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ABSTRACT

Recent years have witnessed the emergence of mobile crowd sens-
ing (MCS) systems, which leverage the public crowd equipped with
various mobile devices for large scale sensing tasks. In this paper,
we study a critical problem in MCS systems, namely, incentivizing
user participation. Different from existing work, we incorporate
a crucial metric, called users’ quality of information (QoI), into
our incentive mechanisms for MCS systems. Due to various fac-
tors (e.g., sensor quality, noise, etc.) the quality of the sensory
data contributed by individual users varies significantly. Obtaining
high quality data with little expense is always the ideal of MCS
platforms. Technically, we design incentive mechanisms based on
reverse combinatorial auctions. We investigate both the single-
minded and multi-minded combinatorial auction models. For the
former, we design a truthful, individual rational and computation-
ally efficient mechanism that approximately maximizes the social
welfare with a guaranteed approximation ratio. For the latter, we
design an iterative descending mechanism that achieves close-to-
optimal social welfare while satisfying individual rationality and
computational efficiency. Through extensive simulations, we vali-
date our theoretical analysis about the close-to-optimal social wel-
fare and fast running time of our mechanisms.
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1. INTRODUCTION
The ubiquity of human-carried mobile devices (e.g., smartphones,

tablets, etc.) with a plethora of on-board and portable sensors (e.g.,
accelerometer, compass, camera, etc.) has given rise to the emer-
gence of various people-centric mobile crowd sensing (MCS) sys-
tems [1–3]. In a typical MCS system, a cloud-based platform ag-
gregates and analyzes the sensory data provided by the public crowd
instead of professionals and dedicatedly deployed sensors. The mo-
bile devices of participating users collect and may process in certain
level the data before submitting them to the platform.

Such MCS systems hold a wide spectrum of applications includ-
ing healthcare, ambient environment monitoring, smart transporta-
tion, indoor localization, etc. For example, MedWatcher [2] is a
US FDA advocated MCS system for post-market medical device
surveillance. Participating users upload photos of their medical
devices to a cloud-based platform using the MedWatcher mobile
application, which help identify visible problems with the devices.
The platform aggregates and analyzes the user-provided informa-
tion, sends reports to the FDA and alerts users about medical device
problems. Such a crowdsourcing paradigm enables easier detec-
tion of device safety issues and faster propagation of alerts to de-
vice users compared to traditional reporting methods such as mail
or telephone. Moreover, air quality monitoring [3] is another area
where MCS systems obtain their recent popularity. In such sys-
tems, crowdsourced air quality data are aggregated from a large
number of people using air quality sensors ported to their smart-
phones, which help estimate the city or district level air quality.

Participating in such crowd sensing tasks is usually a costly pro-
cedure for individual users. On one hand, it consumes users’ re-
sources, such as computing power, battery and so forth. On the
other hand, a considerable portion of sensing tasks require the sub-
mission of some types of users’ sensitive private information, which
causes privacy leakage for participating users. For example, by up-
loading the photos of their medical devices, users reveal the types
of their illnesses. By submitting air quality estimation samples,
users usually reveal information about their locations. Therefore,
without satisfactory rewards that compensate participating costs,
users will be reluctant to carry out the sensing tasks. However,
most of the existing MCS systems are based on voluntary user par-
ticipation or lack effective incentive mechanisms.

Aware of the paramount importance of stimulating user partici-
pation, the research community has recently developed some game-
theoretic incentive mechanisms for MCS systems [4–18]. How-
ever, most of the existing mechanisms fail to incorporate one im-
portant aspect, that is users’ quality of information (QoI), into their
designs. The meaning of QoI varies for different applications. For
example, in the aforementioned MedWatcher system [2] QoI refers
to the quality (e.g., resolution, contrast, sharpness, etc.) of up-



loaded photos. Higher quality ones will help the platform better
identify visible device problems. In air quality monitoring MCS
systems [3], QoI means a user’s estimation accuracy of air qual-
ity. The QoI of every user could be affected by various factors,
including poor sensor quality, noise, lack of sensor calibration and
so forth.

