dataset Duchenne Smile Dataset

#question 26 2134

#users 72 64

#answers 360 17729

#groundtruth 26 159

7.1.2 Performance Measure. To quantify the privacy, we adopt

the ϵ local differential privacy defined in Definition 6.1. As men-

tioned before, local differential privacy can be treated as a special

case of the traditional differential privacy when the considered

dataset contains only one tuple. The smaller ϵ indicates stronger
privacy.

For utility measure, we adopt the metric of Error Rate Change,

that is, we compare the error rate of the aggregated answers derived

from users’ original answers and the perturbed answers. Small error

rate change indicates that the perturbation has little effect on the

performance, and thus good utility is achieved.

7.1.3 Compared Methods. We evaluate the one-layer and two-

layer mechanisms to confirm the theoretical analysis. Besides, we

also replace the truth discovery method with majority voting to

illustrate the benefits of considering user weights in aggregation.

We denote Majority Voting and Truth Discovery as MV and TD

respectively. Thus “MV with One-layer”, “TD with one-layer” and

“MV with Two-layer” are baseline methods. Note that although

randomized response has a different goal with the proposed two-

layer mechanism, “MV with One-layer” and “MV with Two-layer”

can be considered as the adapted versions of general randomized
response and FRAPP method respectively.

7.1.4 Environment. All the methods are implemented on the

same platform (MATLAB), and run on the same machine with 8G

RAM, Intel Core i5 processor. As the perturbation is random, each

performance result reported below is the mean of 100 independent

trials to reduce the effect of randomness.

7.2 Performance Comparison
We first evaluate the performance of the privacy-preserving mech-

anisms on Peer Grading dataset and Duchenne Smile dataset. By

varying the privacy parameter ϵ , different levels of perturbation
are performed according to the one-layer and two-layer mecha-

nisms. The utility, i.e., Error Rate Change, under various scenarios

is reported in Tables 2 and 3. Note that ϵ = 0 is a special case en-

abled by the unique characteristics of categorical data. Consider a

question with two possible answers. When users flip their answers

with probability 0.5, the answers from all the users have the same

probability distribution, i.e., users will provide any possible answer

with probability 0.5. In this case, the noise (answer perturbation)

is so large that users’ original answers have no influence on the

probability distribution of perturbed answers. According to the def-

inition of differential privacy, these users become indistinguishable,

i.e., ϵ = 0. For the general cases, Theorems 6.2 and 6.3 demonstrate

that ϵ can be 0 with certain parameter settings.

Table 2: Performance Comparison on Peer Grading Dataset

One-layer Mechanism Two-layer Mechanism

ϵ MV TD MV TD

1.0 0.1019 0.0850 0.0885 0.0619

0.9 0.1135 0.0954 0.1112 0.0800

0.8 0.1300 0.1127 0.1212 0.0827

0.7 0.1404 0.1135 0.1265 0.0923

0.6 0.1615 0.1408 0.1554 0.1138

0.5 0.1669 0.1546 0.1631 0.1262

0.4 0.1788 0.1604 0.1696 0.1354

0.3 0.1842 0.1658 0.1785 0.1415

0.2 0.2042 0.1823 0.1938 0.1581

0.1 0.2269 0.2088 0.2165 0.1723

0.01 0.2373 0.2135 0.2327 0.1865

0.001 0.2485 0.2196 0.2377 0.1958

0.0 0.2504 0.2212 0.2419 0.1992

From Tables 2 and 3, we can observe that the ranges of Error

Rate Change on two real-world datasets are slightly different. This

phenomenon is caused by the quality of the original (clean) datasets.

Without any perturbation, the accuracy of aggregated answers is

0.73 and 0.76 for Peer Grading dataset and Duchenne Smile dataset

respectively. In the case of ϵ = 0, all the users randomly flip their

answers, and the accuracy of the aggregated answers will be around
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Table 3: Performance Comparison on Duchenne Smile
Dataset

One-layer Mechanism Two-layer Mechanism

ϵ MV TD MV TD

1.0 0.1228 0.0735 0.1240 0.0560

0.9 0.1296 0.0870 0.1337 0.0629

0.8 0.1438 0.1104 0.1447 0.0709

0.7 0.1459 0.1157 0.1564 0.0821

0.6 0.1699 0.1321 0.1701 0.0906

0.5 0.1784 0.1562 0.1738 0.0962

0.4 0.1917 0.1769 0.1903 0.1081

0.3 0.2126 0.1930 0.2133 0.1271

0.2 0.2218 0.2016 0.2160 0.1379

0.1 0.2335 0.2086 0.2248 0.1511

0.01 0.2406 0.2150 0.2362 0.1742

0.001 0.2414 0.2178 0.2426 0.1774

0.0 0.2516 0.2277 0.2447 0.1793

0.5. Thus the error rate change under ϵ = 0 will be around 0.23 and

0.26 for Peer Grading and Duchenne Smile datasets respectively,

which is consistent with our experimental results. Note that the

quality control of the original crowdsourced dataset is not within

the scope of the proposed privacy-preservingmechanism. Our focus

is on the performance change before and after perturbation, which

indicates the utility of the proposed approach.

