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ABSTRACT
This paper aims at achieving optimal rate allocation for data ag-
gregation in wireless sensor networks. We first formulate this rate
allocation problem as a network utility maximization problem. Due
to its non-convexity, we take a couple of variable substitutions on
the original problem and transform it into an approximate prob-
lem, which is convex. We then apply duality theory to decom-
pose this approximate problem into a rate control subproblem and a
scheduling subproblem. Based on this decomposition, a distributed
algorithm for joint rate control and scheduling is designed, and
proved to approach arbitrarily close to the optimum of the approxi-
mate problem. Finally, we show that our approximate solution can
achieve near-optimal performance through both theoretical analysis
and simulations.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Network]: Network Architec-
ture and Design—Wireless communication; G.1.6 [Mathematics
of Computing]: Optimization—Convex programming

General Terms
Algorithms, Theory

Keywords
Wireless Sensor Networks, Data Aggregation, Rate Allocation,
Scheduling, Network Utility Optimization, Cross Layer Design

1. INTRODUCTION
Data aggregation has been put forward as an essential paradigm

for routing in wireless sensor networks [1]. The idea is to use a
function like average, max or min to combine the data coming from
different sources enroute to eliminate transmission redundancy and
thus save energy as well as bandwidth. In recent years, a large spec-
trum of studies have been conducted on various problems of data
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aggregation in sensor networks. However, the following fundamen-
tal question has not been answered thus far: “Does there exist an
optimal rate allocation for data aggregation which maximizes the
utilization of network resources and meanwhile maintains certain
fairness among all the sources?". This paper gives the answer to
this question.

Finding the optimal rate allocation for data aggregation in sen-
sor networks can be regarded as a utility-based resource alloca-
tion problem. In particular, each source is associated with a utility,
which is defined as a function of the source’s sending rate. The
function value can be conceptually regarded as the quality of infor-
mation provided by the source. For a given aggregation tree, there
exists a unique “maximum utility" rate allocation, at which the net-
work resource utilization is optimal. Meanwhile, certain fairness
such as max-min fairness and proportional fairness can be achieved
when we choose appropriate utility functions.

The problem of maximizing the network utilities has been ex-
plored in the context of both wired [2, 3, 4, 5, 6] and wireless [7, 8,
9, 10] networks, for rate control in unicast or multicast. Although
using a similar approach, we show that rate allocation for data ag-
gregation in wireless sensor networks faces unique challenges both
theoretically and practically, making this problem a completely dif-
ferent one to which none of the existing solutions can be applied.
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Figure 1: An example of data aggregation constraint

Challenge I: Theoretically, rate allocation for data aggregation is
not only subject to the network capacity constraint, but also the
data aggregation constraint on the aggregation nodes (i.e., non-
leaf nodes) of the aggregation tree.

Figure 1 provides an intuitive example of the data aggregation
constraint. A simple aggregation tree is shown in Fig. 1(a). In this
case, two source nodes A and B collect and transmit data to node C,
who aggregates the received data and forwards them to the sink S.
Fig. 1(b) and (c) illustrate two different scenarios of data aggrega-
tion. In either scenario, three columns are displayed, which corre-
spond to three queues maintained by node C. The first two queues
store the packets coming from A and B, while the last one (queue
C) keeps the packets generated by aggregating A and B’s packets.



The packets in each of the three queues are sorted by the times-
tamps recorded in their headers. In Fig. 1(b) and (c), the vertical
axis denotes the timestamp, which indicates the time when the car-
ried data packet is collected. In this paper, we assume that only the
data collected at the same time can be aggregated. This assump-
tion is valid in many applications of sensor networks, such as target
localization and fire alarming, since the data collected at the same
time usually contain the information about the same event. For this
reason, an aggregated packet has the same timestamp as the raw
packets involved in its aggregation. Sometimes, a packet coming
from a source node has no coincident packets with the same times-
tamp from other source nodes, such as the packets with timestamp
3 and 7 in queue A. In this case, the aggregation node does nothing
but simply forwards it upwards.

In the first scenario shown in Fig. 1(b), the number of packets
stored in queue C is the same as the number of packets in queue
A, since the time slots when node B collects data are the subset of
the time slots when A collects data. Therefore, to keep the network
stable, in other words, to prevent the queue of node C from over-
flow, the transmission rate of node C should be no less than A’s
rate. However, this doesn’t hold in the second scenario displayed
in Fig. 1(c), where the only difference from scenario I is that the
timestamps of all the packets in queue B are increased by one which
implies that node B postpones all its data collections by one time
slot. Surprisingly, this causes a fundamental change in queue C. In
particular, no aggregation can be made, since there is no coincident
packets of A and B. As a result, the number of packets in queue C
is the summation of queue A and B’s packets. Therefore, in this
scenario, the requirement of stability becomes that C should send
faster than the aggregate rate of A and B.

This example reveals the fact that the transmission rate of an
aggregation node is constrained by not only the rates of its children
but also their packet timestamp patterns. The packet timestamp
pattern of a node includes two components: the intervals between
the timestamps of consecutive packets and the time-offsets of the
packets among the nodes who share the same parent.
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Figure 2: An example of data availability constraint

Challenge II: Practically, rate allocation for data aggregation has
an implicit constraint, which is referred to as the data availability
constraint in this paper. Figure 2 gives us an illustrative example
of this constraint. Similar to the previous example, node A and B
work as the source nodes. However, B is not directly connected to
the aggregation node C. An intermediate node N relays data for B.
Suppose at time t1, as shown in Fig. 2(b), A has delivered some
data to C, whereas B’s data has not arrived at C since they are de-
layed at node N. At this moment, although lots of A’s packets are
waiting in its buffer, node C needs to wait until B’s data arrives
at time t2 (for the sake of simplicity, suppose A transmits no data
during this period), and then fulfills its aggregation task, as shown
in Fig. 2(c). This is because if C chooses to deliver A’s packets at
time t1, it has to do the same job again when B’s packets arrive. As

a result, double amount of traffic is injected into the downstream
links by C. This is definitely not an economic solution from the
perspective of network utility maximization.

The main purpose of our work is to address the above challenges.
We first formulate this rate allocation problem as a network utility
maximization problem. Due to its non-convexity, we take a couple
of variable substitutions on the original problem and transform it
into an approximate problem, which is convex. We then apply du-
ality theory to decompose this approximate problem vertically into
a rate control subproblem and a scheduling subproblem that interact
through shadow prices. Based on this decomposition, a distributed
subgradient algorithm for joint rate control and scheduling is de-
signed, and proved to approach arbitrarily close to the optimum of
the approximate problem. Finally, we show that our approximate
solution can achieve near-optimal performance through both the-
oretical analysis and simulations. To the best of our knowledge,
this work is the first one to present a joint design of rate allocation
and scheduling in the context of data aggregation in wireless sensor
networks.

The rest of the paper is organized as follows. Section 2 summa-
rizes the related work. We introduce the system model in Section 3
and formulate the problem in Section 4. In Section 5, the original
problem is transformed into a convex approximate problem, with
the solution given in Section 6. In Section 7, we explain how the
proposed solution is implemented in a decentralized manner. Then,
we discuss some related issues in Section 8, and evaluate the perfor-
mance of the proposed schemes in Section 9. Section 10 concludes
the paper.

2. RELATED WORK
In this section, we provide brief summaries of the existing work

on sensory data aggregation and network utility maximization re-
spectively, and clarify the novelty of this paper.