Cloud-based 

Platform

User 2User 1 User 3

Figure 1: A MedWatcher MCS system example (3 users try to
upload the photos of the error message "Er3" on the screens of
their blood glucose meters to the MedWatcher platform. The
prices that the 3 users ask for cost compensation are 100$, 10$
and 1$ respectively.)

To compensate the cost of each user’s participation, existing in-
centive mechanisms have used the user’s bidding price as an im-
portant metric to allocate sensing tasks. However, as shown in
the example in Figure 1, QoI is also a major factor that should
be considered together with bidding price. Although user 1 has the
highest quality photo, her high price prohibits the platform from
requesting her data. Furthermore, despite user 3’s low price the
platform will not be interested in her data either, because her low
quality photo could hardly contribute to identifying the error mes-
sage "Er3". By jointly considering price and QoI, the platform will
select user 2 with medium price and acceptable photo quality as the
data provider. Therefore, our goal is to design QoI aware incentive
mechanisms for MCS systems.
Considering users’ strategic behaviors and the combinatorial na-

ture of the tasks that every user executes, we design incentive mech-
anisms based on reverse combinatorial auctions, where the plat-
form acts as the auctioneer that purchases the data from participat-
ing users. Not only do we study the single-minded scenario where
every user is willing to execute one subset of tasks, but also we
investigate the multi-minded case in which any user might be in-
terested in executing multiple subsets of tasks. Similar to the tra-
ditional VCG mechanisms [19, 20], our mechanisms also aim to
maximize the social welfare. Mechanism design for combinatorial
auctions is typically challenging in that usually we aim to design a
computationally efficient mechanism with close-to-optimal social
welfare in the presence of an NP-hard winner determination prob-
lem, which meanwhile satisfies truthfulness and individual ratio-

nality. Addressing all these challenges, our paper has the following
contributions.

• Different from most of the previous work, we design QoI

aware incentive mechanisms for MCS systems.

• We use reverse combinatorial auction to design a truthful, in-
dividual rational and computationally efficient incentive mech-
anism that approximately maximizes the social welfare with
a guaranteed approximation ratio for the single-minded case.

• For the multi-minded reverse combinatorial auction, we de-
sign an iterative descending mechanism that achieves close-
to-optimal social welfare with a guaranteed approximation

ratio while satisfying individual rationality and computational
efficiency.

2. RELATED WORK
Game theory has been widely utilized to tackle networking prob-

lems such as spectrum sharing [21–25], cooperative communica-
tion [26, 27], channel and bandwidth allocation [28, 29] and so
forth. Similar to many other problems, when it comes to incentive
mechanism design in MCS systems, game theoretic models are also
frequently adopted by researchers due to their ability to capture and
tackle users’ strategic behaviors.

Yang et al. [4] design incentive mechanisms using auction and
Stackelberg game for both user-centric and platform-centric mod-
els. Their auction-based mechanism, however, does not consider
users’ untruthful behaviors about bidding task sets. Duan et al. [5]
propose a Stackelberg game-based incentive mechanism which is
similar to [4] but able to deal with the asymmetrically incomplete
information between users and the platform. Faltings et al. [6] de-
sign an incentive mechanism to ensure the truthfulness of reported
data without considering users’ strategic behaviors about bidding
prices and task sets. Zhang et al. [30] design an incentive mecha-
nism specifically for binary crowd labelling systems. Furthermore,
[7, 8] design social cost minimizing incentive mechanisms.

[9–11] study crowdsourcing systems with multiple task requesters
and workers. Zhang et al. [9] propose a reputation-based incen-
tive protocol for crowdsourcing applications and use repeated gift-
giving game to model the interaction between task requesters and
workers. In [10, 11], the authors integrate the effort and skill levels
of workers into their mechanisms. Another series of work [12–14]
utilize online auctions to design incentive mechanisms in crowd-
sourcing systems where users arrive sequentially.