We further analyze the experimental results from the following

four aspects:

(1) Comparison of MV under the one-layer and two-layer
mechanisms: In the one-layer and two-layer mechanisms, users

either adopt the same probability or sample their own probabilities

to perturb their candidate answers. Although the ways of choosing

probability are different, to provide the same level of privacy guar-

antee, the same level of noise is required to be injected. From both

Tables 2 and 3, we can observe the similar performance of majority

voting under one-layer and two-layer mechanisms, which confirms

that the same level of noise is added by the one-layer and two-layer

mechanisms.

(2) Comparison of MV and TD under the two-layer mech-
anism: Under the two-layer mechanism, TD gives better perfor-

mance than MV. The reason is that truth discovery estimates user

weights and incorporates such weights into aggregation, while

majority voting does not consider the variety in user quality. To

demonstrate the user weight estimation, we plot the estimated

weights for some randomly selected users in Figure 2. The blue

lines show the estimated user weights based on users’ original an-

swers, and the red dot lines illustrate the estimated user weights

based on users’ perturbed answers. Comparing the blue lines and

red lines, we can observe that the weight of a user will be reduced if

he adopts a big probability to perturb his answers (for example, the

perturbation probability of the 2-nd user in Figure 2a is 0.46). On

the other hand, if a user adopts a small probability to perturb his an-

swers, his weight will keep the same, or be adjusted slightly higher

(for example, the perturbation probability of the 2-nd user in Figure

2b is 0.01). This is because that the estimated user weights indicate

the relative quality of users, and when the quality of other users

decreases, users who do not change their quality might be assigned

higher weights. As truth discovery method can automatically adjust

the estimated user weights, the effect of the perturbation can be

partly absorbed and thus the performance change will be smaller

than majority voting method.
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Figure 2: Estimated User Weights

(3) Comparison of TD under the one-layer and two-layer
mechanisms: Both Tables 2 and 3 demonstrate that TD under

two-layer mechanism gives better performance than the one-layer

mechanism. The reason is illustrated in the previous section: in

the two-layer mechanism, users sample their own probabilities to

perturb their grades or candidate answers. Some important users

may sample small probabilities p
f
u and their quality is still high.

Thus these important users will be assigned high weights and lead

to small error rate change (good utility). In contrast, in the one-

layer mechanism, all the users adopt the same probability to perturb

their answers. To guarantee strong privacy, the probability pf is

required to be large, and thus the quality of all the users dramatically

decreases. In this case (small ϵ), the user weight estimation does

not make a big difference, and thus the performance of the truth

discovery with one-layer mechanism is close to the majority voting

method.

(4) Utility-Privacy trade-off: The trade-off between utility and

privacy can be observed from the performance of either one-layer

mechanism or the two-layer mechanism in Tables 2 and 3. To clearly

show the trade-off, we also plot the utility w.r.t. the privacy on

both Peer Grading and Duchenne Smile datasets in Figures 3 and

4. We can observe that to provide strong privacy (small ϵ), more

perturbation should be performed and thus the utility is sacrificed.

To keep good utility, the provided privacy guarantee cannot be too

strong. However, comparing with other methods, truth discovery

with the two-layer mechanism (blue dot line in Figures 3 and 4) can

tolerate more perturbation.
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Figure 3: Utility-Privacy Trade-off on Peer Grading Dataset
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8 CONCLUSIONS
Crowdsourcing has been successfully applied to solve many chal-

lenging question answering tasks. However, individual users may

have the privacy concern when sharing their sensitive answers.

Motivated by this strong need, we propose efficient and effective

two-layer mechanism for crowdsourced question answering, which

allows users to randomly perturb their answers and then conduct

truth discovery on the perturbed answers. Theoretical analysis

proves that the two-layer mechanism provides the same level of

privacy guarantee as the one-layer mechanism. Furthermore, we

theoretically show that good utility can be guaranteed by the two-

layer mechanism even with strong privacy constraints. This benefit

is brought by the fact that the two-layer mechanism fully utilizes

the properties of truth discovery which automatically estimates

user quality to derive aggregated answers. The advantage of the

proposed two-layer mechanism is confirmed by the experimental

results on two real-world datasets. With our developed privacy-

preserving mechanism, we can greatly broaden the application

domain of truth discovery and enable tasks that would otherwise

be infeasible due to privacy concerns.
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