Sensory data aggregation becomes a research hotspot after the
presentation of the seminal work [1]. A large variety of problems
regarding this topic have been extensively studied. Representative
problems include: how to construct the most energy efficient ag-
gregation tree [11, 12], how to schedule the transmissions of sensor
nodes such that the aggregation delay can be minimized [13, 14],
how to maximize or bound the lifetime of the aggregation tree [15,
16], how to secure data aggregation [17, 18], how to derive theo-
retic bound of aggregation capacity [19, 20], how to achieve fair
aggregation [21, 22], etc.

The framework of network utility maximization (NUM) was first
developed in the context of wireline network in [2, 3], followed
by [4, 5, 6]. The main idea of the framework is based on the de-
composition of a system-wide optimization problem. A distributed
congestion control mechanism is designed to drive the solutions of
the decomposed problems towards the global optimum. Later on,
NUM was studied in the context of wireless networks. In wireless
networks, this problem is more difficult because of the interference
nature of wireless communication. To address this challenge, a
scheduling mechanism is integrated into the optimization frame-
work to stabilize the system [7, 8, 9, 10].

This work is the first attempt to utilize NUM framework to ex-
plore the optimal rate allocation for sensory data aggregation. The
theoretical and practical challenges aforementioned in Section 1
make the problem we target at completely different from previous
work, and thus none of the existing solutions can be applied.

3. SYSTEM MODEL
In this section, we explain in detail the system model.



3.1 Aggregation Model
We consider an aggregation tree T rooted at the sink. We denote

the set of tree edges (links) by L = L(T ). The sensor nodes on
T can be divided into source nodes that collect sensory readings,
and aggregation nodes that aggregate and relay sensory readings.
In the rest of the paper, we assume that the source nodes are only at
the leaf nodes of the aggregation tree. However, it is possible that
a sensor node plays a dual role as both source node and aggrega-
tion node. This problem can be easily addressed through a simple
graph transformation. In particular, we replace each source node at
a non-leaf node by creating a new leaf node and placing the source
node in it, and then connect the new leaf node to the non-leaf node
where the source node is originally located by a link with infinite
capacity1.

As in most applications of sensor networks, we assume that all
the sensor nodes are equipped with the same sensing and commu-
nicating devices, and furthermore, the maximum collecting rate of
the sensing device is larger than the maximum transmitting rate of
the communicating device. The lifetime of the network is divided
into slots with equal duration, and each slot is further divided into
subslots. The sensing device of each node may or may not col-
lect data at a subslot. Once it decides to work within a subslot,
it always collects data at its maximum speed. The data collected
within a subslot is encapsulated into a packet, which is referred to
as the Basic Transmission Unit (BTU).

3.2 Probabilistic Rate Model
As discussed in Section 1, the transmission rate of an aggregation

node is constrained by not only the rates of its children but also their
packet timestamp patterns. To characterize the packet timestamp
patterns of sensor nodes, we introduce a probabilistic rate model,
which is defined and explained as below:

Definition 1. Probabilistic Rate Model. At each subslot, the
sensing device of a node chooses to collect data or not, based on a
probability, which is referred to as the data collection rate of this
node.

Suppose a time slot is composed of 100 subslots, and the data
collection rate of a given sensor node is 0.5. Then, it works at
roughly 50 randomly selected subslots and sleeps at the rest of time.
As a result, it collects around 50 packets (BTU) within a time slot.

We define the data transmission rate of a node as the ratio of the
number of packets (BTU) this node delivers within a time slot to the
number of subslots in each slot. Data transmission rate is actually
a normalized rate. Its relation with the genuine transmission rate,
which is equal to the number of bits that a node delivers within a
time slot, can be reflected by the formula: xN = xG

CB×Nsub
, where

xN and xG denote the normalized and genuine data transmission
rate, respectively. In addition, CB is the size of BTU, and Nsub

represents the number of subslots in each slot. For example, as-
sume the data transmission rate of a node is 1000bps, CB is 100bits
and Nsub is 20. Based on the above formula, the normalized data
transmission rate is 0.5.

The probabilistic rate model can be considered as a generaliza-
tion of a node’s packet timestamp pattern. This can be better un-
derstood after we mathematically formulate the problem in the next
section. Additionally, in the sensing tasks which require periodic
data collection, the probabilistic rate model can capture the long-
term expectation of time-varying time-offsets of the packets from

1In practice, we do not place this link in any independent set, and
thus it has no impact on the scheduling problem.

different nodes. It is extremely difficult to mathematically model
the fixed time-offsets. More detailed discussion can be found in
Section 8.2.

4. PROBLEM FORMULATION

4.1 Terminology
Link flow: We define link flow as the single-hop data traffic going
through a link (tree edge) of the aggregation tree. Conceptually, it
includes source flow originating at source nodes and aggregation
flow coming from aggregation nodes. The set of source flows and
the set of aggregation flows are denoted by F S and F A. In ad-
dition, F = F S ⋃

F A represents the set of all the flows on the
aggregation tree. For any flow f ∈ F , we use π(f) and C(f) to
denote its parent flow and set of children flows, respectively. Fi-
nally, f(l) implies the flow which goes through a link l ∈ L, and
l(f) means the link through which a flow f ∈ F passes. We denote
the normalized rate of each flow f ∈ F by xf . For a source flow
f ∈ F S , its rate is quantitatively equal to the data collection rate of
the corresponding source node. We use Xf to denote the interval
in which xf must lie:

Xf := {[mf , Mf ] if f ∈ F S ; [0, Mf ] if f ∈ F A}.

where mf and Mf are the lower and upper bounds of xf .
Queue: At each aggregation node, the packets coming from each of
its children flows f is buffered in a queue, denoted by Q(f). The
packets in each queue are sorted by their timestamps, as shown
in Fig. 1 and Fig. 2. We use Tt(f) to denote the timestamp of
the packet on the top of Q(f) (largest timestamp), and Tb(f) to
denote the timestamp of the packet at the bottom of Q(f) (smallest
timestamp). In addition, the aggregated packets (available data) are
stored in a separate queue, waiting for transmission.

4.2 Constraints
In this part, we elaborate on the constraints that our objective

function is subject to.
Network Capacity Constraint: Based on the network topology, a
conflict graph [23] can be constructed to capture the contention
relations among the links. In the conflict graph, each vertex rep-
resents a link, and an edge between two vertices implies the con-
tention between the two corresponding links, i.e., they cannot trans-
mit at the same time. Given a conflict graph, we can identify all its
independent sets of vertices. The links in an independent set can
transmit simultaneously.

Let I denote the set of independent sets. We represent an in-
dependent set, Ii (i = 1, 2, ..., |I|), as a |L|-dimensional rate
vector, which is ri. In ri, the lth entry is ri

l := {cl if l ∈
Ii; 0 otherwise} where cl denotes the capacity of link l ∈ L.
Here we should note that this capacity is a normalized capacity,
which is defined as the ratio of the maximum number of packets
(BTU) that can be delivered through a link within a time slot to the
number of subslots in each slot. The feasible capacity region Π at
the link layer is defined as the convex hull of these rate vectors:

Π := {r | r =

|I|∑

i=1

αir
i, αi ≥ 0,

|I|∑

i=1

αi = 1}.

With above notations, now we can formally define the network
capacity constraint as follows:

xf(l) ≤ rl for all l ∈ L.