A common feature of the aforementioned results is that they do
not consider QoI in their mechanism designs. This is the major
difference with our mechanisms.

In [15], He et al. aim to ensure that every task is executed by
enough number of users, which implies that users have identical
quality of their sensory data. In contrast, our mechanisms have the
ability to handle not only this case, but also the more general case
in which users may have heterogeneous QoIs. Authors in [16, 17]
design incentive mechanisms based on the assumption of known
prior information about the distribution of users’ task execution
costs. However, we do not assume the availability of such prior
knowledge. Furthermore, the QoI aware dynamic participant se-
lection protocol proposed in [18] does not utilize game theoretic
frameworks. Hence, it cannot handle users’ strategic behaviors as
our mechanisms.

3. PRELIMINARIES
In this section, we present an overview of MCS systems, our

auction model and design objectives.

3.1 System Overview
The MCS system model considered in this paper consists of a

platform residing in the cloud and a set of N users, denoted as
N = {1, · · · , N}. The users execute a set of M sensing tasks,
denoted as T = {τ1, · · · , τM} and send their sensory data to the
platform. The workflow of the system is described as follows.

1. Firstly, the platform announces the set of sensing tasks, T , to
users.

2. Then, the platform and users enter the auctioning stage in
which the platform acts as the auctioneer that purchases the



sensory data collected by individual users. Every user i ∈ N
submits her bid, which is a tuple (Γi, bi) consisting of the set
of tasks Γi ⊆ T she wants to execute and her bidding price
bi for executing these tasks.

3. Based on users’ bids, the platform determines the set of win-
ners, denoted as S ⊆ N and the payment to all users, de-
noted as −→p = {p1, · · · , pN}. Specifically, a loser does not
execute any task and receives zero payment.

4. After the platform receives winners’ sensory data, it gives the
payment to the corresponding winners.

One major difference between this paper and most of the pre-
vious work is that we integrate the quality of information (QoI)
corresponding to every user, denoted as −→q = {q1, · · · , qN}, into
our incentive mechanisms. Generally speaking, QoI indicates the
quality of users’ sensory data. The definition of QoI varies for dif-
ferent applications. For example, in the MedWatcher system [2],
QoI refers to the quality (e.g., resolution, contrast, sharpness, etc.)
of uploaded photos. Photos with higher quality will help the plat-
form better identify visible problems with medical devices. In air
quality monitoring MCS systems [3], QoI refers to a user’s estima-
tion accuracy of air quality. We assume that the platform maintains
a historical record of users’ QoI profile−→q used as inputs for winner
and payment determination. There are many methods for the plat-
form to calculate users’ QoIs. Intuitively, in the cases where the
platform has adequate amount of ground truth data, QoIs can be
obtained by directly calculating the deviation of users’ data from
the ground truths. However, even without ground truths, QoIs can
still be effectively inferred from users’ data by utilizing algorithms
such as those proposed in [31–34]. Alternatively in many applica-
tions, QoIs can be inferred from other factors (e.g., the price of a
user’s sensors, her experience and reputation of executing specific
sensing tasks, etc.) using methods proposed in previous studies
such as [35]. The problem of which method the platform adopts to
calculate users’ QoIs is application dependent and out of the scope
of this paper. Typically, users might know some of the factors that
affect their QoIs. However, users usually do not know exactly how
QoIs are calculated by the platform. Hence, they do not know the
exact values of their QoIs.

3.2 Auction Model
In this paper, we consider strategic and selfish users that aim to

maximize their own utilities. The fact that users bid on subsets of
tasks motivates us to use reverse combinatorial auction to model
the problem. In the rest of the paper, we use bundle to refer to any
subset of tasks of T . Different from traditional forward combina-

torial auction [36, 37], we formally define the concept of reverse
combinatorial auction for our problem setting in Definition 1.

Definition 1 (RCAuction). In a reverse combinatorial auction (RC

auction), each user i ∈ N is interested in a set ofKi ≥ 1 bundles,

denoted as Ti = {Γ1
i , · · · ,Γ

Ki
i }. For any bundle Γ ⊆ T , the user

has a cost function defined in Equation 1.