Namely, the rate of each flow must not exceed the amount
of capacity allocated to the link it passes through. Let r :=
{(rl1 , rl2 , ..., rl|L|)| li ∈ L}, and it should satisfy r ∈ Π.
Data Aggregation Constraint: As in the rate control of unicast
and multicast scenarios, it is essential to investigate the relationship
between the rate of a parent flow and the rates of its children flows
so as to stabilize the network. However, the difficulty of achieving
this goal in the context of data aggregation is much larger, since a
slight change in the packet timestamp pattern of a node may incur
significant change in the resulting aggregated packets, as disclosed
in Section 1. To overcome this difficulty, we adopt a probabilistic
rate model, which is defined in Section 3. Given the rate of a node,
this model can generalize all the possibilities of this node’s packet
timestamp patterns.

Under the probabilistic rate model, the data aggregation con-
straint can be formulated as follows:

1−
∏

fc∈C(f)

(1− xfc ) ≤ xf for all f ∈ F A.

Here we give an interpretation of this constraint which may draw
a better understanding. We say a node covers a subslot if there
exists a packet transmitted by this node whose timestamp is exactly
this subslot. Then, 1 − xf denotes the percentage of the subslots
which are not covered by the sending node of f . Later, we use the
concepts of a flow and its sending node interchangeably. It follows
that

∏
fc∈C(f)(1− xfc) implies the percentage of the subslots not

covered by any of f ’s children nodes. Intuitively, a parent node
needs to cover all the subslots covered by at least one child, which
is 1−∏

fc∈C(f)(1− xfc). By this intuition, the data aggregation
constraint is presented.
Data Availability Constraint: From the example shown in Fig. 2,
we learn that an aggregation node cannot take any actions before it
makes sure that all the packets collected at the same time have ar-
rived. Given a timestamp, after receiving a packet with this times-
tamp or larger timestamp from each child node, the aggregation
node will know that all the packets with this timestamp have ar-
rived. Here we assume that packets arrive in the order of their
timestamps. Then, it performs the aggregation and puts the result-
ing aggregated packet into the queue where the packets available
for transmission are stored. Thus, the timestamps of the available
packets are constrained within the time interval from the small-
est Tb(f) to the smallest Tt(f) among all the queues. Recall that
Tb(f) and Tt(f) denote the timestamps of the packets on the bot-
tom and the top of each queue, respectively.

With a binary indicator variable bτ (f) defined as below:

bτ (f) =

{
1 There is a packet with timestamp τ in Q(f).
0 otherwise.

In terms of the number of BTUs, we denote the amount of the avail-
able data at the sending node of f by λf . λf can be calculated as
follows:

λf =

minfj∈C(f) Tt(fj)∑

τ=minfi∈C(f) Tb(fi)

(
∨

fk∈C(f)

bτ (fk)) (1)

where
∨

denotes the bitwise operation “OR".
By this formula, we can easily check that in the example shown

in Fig. 2, the amount of the available data at node C (stored in queue
C) at time t1 (Fig. 2(b)) and t2 (Fig. 2(c)) are 0 and 6, respectively.
Note that in the scenario happens at t2, we do not take into account
the packet with timestamp 10 in queue B, since it is still unknown

at this moment whether node A also has a packet with timestamp
10, and thus cannot mark this packet to be available.

Furthermore, let af be the amount of data which can be transmit-
ted by the sending node of f . Then, the data availability constraint
can be formally defined as follows:

af ≤ λf for all f ∈ F A.

In other words, for each flow f ∈ F A, it can not deliver more
data than the amount of the available data stored at its sending node.
Within a time slot, once the available data are all sent out, the send-
ing node can not do more transmission even if some of the queues
for its children nodes are not empty. The data availability constraint
minimizes the amount of packets a node could inject into the net-
work. By this constraint, for each timestamp, there is at most one
packet with this timestamp arriving at the sink. More importantly,
the data availability constraint is actually the prerequisite of the
data aggregation constraint, since the data aggregation constraint
implicitly assumes all the packets from different sources collected
at the same time are merged into a single packet.

4.3 Problem Formulation
With the terminologies and constraints defined above, we can

now formulate the problem to be solved. We associate each source
flow f ∈ F S with a utility function Uf (xf ) : R+ → R+. In this
paper, we assume Uf is continuously differentiable, increasing, and
strictly concave. Our objective is to choose the rate of each flow
xf and the allocated capacity of each link rl so as to maximize
the aggregate utility function. We now formulate the problem of
optimal rate allocation for data aggregation in sensor networks as
the following constrained nonlinear optimization problem:

P : max
∑

f∈F S

Uf (xf ) (2)

subject to xf(l) ≤ rl for all l ∈ L (3)

af ≤ λf for all f ∈ F A (4)

1−
∏

fc∈C(f)

(1− xfc ) ≤ xf for all f ∈ F A (5)

x ∈ X, r ∈ Π

In P, the data availability constraint (4) works as the prerequi-
site of the data aggregation constraint (5). However, it is actually
an implicit constraint that need not be considered when solving this
optimization problem, although in practice each aggregation node
works following this constraint. We will give more detailed expla-
nation on this point in Section 8.1.

By choosing appropriate utility functions, the optimal rate allo-
cation can achieve different fairness models among the flows [2,
3]. For instance, if we let Uf (xf ) = wf ln(xf ) for f ∈ F S , the
weighted proportional fairness can be achieved.

5. APPROXIMATE PROBLEM

5.1 Variable Substitution
Though we formulate the problem of optimal rate allocation, it

turns out to be a non-convex program, due to the non-convexity of
the data aggregation constraint (5). To address this problem, we
reorganize the data aggregation constraint and take a log transform
on both sides: ln(1 − xf ) ≤ ∑

fc∈C(f) ln(1 − xfc). Next, we
substitute xf of each flow by x̃f = − ln(1 − xf ), where we call



x̃f the transformed rate of f . By this variable substitution, the
data aggregation constraint becomes:

∑
fc∈C(f) x̃fc ≤ x̃f . In the

rest of this paper, we refer to this constraint as the transformed
aggregation constraint. In addition, based on the feasible region of
xf (f ∈ F ), we can derive the feasible region of x̃f as

X̃f :=

{
[− ln(1−mf ),− ln(1−Mf )] f ∈ F S

[0,− ln(1−Mf )] f ∈ F A

where − ln(1−mf ) ≥ 0 and − ln(1−Mf ) < ∞.
By the variable substitution described above, we transform the

data aggregation constraint into a linear constraint. However, this
substitution has a side effect, namely, it turns the network ca-
pacity constraint into 1 − exp(−x̃f(l)) − rl ≤ 0, another non-
convex constraint. To overcome this problem, we reorganize this
constraint and take a log transform on both sides, then we have
x̃f(l) ≤ − ln(1 − rl). Next, we take another variable substitu-
tion on rl: r̃l = − ln(1 − rl) where we call r̃l the transformed
allocated capacity of link l ∈ L. By this variable substitution, the
non-convex constraint is transformed into x̃f(l)− r̃l ≤ 0. We name
this constraint as the transformed capacity constraint. Recall that
rl is a normalized capacity allocated to link l, and thus it satisfies
0 ≤ rl ≤ 1. Since rl = 1 − exp(−r̃l), it can be derived that
0 ≤ r̃l ≤ ∞. By substituting r̃l for rl, the original capacity region
Π is transformed into a transformed capacity region Π′:

Π′ := {r̃ | r̃li = − ln(1− rli ), i = 1, 2, ..., |L|, r ∈ Π}

However, Π′ is not a convex region. Figure. 3 illustrates this
region transformation. Particularly, Fig. 3(a) shows an example of
two-dimensional capacity region Π, and the transformed capacity
region Π′ is drawn in Fig. 3(b). As can be seen, Π′ (the shaded
area) is not a convex region.

(a) (b) ’ (c) (d)

Figure 3: Region transformation

To tackle this problem, we constitute an approximate trans-
formed capacity region Π̃, which is convex. Recall that the original
capacity region Π is actually the convex hull of the rate vectors of
all the independent sets. In fact, these rate vectors are the extreme
points of Π, since each of them cannot be represented by the convex
combination of others. In the transformed capacity region Π′, let
r̃i denote the point (vector) transformed from the ith extreme point
ri (rate vector of ith independent set) in Π. In r̃i, the lth entry is
r̃i

l := {c̃l if l ∈ Ii; 0 otherwise} where c̃l is referred to as
the transformed capacity, and defined by c̃l = − ln(1− cl).

Now, we can define the approximate transformed capacity region
Π̃ as the convex hull of these transformed rate vectors:

Π̃ := {r̃ | r̃ =

|I|∑

i=1

αir̃
i, αi ≥ 0,

|I|∑

i=1

αi = 1}.

It is not difficult to prove that each r̃i, i = 1, 2, ..., |I| cannot be
represented by the convex combination of others either, and thus is
an extreme point of Π̃. Therefore, for each (ith) independent set,

there is a one-to-one mapping between its corresponding extreme
points in Π (i.e., ri) and Π̃ (i.e., r̃i).

Figure 3(c) shows the approximate capacity region Π̃ (the shaded
area), which corresponds to the original capacity region Π in
Fig. 3(a). As can be seen, despite of the convexity it achieves, it
does not cover all the points of the transformed capacity region Π′

(the area enclosed by the dashed curve). Furthermore, it includes
some points outside the boundary of Π′, and this implies that Π̃
may result in some solutions which are not feasible in the original
problem. Actually, if we take a reverse variable substitution (i.e.,
rl = 1− exp(−r̃l)) on each point r̃ ∈ Π̃, a new region denoted by
Π̃′ is attained, and shown in Fig. 3(d) (the shaded area). As one can
see, it does have some points outside the original capacity region Π
(the area enclosed by the dashed curve).

However, in our algorithm that will be introduced in the next
section, we do not map the solution in Π̃ to Π in this way, namely,
through rl = 1 − exp(−r̃l). Instead, we design a safe mapping
scheme, which can guarantee that there always exists a feasible
point in Π, which corresponds to the solution attained in the context
of Π̃.

Based on the definition of Π̃, any point in Π̃, say r̃0, can be
expressed as r̃0 =

∑|I|
i=1 αir̃

i. Its counterpart in the original prob-
lem is rG := {(rG

l )| rG
l = 1 − exp(−r̃0l), l ∈ L} , and it

may not be located inside Π. However, in Π, we can always find
a point, which is rL =

∑|I|
i=1 αir

i where each αi equals the αi in
r̃0 =

∑|I|
i=1 αir̃

i. By this mapping scheme, wherever the optimal
solution is located in Π̃, our algorithm can identify a correspond-
ing feasible solution inside Π. In the rest of this paper, we refer to
rG as the genuine mapping point of r̃0, and rL as the linear map-
ping point of r̃0. Similarly, given a point r0 =

∑|I|
i=1 αir

i inside
Π, we can define r̃G := {(r̃G

l )| r̃G
l = − ln(1 − r0l), l ∈ L}

and r̃L =
∑|I|

i=1 αir̃
i as the genuine mapping point and the linear

mapping point of r0 in Π̃.
Now, we can formally define the approximate problem as fol-

lows:

P̃ : max
∑

f∈F S

Uf (1− exp(−x̃f )) (6)

subject to x̃f(l) − r̃l ≤ 0 for all l ∈ L (7)
∑

fc∈C(f)

x̃fc − x̃f ≤ 0 for all f ∈ F A (8)

x̃ ∈ X̃, r̃ ∈ Π̃

According to [24] (Chapter 3.2.4), since 1 − exp(−x̃f ) is a
strictly concave and increasing function, the objective function (6)
remains strictly concave and increasing. Thus, P̃ is a convex prob-
lem, and always has a unique maximizer. Once we identify this
maximizer, we can use its linear mapping point in Π as the approx-
imate solution of P.

5.2 Approximation Analysis
In this subsection, we provide some theoretical analysis on both

the original problem P and the approximate problem P̃.

Theorem 1. The optimal solution of P (P̃) must be attained on
the boundary of Π (Π̃).

PROOF. Here we only show the proof for P, since the proof for
P̃ is similar. By contradiction, suppose the optimal solution of P,



denoted by r∗, is a strictly interior point of Π2. Since in Π, the
components of r∗ only appear in the network capacity constraint
(i.e., xf(l) ≤ rl), we do not need to check other constraints. At
optimality, the network capacity constraint may or may not be ac-
tive (we say a constraint is active if it attains equality). If it is not
active, xf(l) will not change if we increase rl. On the other hand, if
it is active, xf(l) will go up to some extent with the increase of rl.
As a result, the objective value will be improved, since it’s strictly
increasing with xf(l). Since r∗ is an interior point, there must exist
some room to increase some components of r∗, without changing
the others. This conflicts the assumption that r∗ is the optimal so-
lution. Therefore, r∗ must be located on the boundary of Π.

In Π (Π̃), which is a compact |L|-dimensional polyhedron, each
facet of its boundary is defined by the convex hull of |L| extreme
points. Thus, the optimal solution of P (P̃) can be expressed as
r∗ =

∑|L|
i=1 αir

i (r̃∗ =
∑|L|

i=1 αir̃
i). In addition, the approximate

solution, which is the linear mapping point of r̃∗, is also located at
the boundary of Π.

Now, we are interested in how far our approximate solution is
from the optimal solution. In other words, we want to know the
difference between our approximate objective value and the opti-
mal objective value. We first introduce some notations. For any
point r0 (r̃0) in Π (Π̃), we define P(r0) (P̃(r̃0)) as the optimiza-
tion problem P (P̃) when r (r̃) is fixed to be r0 (r̃0). In addition, let
P∗(r0) (P̃∗(r̃0)) be the optimal objective value of P(r0) (P̃(r̃0)).
Suppose r∗ (r̃∗) is the global optimal solution in Π (Π̃), we use
P∗ = P∗(r∗) (P̃∗ = P̃∗(r̃∗)) to denote the global optimal objec-
tive value of P (P̃).

Then, we investigate the performance of the approximate solu-
tion. Suppose the objective value of our approximate solution is
P̂∗. In the rest of this section, we first show that the difference be-
tween the global optimal objective value of P (i.e., P∗) and P̂∗ is
bounded by P̃∗ − P̂∗ through Theorem 2, and then give a looser
but simpler bound by Theorem 3.

Theorem 2. The optimal objective value of the original prob-
lem P is upper bounded by the optimal objective value of the ap-
proximate problem P̃.

PROOF. Let the point in Π which maximizes P be r∗, as shown
in Fig. 3(a). Thus, r∗ can be expressed as r∗ =

∑|L|
i=1 αir

i.
Suppose its genuine mapping point in Π̃ is r̃G. As can be seen
in Fig. 3(b), it may not be inside Π̃. However, in Π̃, we can al-
ways find the linear mapping point of r∗, which is denoted by r̃L

and shown in Fig. 3(b). Since the function f(x) = − ln(1 − x)
is strictly convex, it can be derived that for each l ∈ L, r̃G

l =

− ln(1 − r∗l ) ≤ ∑|L|
i=1 αi(− ln(1 − ri

l)) =
∑|L|

i=1 αir̃
i
l = r̃L

l .
Similar to the proof of Theorem 1, we can show that P̃∗(r̃G) ≤
P̃∗(r̃L) by moving each component of r̃G towards r̃L. Since
P∗ = P̃∗(r̃G) and P̃∗(r̃L) ≤ P̃∗, it can be concluded that
P∗ ≤ P̃∗.