Ci(Γ) =

{

ci, if ∃Γj
i ∈ Ti s.t. Γ ⊆ Γj

i

+∞, otherwise
. (1)

Both Ti and the cost function Ci(·) are user i’s private informa-

tion. If Ki = 1 for every user, then the auction is defined as a

single-minded reverse combinatorial auction (SRC auction). And

it is defined as a multi-minded reverse combinatorial auction (MRC

auction), if Ki > 1 for at least one user.

In an SRC auction, Ti contains only user i’smaximum executable

task set Γi. That is, Γi consists of all the sensing tasks that user i is
able to execute. Since she is not capable to carry out tasks beyond

Γi, her cost for any bundle Γ 6⊆ Γi can be equivalently viewed as
+∞. Similarly in an MRC auction, the union of all the bundles
in Ti is Γi. That is,

⋃Ki

j=1 Γ
j
i = Γi. If user i is a winner of the

RC auction, she will be paid pi for executing the corresponding set
of sensing tasks. In contrast, she will not be allocated any sensing
task and will receive zero payment if she is a loser. We present
the definitions of the utility of a user and the profit of the platform
formally in Definition 2 and 3.

Definition 2 (A User’s Utility). The utility of any user i ∈ N is

ui =

{

pi − ci, if i ∈ S
0, otherwise

. (2)

Definition 3 (Platform’s Profit). The profit of the platform given

users’ QoI profile −→q is

u0 = V−→q (S)−
∑

i∈S

pi, (3)

where the value function V−→q (·) : 2N → R
+ maps the winner set

S to the value that the winners bring to the platform. Furthermore,

V−→q (·) is monotonic in
−→q . That is, for any−→q = {q1, · · · , qN} and

−→q ′ = {q′1, · · · , q
′
N} such that qi ≥ q′i holds ∀i ∈ N , we have

V−→q (S) ≥ V−→q ′(S).

Similar to the traditional VCG mechanism design [19, 20], we
aim to design mechanisms that maximize the social welfare, which
is formally defined in Definition 4.

Definition 4 (SocialWelfare). The social welfare of the whole MCS

system is

usocial = u0 +
∑

i∈N

ui = V−→q (S)−
∑

i∈S

ci. (4)

3.3 Design Objective
In this paper, we aim to design dominant-strategy mechanisms in

which for every user there exists a dominant strategy [38] defined
in Definition 5.

Definition 5 (Dominant Strategy). A strategy sti is the dominant

strategy for user i if and only if for any other strategy st′i and any

strategy profile of the other users, denoted as st−i, the property

ui(sti, st−i) ≥ ui(st
′
i, st−i) holds.

In our SRC auction, each user submits to the platform a bid
(Γi, bi) consisting of her declared interested bundle Γi and the bid-
ding price bi. Since users are strategic, it is possible that she de-
clares a bid that deviates from the true value (Γi, ci). However, one
of our goals for the SRC auction is to design a truthful mechanism
defined in Definition 6.

Definition 6 (Truthfulness). An SRC auction is truthful if and only

if it is the dominant strategy for every user i ∈ N to bid her true

value (Γi, ci).

Noticed from Definition 6 that we aim to ensure the truthfulness
of both the cost ci and bundle Γi. Besides truthfulness, another
design objective for the SRC auction is to ensure that every user
receives non-negative utility from participating. Such property is
critical in incentive mechanisms because it ensures that users will
not be disincentivized to participate for receiving negative utilities.
This property is defined as individual rationality in Definition 7.

Definition 7 (Individual Rationality). A mechanism is individual

rational (IR) if and only if ui ≥ 0 is satisfied for every user i ∈ N .

As mentioned in Section 3.2, our mechanism aims to maximize
the social welfare. However, as will be proved in Section 4, the
problem of maximizing the social welfare in the SRC auction is
NP-hard. Hence, we aim to design a polynomial-time mechanism
that gives us approximately optimal social welfare with a guaran-
teed approximation ratio.