By Theorem 2, the approximation ratio of our solution can be
bounded by P̃∗−P̂∗

P̂∗ . Next, we give a looser but simpler bound of
P∗ − P̂∗.

Theorem 3. Suppose that the optimal solution of P̃ is r̃∗, and
its linear mapping point in Π, i.e., the approximate solution is rL.
2In fact, a solution also includes the rate x, here we only consider
the capacity r simply for the ease of expression.

Furthermore, let r̃0 be rL’s corresponding genuine mapping point
in Π̃. Then, the value of P∗ − P̂∗ is bounded by µα∗T (r̃∗ − r̃0),
where µα∗ represents the vector of the optimal dual variables of
problem P̃(r̃0).

PROOF. As can be seen, r̃∗ and r̃0 are shown in Fig. 3(c), and rL

is shown in Fig. 3(d). Since rL is the approximate solution, by The-
orem 2, P∗ −P∗(rL) is bounded by P̃∗(r̃∗)−P∗(rL), which is
further equal to P̃∗(r̃∗)−P̃∗(r̃0). Based on the theory of perturba-
tion and sensitivity (Chapter 5.6 in [24]), we denote the perturbed
version of the optimization problem P̃(r̃0) by P̃r̃0 , in which the
transformed capacity constraint is replaced by x̃f(l) − r̃0l ≤ ul.
Here u := (ul, l ∈ L) is the vector of perturbation variables. It is
evident that P̃r̃0 coincides with problem P̃(r̃0) when u is a zero
vector. On the other hand, when ul is positive it means that we have
relaxed the transformed capacity constraint of link l.

We denote the optimal objective value of P̃r̃0 at u by P̃∗r̃0(u).
According to [24] (Chapter 5.6.1), since problem P̃(r̃0) is con-
cave, P̃∗r̃0(u) is a concave function of u. It follows that P̃∗r̃0(u) ≤
P̃∗r̃0(0) + µα∗T u. Therefore, let u = r̃∗ − r̃0, the difference be-
tween P∗ and P∗(rL) can be bounded as follows: P∗−P∗(rL) ≤
P̃∗(r̃∗) − P̃∗(r̃0) = P̃∗r̃0(u) − P̃∗r̃0(0) ≤ µα∗T u = µα∗T (r̃∗ −
r̃0).

Let f(x) = − ln(1 − x), and thus f−1(y) = 1 − exp(−y).
As previously discussed, r̃∗ =

∑|L|
i=1 αir̃

i. It follows that rG =

f−1(
∑|L|

i=1 αir̃
i) (for the sake of simplicity, here we use the no-

tation of a vector to delegate all of its components.) and rL =∑|L|
i=1 αir

i. Similar to the proof of Theorem 2, it can be proved
that rG ≥ rL (i.e., rG

l ≥ rL
l ). Since f(x) is strict increasing, and

r̃0 = f(rL), it can be inferred that r̃∗ ≥ r̃0 (i.e., r̃∗l ≥ r̃0l). There-
fore, each component of r̃∗− r̃0 is nonnegative. Furthermore, since
r̃0 = f(

∑|L|
i=1 αif

−1(r̃i)), µα∗T (r̃∗− r̃0) is a function of µα∗ and
r̃i, i = 1, 2, ..., |L|.

From this bound, it can be seen that P∗ − P̂∗ is proportional
to the difference between r̃∗ and r̃0. Actually, it is not difficult to
show that when the capacity of each link decreases, the difference
between r̃∗ and r̃0 will drop accordingly. However, this does not
necessarily means that µα∗T (r̃∗ − r̃0) will also drop, since µα∗

may increase with the decrease of capacities3. In fact, µα∗ depends
on the particular utility function we choose, and thus there is no
universal conclusion on this point. In Section 9, we will show an
example in which P∗− P̂∗ drops when the capacity of each link is
reduced.

6. CROSS LAYER DESIGN VIA DUAL DE-
COMPOSITION

6.1 The Dual Problem
Solving P̃ directly requires global coordination of all flows,

which is impractical in a distributed environment such as sensor
networks. Since P̃ is a convex program with compact feasible
region, strong duality can be achieved4 (Chapter 5.2.3 in [24]).
Therefore, there exists a unique maximizer (x̃∗, r̃∗) for P̃, which
can be attained by a distributed algorithm derived via formulating

3For more detailed explanation on µα∗, please refer to Section 6.
4Slater’s condition can be guaranteed by assuming there exist vec-
tors x̃ ∈ X̃ and r̃ ∈ Π̃ which satisfy all the constraints, i.e., strictly
feasible points exist.



and solving the Lagrange dual problem of P̃. In order to achieve
this, we first take a look at the Lagrangian of P̃:

L(x̃, r̃, µα, µβ) =
∑

f∈F S

Uf (1− exp(−x̃f ))−
∑

l∈L
µα

l (x̃f(l) − r̃l)

−
∑

f∈F A

µβ
f (

∑

fc∈C(f)

x̃fc − x̃f )
.

In L(x̃, r̃, µα, µβ), µα := (µα
l , l ∈ L) and µβ := (µβ

f , f ∈
F) are vectors of Lagrangian multipliers, corresponding to the
transformed capacity constraint (7) and the transformed aggrega-
tion constraint (8), respectively. They are also interpreted as the
“shadow prices" of the constraints, which can be understood as the
“costs" a flow will be charged if it violates the constraints.

Since it can be derived that

∑

f∈F A

µβ
f (

∑

fc∈C(f)

x̃fc − x̃f ) =
∑

f∈F A

µβ
f

∑

fc∈C(f)

x̃fc −
∑

f∈F A

µβ
f x̃f

=
∑

f∈F
µβ

π(f)
x̃f −

∑

f∈F A

µβ
f x̃f =

∑

f∈F S

µβ
π(f)

x̃f +
∑

f∈F A

(µβ
π(f)

− µβ
f )x̃f

and
∑

l∈L µα
l x̃f(l) =

∑
f∈F µα

l(f)x̃f , we reorganize the La-
grangian as follows:

L(x̃, r̃, µα, µβ) =
∑

f∈F S

[
Uf (1− exp(−x̃f ))− (µα

l(f) + µβ
π(f)

)x̃f

]

+
∑

f∈F A

[
(−µα

l(f) − µβ
π(f)

+ µβ
f )x̃f

]
+

∑

l∈L
µα

l r̃l.