Model Dominant Strategy Truthful IR Approx. Ratio Complexity

SRC
√ √ √

Guaranteed Polynomial

MRC
√

×
√

Guaranteed Polynomial

Table 1: Summary of design objectives

In the domain of multi-minded combinatorial auction, requiring
truthfulness limits the family of mechanisms that can be used, as
pointed out in [39]. Hence, in our MRC auction, we aim to design
a dominant-strategy mechanism that can still yield a guaranteed

approximation ratio to the optimal social welfare without ensur-
ing truthfulness. In fact, as mentioned in [37], the requirement of
truthfulness is only to obtain close-to-optimal social welfare with
strategic user behaviors, but not the real essence. Therefore, as
long as the approximation ratio is guaranteed when users play their
dominant strategies, it is justifiable for us to relax the truthfulness
requirement. Additionally, we also require our mechanism to be in-
dividual rational and have a polynomial computational complexity.
Authors in [37, 40] address the issue of mechanism design for

multi-minded forward combinatorial auctions. Their mechanisms
cannot ensure that users have dominant strategies and cannot be
applied to reverse combinatorial auctions. However, in contrast, we
are able to design a dominant-strategy incentive mechanism for the
MRC auction in this paper. We summarize our design objectives
for both the SRC and MRC auctions in Table 1.

4. SRC AUCTION
In this section, we introduce the mathematical formulation, mech-

anism design, an intuitive walk-though example and the correspond-
ing analysis for the SRC auction.

4.1 Mathematical Formulation
In our SRC auction, each user’s bid (Γi, bi) consists of her de-

clared interested bundle Γi and the bidding price bi. Although our
model is valid for any general value function V−→q (·) that satisfies
Definition 3, to simplify our analysis we assume that V−→q (·) is the
sum of the value, vi, contributed by every winner i ∈ S. Further-
more, we assume that vi is proportional to the total QoI provided by

this user. Given users’ bidding bundle profile
−→
Γ = {Γ1, · · · ,ΓN}

and the winner set S, the platform’s value function V−→q (·) can be
represented by Equation 5.

V−→q (S) =
∑

i∈S

vi =
∑

i∈S

αqi|Γi|, (5)

where α is a coefficient that transforms QoI to monetary reward.
Another aspect that distinguishes our paper from previous work

is that we consider QoI coverage in the SRC auction. For the task
that none of the users capable to execute it has adequately high QoI,
collective efforts of multiple users are necessary to ensure sensing
quality. We use Qτj ,

−→q (S) to denote the total QoI that all winners

have on task τj ∈ T . Furthermore, we approximate Qτj ,
−→q (S) as

the sum of the QoIs of the winners that execute this task. There-
fore, QoI coverage is equivalent to guaranteeing that every task is
executed by users with sufficient amount of QoI in total. Based on
this additive assumption of QoI, Qτj ,

−→q (S) can be represented by
Equation 6.

Qτj ,
−→q (S) =

∑

i:τj∈Γi,i∈S

qi. (6)

Since we aim to maximize the social welfare given in Definition
4, the winner determination and pricing can be decoupled into two
separate problems. We formulate the SRC auction winner determi-
nation (SRC-WD) problem as the following integer linear program.

SRC-WD Problem:

max
∑

i∈N

(αqi|Γi| − bi)xi (7)

s.t.
∑

i:τj∈Γi,i∈N

qixi ≥ Qj , ∀τj ∈ T (8)

xi ∈ {0, 1}, ∀i ∈ N (9)

Constants. The SRC-WD problem takes as input constants α,
users’ bid profile

{

(Γ1, b1), · · · , (ΓN , bN )
}

, users’ QoI profile −→q

and tasks’ QoI requirement profile
−→
Q = {Q1, · · · , QM}.

Variables. In the SRC-WD problem, we have a set of binary
variables {x1, · · · , xN} for every user i ∈ N . If user i is in the
winner set S, then xi = 1. Otherwise, xi = 0.