The dual of the primal problem P̃ is:

D̃ : min
µα,µβ≥0

D(µα, µβ),

where the dual objective function D(µα, µβ) is given as

D(µα, µβ) := max
x̃∈X̃, r̃∈Π̃

L(x̃, r̃, µα, µβ)

In the dual objective function, the Lagrangian multipliers
(shadow prices) µα and µβ , serve as the dual variables. Further-
more, D(µα, µβ) can be decomposed into two separate optimiza-
tion problems: D(µα, µβ) = D1(µ

α, µβ)+D2(µ
α). D1(µ

α, µβ)
and D2(µ

α) are defined below:

D1(µα, µβ) := max
x̃∈X̃

∑

f∈F S

[
Uf (1− exp(−x̃f ))− (µα

l(f) + µβ
π(f)

)x̃f

]

+
∑

f∈F A

[
(−µα

l(f) − µβ
π(f)

+ µβ
f )x̃f

]

D2(µα) := max
r̃∈Π̃

∑

l∈L
µα

l r̃l

Among them, D1(µ
α, µβ) denotes the rate allocation problem,

while D2(µ
α) is the scheduling problem. In particular, the rate al-

location problem aims at finding the rate of each source node that
maximizes the aggregate utilities of all sources, subject to the con-
straint that the system is stable under some scheduling policy, while
the scheduling problem focuses on finding a scheduling policy that
stabilizes the system, for any rate vector of sources picked by the
rate allocation problem. In the rest of this section, we will first
elaborate on these two problems separately, and then explain how
to develop a cross-layer joint design of them.

6.2 Interpretation of the Prices
Before proceeding with the decoupled problems, we first provide

detailed explanation on the aforementioned shadow prices µα and
µβ . Theoretically, these prices represent the “costs" a flow will
be charged if it violates the constraints. In practice, they imply
the congestion information that the network elements need to share
with each other, so that the traffic rates on different links of the
network can be adjusted appropriately.

Let us first take a look at µα, which corresponds to the trans-
formed capacity constraint in P̃. When a flow f violates this
constraint (i.e., x̃f(l) > r̃l), if f increases its rate for dx̃f(l),
a cost of µα

l dx̃f(l) should be charged. Next, we give a practi-
cal interpretation of this cost in the context of the original prob-
lem P. Since x̃f(l) = − ln(1 − xf(l)), it can be derived that
dx̃f(l) = 1

1−xf(l)
dxf(l). Therefore, the cost charged with respect

to xf(l) is µα
l dx̃f(l) = µα

l
1

1−xf(l)
dxf(l).

In this paper, we call µα
l

1
1−x̂f(l)

the link price of flow f when
it passes data at a rate of xf(l) = x̂f(l). With link price, when a
flow f violates the network capacity constraint (3) in the original
problem P, i.e., xf(l) > rl, the total cost it needs to pay can be
calculated as follows:

∫ xf(l)
rl

µα
l

1
1−x̂f(l)

dx̂f(l) = µα
l (x̃f(l) − r̃l).

As can be seen, it is quantitatively equal to the cost calculated in
the context of P̃, which is µα

l (x̃f(l) − r̃l).
On the other hand, µβ corresponds to the transformed aggre-

gation constraint in P̃. When the aggregate transformed rates
of f ’s children flows are larger than f ’s transformed rate (i.e.,∑

fc∈C(f) x̃fc > x̃f ), the total cost paid by them to f for its efforts

of aggregating packets is µβ
f (

∑
fc∈C(f) x̃fc − x̃f ).

When at optimality, according to the Karush-Kuhn-Tucker con-
ditions, only the prices corresponding to active constraints are pos-
itive, which implies the price of an uncongested link is zero.

6.3 The Rate Allocation Problem
The rate allocation problem can be further divided as follows:

D1(µα, µβ) =
∑

f∈F S

max
x̃f∈X̃f

Φ(x̃f ) +
∑

f∈F A

max
x̃f∈X̃f

Ψ(x̃f )

where Φ(x̃f ) = Uf (1− exp(−x̃f ))− (µα
l(f) + µβ

π(f)
)x̃f

Ψ(x̃f ) = (−µα
l(f) − µβ

π(f)
+ µβ

f )x̃f .

In other words, the rate allocation problem can be solved
through separately solving the optimization problem of each source
flow (i.e., maxx̃f∈X̃f

Φ(x̃f )), and each aggregation flow (i.e.,

maxx̃f∈X̃f
Ψ(x̃f )). Recall that µα and µβ are the costs a flow

will be charged if it violates the constraints. Φ(x̃f ) and Ψ(x̃f )
actually represent the “net benefit" of a flow.

Let us first study the optimization problem of each source flow
f ∈ F S . As previously discussed, Uf (1 − exp(−x̃f )) is strictly
concave and twice continuously differentiable. Consequently,
Φ(x̃f ) is strictly concave and smooth, and thus has a unique max-
imizer when dΦ(x̃f )

dx̃f
= 0. Thus, given a valid utility function,

the optimal solution can be easily identified. For example, assume
Uf (.) = ln(.), it follows that dΦ(x̃f )

dx̃f
=

exp(−x̃f )

1−exp(−x̃f )
− (µα

l(f) +

µβ
π(f)) = 0 from where the maximizer can be solved as below:

x̃∗f = − ln
( µα

l(f)
+ µβ

π(f)

µα
l(f)

+ µβ
π(f)

+ 1

)
.



When taking into account the feasible range of x̃f , which is
X̃f = [− ln(1 − mf ),− ln(1 − Mf )], the optimal value of x̃f

given µα and µβ should be

x̃f (µα, µβ) = arg max
x̃f∈X̃f

Φ(x̃f )

=





x̃∗f if − ln(1−mf ) ≤ x̃∗f ≤ − ln(1−Mf )

− ln(1−mf ) if x̃∗f < − ln(1−mf )

− ln(1−Mf ) if x̃∗f > − ln(1−Mf )

(9)

On the other hand, for each aggregation flow f ∈ F A, since
dΨ(x̃f )

dx̃f
= −µα

l(f) − µβ
π(f) + µβ

f is a constant, it follows that given

the feasible range X̃f = [0,− ln(1 −Mf )], together with µα and
µβ , the optimal value of x̃f can be calculated as below:

x̃f (µα, µβ) = arg max
x̃f∈X̃f

Ψ(x̃f )

=





0 if µβ
f < µα

l(f)
+ µβ

π(f)

− ln(1−Mf ) if µβ
f > µα

l(f)
+ µβ

π(f)

any value in X̃f otherwise

.

(10)

As previously discussed, strong duality holds in P̃, and thus
there is no duality gap. Thereby, the optimal dual variables (prices)
µα and µβ exist (Proposition 5.1.4 in [25]), denoted as µα∗ and
µβ∗. If µα∗ > 0 and µβ∗ > 0 are dual optimal, then x̃f (µα∗, µβ∗)
is also primal optimal, given that x̃f is primal feasible (Proposition
5.1.5 in [25]). In other words, once the optimal prices µα∗ and µβ∗

are available, the optimal rate x̃∗f can be achieved. The role of µα

and µβ is two-fold. First, they serve as the pricing signal for a flow
to adjust its rate. Second, they decouple the primal problem, i.e.,
the global utility optimization into individual rate optimization of
each flow.

6.4 The Scheduling Problem
We now turn to the scheduling problem D2(µ

α). It is actually a
NP-hard problem, since it is equivalent to the maximum weighted
independent set problem over the conflict graph. Actually, the con-
flict graph depends on the underlying interference model. In this
paper, we consider node-exclusive interference model, i.e., links
that share a common node cannot transmit or receive simultane-
ously. This model has been used in many existing works [7, 8, 9] on
network utility maximization. With the node exclusive interference
model, the scheduling problem can be reduced to the maximum
weighted matching problem, which is polynomial-time solvable.
However, the existing polynomial-time solution [26] requires cen-
tralized implementation. In [27], a simple distributed approximate
algorithm is presented, which is at most a factor of 2 away from the
maximum, and has a linear running time O(|L|). We utilize this
algorithm to solve the scheduling problem D2(µ

α) in a distributed
manner.

Actually, the rate control strategy proposed in this paper is a gen-
eral framework and thus can be extended to other interference mod-
els. For any interference model, as long as an appropriate algorithm
can be designed to solve the scheduling problem D2(µ

α), it can be
integrated with our framework.

Additionally, in some applications of sensor networks, the duty-
cycle of the sensor nodes further complicate the scheduling prob-
lem [28, 29]. We will try to address this challenge in our future
work.

6.5 Subgradient Algorithm
Now let us see how we can minimize the dual objective function

D(µα, µβ). Gradient-based methods are, in general, attractive ap-
proaches to carry out minimizations of this type. Unfortunately, in
our case, D(µα, µβ) is nondifferentiable, and therefore its gradient
may not always exist. This is because in general, differentiability
of the dual requires a unique primal optimizer, whereas in our case,
the optimal values of x̃f (f ∈ F A) can be non-unique. Further-
more, D2(µ

α) is a piecewise linear function and not differentiable.
Therefore, we choose to use subgradient method to solve this prob-
lem.

The subgradient algorithm that we propose next is based on the
subgradient method developed by N. Z. Shor (Chapter 2 in [30]). In
our problem, although the dual gradient does not exist, subgradients
do. Based on Proposition 6.1.1 of [25], we adjust µα and µβ in the
opposite direction to the subgradients:

µα
l (t + 1) =

[
µα

l (t)− h(t)
∂D(µα(t), µβ(t))

∂µα
l

]+

(11)

=
[
µα

l (t) + h(t)(x̃f(l)(µ
α(t), µβ(t))− r̃l(µ

α(t)))
]+

µβ
f (t + 1) =

[
µβ

f (t)− h(t)
∂D(µα(t), µβ(t))

∂µβ
f

]+

(12)

=
[
µβ

f (t) + h(t)(
∑

fc∈C(f)

x̃fc (µα(t), µβ(t))− x̃f (µα(t), µβ(t)))
]+

In the above formulas, the x̃f (µα, µβ) and r̃l(µ
α) are the max-

imizers of D1(µ
α, µβ) and D2(µ

α), given µα and µβ ; h(t) is a
positive scalar stepsize (note that the unit of t is time slot, not sub-
slot); ‘+’ denotes the projection onto the set R+ of non-negative
real numbers.

Equation (11) reflects the law of supply and demand. If the de-
mand of a flow f for bandwidth x̃f(l) exceeds its supply r̃l, the
transformed capacity constraint is violated. Thus, the price µα

l is
raised. Otherwise, µα

l is reduced. Similarly, in (12), if the chil-
dren flows fc ∈ C(f) demand an aggregate rate higher than the
rate of its parent flow f , the transformed aggregation constraint is
violated. Thus, the price µβ

f is raised. Otherwise, µβ
f is reduced.

6.6 Convergence Analysis
In this subsection, we justify the convergence property of the

subgradient algorithm. Subgradient may not be a direction of de-
scent, but makes an angle less than 90 degrees with all descent
directions. Using results on the convergence of the subgradient
method [25, 30], we show that, for a constant stepsize h, the al-
gorithm is guaranteed to converge to within a neighborhood of
the optimal value. The reason why we choose a constant step-
size is that it is convenient for distributed implementation. Since
the usual convergence criterion is not applicable for a subgra-
dient algorithm5, we are interested in the asymptotical conver-
gence. Similar to [7], we define µα(T ) := 1

T

∑T
t=1 µα(t) and

µβ(T ) := 1
T

∑T
t=1 µβ(t) as the average dual variables by time T ,

and let x̃ := 1
T

∑T
t=1 x̃(t) be the average primal variable by time

T . The following theorems guarantee the statistical convergence
of the subgradient method. The proofs are similar to [7], and are
omitted due to the limit of space.
5This is because the dual cost usually will not monotonically ap-
proach the optimal value, but wander around it under the subgradi-
ent algorithm.



Theorem 4. Let µα∗ and µβ∗ be the optimal dual variables,
then, for some 0 < B < ∞, the following inequality holds

lim sup
T→∞

D(µα, µβ)−D(µα∗, µβ∗) ≤ hB. (13)

Theorem 5. Let x̃∗ be the optimal rate of P̃, then, for some
0 < B < ∞, the following inequality holds

lim inf
T→∞

P̃(x̃) ≥ P̃(x̃∗)− hB. (14)

The above theorems imply that the time-average primal and dual
variables obtained by the subgradient algorithm can be made ar-
bitrarily close to the optimal values if we choose the stepsize h
sufficiently small.

7. DISTRIBUTED IMPLEMENTATION
In this section, we describe how the subgradient algorithm can

be implemented in a real network in a distributed and scalable way.
In our design, A source (aggregation) node needs to communicate
only with its parent and children nodes. In detail, each node col-
lects the transformed rate x̃ from its children, and updates the prices
(µα and µβ) based on Eqn. (11) and Eqn. (12). Then, it broadcasts
updated prices to its children. Upon receiving the price information
from its parent, each node calculates its transformed rate based on
Eqn. (9) or Eqn. (10). Then, it forwards its updated rate to its par-
ent. Moreover, the nodes solve the scheduling problem through the
distributed algorithm as we discussed previously in Section 6.4, and
decide who will have a chance to transmit in the next slot. Before
convergence, each node transmits at a rate x̂ = min(x, r). At each
subslot, it must conform to the data availability constraint.

In our algorithm, in each iteration, an independent set is picked
as the solution of the scheduling problem. From a long-term per-
spective, the algorithm jumps among the extreme points (i.e., ri)
of the capacity region (recall that each extreme point corresponds
to an independent set.), and never touches the inner area. As afore-
mentioned, the optimal solution (i.e., r∗) is the convex combination
of |L| extreme points (i.e., r∗ =

∑|L|
i=1 αir

i), located on a facet of
the capacity region’s boundary. In reality, each αi is actually the
percentage of iterations that the algorithm picks the ith independent
set, after the system converges.

8. DISCUSSIONS

8.1 Validity of Data Availability Constraint
As mentioned in Section 4.3, the data availability constraint is

not taken into account when we solve the optimization problem P.
However, this will not cause any problem as long as the rate of
each flow converges to a feasible point. In an aggregation node, it
maintains a queue for each of its children, and one more queue for
the available data. Suppose the packets in each queue are sorted by
their timestamps, as shown in Fig. 1 and Fig. 2. Thus, the height of
each queue is determined by the timestamp (i.e., Tt) of the packet
on the top of this queue. If the aggregation node behaves strictly
following the data availability constraint, the queue of the avail-
able data should have the same height as the shortest child queue.
Clearly, after the optimal solution which satisfies both the network
capacity constraint and data aggregation constraint is attained, the
height of each child queue as well as the queue storing the available
data will not grow infinitely.

Furthermore, our solution is suboptimal, and thus does not utilize
the network resource to the extreme. Therefore, there is no doubt
that the proposed scheme in this paper will not overflow any node
in the aggregation tree.

8.2 Periodic Data Collection
Some sensing tasks require periodic data collection, namely, the

intervals between the timestamps of consecutive packets are fixed.
In this case, if we further assume synchronized data collection, i.e.,
all the sources start their collection at the same time, we can achieve
the largest time-overlap of the packets, and thus maximize the rate
of each source node. However, in practice, the time-offsets of the
packets from different nodes may be time-varying, due to the dy-
namic join (leave) of sensor nodes, and the oscillation of the rates
caused by the variation of the environment as well as the underly-
ing MAC layer scheduling. In this scenario, the proposed algorithm
can be considered as a good approximation, since the probabilistic
rate model can capture the long-term expectation of time-offsets.
For example, in the scenario shown in Fig. 1, node A and B both
collect data in a periodic pattern, and their rates are 1

2
and 1

4
. There

are two possibilities for the time-offset of the packets from A and
B, as shown in Fig. 1(b) and Fig. 1(c). The rate of aggregated pack-
ets (i.e., node C’s sending rate) in these two cases are 1

2
and 3

4
,

respectively. If either case has the same chance to happen, the ex-
pected rate of the aggregation flow is 1

2
× ( 1

2
+ 3

4
) = 5

8
. This

exactly equals the lower bound of node C’s rate derived by the data
aggregation constraint (1− (1− 1

2
)(1− 1

4
) = 5

8
).

Even if the time-offsets can be controlled, however, in this sce-
nario it is extremely difficult to mathematically model the relation-
ship between a parent flow and its children flows in a convex func-
tion. Suppose the data collection are all synchronized, what we can
do is to provide some tricks which can improve the objective value
after the algorithm converges. In detail, we check the source flows
sharing the same parent. If their periods are co-prime to each other,
there is nothing can be improved since the data aggregation con-
straint precisely models the aggregation of the source flows with
coprime periods. If the periods of some flows share a greatest com-
mon divisor α (let F α be the set of them), we fix their rates as
constants in P, and use a virtual flow fα to replace them in the
data aggregation constraint. fα is resulted from aggregating the
flows in F α when they are synchronized, and its rate is the con-
stant xfα = 1

α
(1 −∏

f∈F α(1 − αxf )). Subsequently, we restart
the optimization of P. Since xfα is lower than the rate derived by
the data aggregation constraint, some network resources are saved,
and thus the rates of other flows can be improved. As an example,
suppose the rates of the flows from node A and B shown in Fig. 1
are 1

4
and 1

6
, we have xfα = 1

3
according to above formula. Obvi-

ously, xfα is lower than the rate obtained based on Eqn (5), which
is 3

8
. Thus, some bandwidth can be saved from the flow originated

at node C and allocated to its neighboring flows. After reoptimiza-
tion, the rates of these neighboring flows will be improved.

8.3 Lossy Link
Due to the unliable nature of wireless communication, packets

may be lost during transmission. In our scheme, lost packets do
not matter at all, since from the perspective of the receiver, lost
packets look like “nonexistent packets", namely, the source nodes
never collect data at those subslots. Furthermore, if the average
reception probability of each link can be measured, the formulation
of the problem can be easily redefined so as to take it into account.
Retransmissions are not needed in our solution.

8.4 Energy Constraint
Energy scarcity is a major challenge for the design of sensor net-

works. Our approach can also be adapted to address this problem.
The solution is to add an energy constraint to the problem formula-
tion. As a result, the energy budget of each node on the aggregation
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Figure 5: Rates of source
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tree will be considered when the algorithm allocates the resource of
the network.

8.5 Time Synchronization
The problem of synchronization has been considered and ad-

dressed by the prior work on data aggregation in sensor net-
works [1], and we just borrow the existing solutions.

9. PERFORMANCE EVALUATION
In this section, we provide simulation results to complement the

analysis in the previous sections. We consider a randomly gener-
ated aggregation tree shown in Fig. 4. On this tree, 10 source nodes
(shaded nodes) collect and forward data to the sink S, through 7
aggregation nodes. In addition, the number on each node (edge)
works as the index of this node (flow). First, we assume that all the
links have a normalized capacity of 0.5, and all the source nodes
use the same utility function U(x) = ln(x). Then, we apply our
joint rate control and scheduling algorithm with a fixed stepsize
h = 1 on this aggregation tree, and observe its performance.

Figure 5 shows the evolution of the rates of the source flow 10
and 14. The other source flows have similar behavior and thus
we omit their results. As one can see, they converge quickly to
a neighborhood of the optimal values and oscillate around the opti-
mal values. This oscillating behavior mathematically results from
the nondifferentiability of the dual function and physically can be
interpreted as due to the scheduling process.
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Figure 6: Available data stored in aggregation nodes

Figure 6 describes the amount of available data stored in node
5 and 7. The other nodes have similar behavior and thus we omit
their results. In this test, we assume each time slot (length of step)
contains 100 subslots. As can be seen, although the two curves
both fluctuate with the time going, they are bounded reasonably.
The rise of fluctuation can be ascribed to the underlying scheduling,
which prevents an aggregation node from receiving and transmiting
packets at the same time.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

Normalized Time

D
el

a
y

 

 

Delay of Flow 1

Delay of Flow 2

Delay of Flow 5

Delay of Flow 8

Figure 7: Delays of the packets delivered by flows

Figure 7 demonstrates the average delays of the packets deliv-
ered by four flows. Here the concept of delay is defined as the
period from the moment when a packet is generated by a source
to the time when this packet is delivered by a flow. For example,
suppose node 8 generates a packet at time 1. Based on the delay
values shown in Fig. 7, this packet will arrive at node 5 at time 6,
since the delay of flow 8 is roughly 5. Similarly, it will arrive at
node 2 at time 8 since the delay of flow 5 is 7, and node 1 at time
10 since the delay of flow 2 is 9. Finally it will reach the sink at
time 14 since the delay of flow 1 is 13. Here we should note that
this packet may be aggregated during this process. As can be seen
in the figure, the average delay of each flow converges to a stable
point soon after the algorithm is started.
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Finally, Fig. 8 discloses the difference between the optimal ob-
jective value and the approximate objective value. In this test, we
tune the capacity of each link, and observe its impact on the objec-
tive value. Intuitively, as illustrated in Fig. 8(a), both the optimal
objective value and the approximate objective value increase with
the capacities growing. At first, when the capacity of each link is
as low as 0.1, the difference between the two values is negligible,
since the approximation ratio defined as |Optimal−Approximate|

|Approximate| is less
than 1%, as shown in Fig. 8(b). As the capacities grow up, the
difference as well as the approximation ratio increase accordingly.
They remain in a low level (less than 10%) until the capacity goes
beyond 0.5. Finally, the approximation ratio reaches around 20%
when the capacity is increased to 0.9.

To find a reasonable explanation for this point, let us observe
the function we use in all the variable substitutions, which is
f(x) = − ln(1−x). The curvature, i.e., the second order derivative



of this function is monotonously increasing with x. Thus, when the
original variable x is small, the value of the new variable y = f(x)
is close to x. For this reason, when we decrease the capacity of
each link, the boundary of the transformed region Π′ on which the
approximate solution (i.e., r̃0 shown in Fig. 3(c)) is located will be-
come closer to the boundary of the approximate region Π̃ on which
the optimal solution (i.e., r̃∗ shown in Fig. 3(c)) is located. Conse-
quently, r̃∗− r̃0 drops accordingly, resulting in a smaller difference
between the optimal value and the approximate value, by Theo-
rem 3. Finally, it should be noted that the optimal value shown in
this test is actually the optimal value of the approximate problem
(i.e., P̃∗), which has been proved to be the upper bound of the real
optimal value P∗. This implies that in practice, our approximate
solution should be even closer to the real optimal solution than we
observe in this experiment.

10. CONCLUSIONS
In this paper, we identify the unique challenges of rate allocation

in the context of data aggregation in wireless sensor networks, and
formulate this problem as a network utility maximization problem.
After transforming this problem into a convex approximate prob-
lem, we decompose it based on the duality theory, and propose a
distributed algorithm to solve the decoupled problems. Theoretical
analysis and simulation results demonstrate the near-optimal per-
formance of our scheme.
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