Objective function. Since the platform does not know the true
values of users’ interested bundles and the corresponding costs,
{

(Γ1, c1), · · · , (ΓN , cN )
}

, the objective function that it directly
tries to maximize is the social welfare based on users’ bid pro-
file

{

(Γ1, b1), · · · , (ΓN , bN )
}

. We use −→w = {w1, · · · , wN}, in
whichwi = αqi|Γi|−bi, to denote the marginal social welfare pro-
file of all users based on users’ bids. Then, we have the objective
function

∑

i∈S wi =
∑

i∈S(αqi|Γi| − bi) =
∑

i∈N (αqi|Γi| −
bi)xi. Later in Section 4.4, we will show that in our mechanism
every user in fact bids truthfully. Hence, the objective function is
equivalent to the actual social welfare.

Constraints. Constraint 8 represents the QoI coverage for ev-
ery task τj ∈ T , which ensures that the total QoI of all the win-
ners for this task, calculated as Qτj ,

−→q (S) =
∑

i:τj∈Γi,i∈S qi =
∑

i:τj∈Γi,i∈N qixi, is no less than the QoI requirement Qj .

Next, we prove the NP-hardness of the SRC-WD problem.

Theorem 1. The SRC-WD problem is NP-hard.

Proof. In this proof, we demonstrate that the NP-complete min-
imum weight set cover (MWSC) problem is polynomial-time re-
ducible to the SRC-WD problem. The reduction starts with an in-
stance of the MWSC problem consisting of a universe of elements
U = {τ1, · · · , τM} and a set ofN setsO = {Γ1, · · · ,ΓN} whose
union equals U . Every set Γi ∈ O is associated with a non-negative
weight wi. The MWSC problem is to find the subset of O with the
minimum total weight whose union contains all the elements in U .

Based on the instance of the MWSC problem, we construct an
instance of the SRC-WD problem. Firstly, we transform Γi into
Γ′
i such that for every element in Γi there exist li ∈ Z

+ copies
of the same element in Γ′

i. We require that every element τj ∈
U is covered for at least Lj ∈ Z

+ times. After the reduction,
we obtain an instance of the SRC-WD problem in which users’
QoI profile is −→q = {l1, · · · , lN}, users’ bidding bundle profile

is
−→
Γ = {Γ1, · · · ,ΓN}, users’ marginal social welfare profile is

−→w = {−w1, · · · ,−wN} and tasks’ QoI requirement profile is
−→
Q = {L1, · · · , LM}. Noticed that the SRC-WD problem rep-
resents a richer family of problems in which any user i’s QoI, qi,
and any task j’s QoI requirement, Qj , could take any value in R

+.
Furthermore, the marginal social welfare can take any value in R.
Hence, every instance of the MWSC problem is polynomial-time
reducible to an instance of the SRC-WD problem. The SRC-WD
problem is NP-hard.

4.2 Mechanism Design
Because of the NP-hardness of the SRC-WD problem, it is im-

possible to compute the set of winners that maximize the social
welfare in polynomial time unless P = NP. As a result, we cannot
use the off-the-shelf VCG mechanism [19, 20] since the truthful-
ness of VCG mechanism requires that the social welfare is exactly
maximized. Therefore, as mentioned in Section 3.3, we aim to de-
sign a mechanism that approximately maximizes the social welfare
while guaranteeing truthfulness.



Algorithm 1: QoI-SRC Auction Winner Determination

Input: T ,N , −→w , −→q ,
−→
Q ,
−→
Γ ;

Output: S;
// Initialization

1 N− ← ∅, S ← ∅;
// Select non-negative marginal social welfare

users

2 foreach i s.t. wi ≥ 0 do
3 S ← S ∪ {i};

4 N− ← N \ S;
// Calculate residual QoI requirement

5 foreach j s.t. τj ∈ T do
6 Q′

j ← Qj −min{Qj ,
∑

i:τj∈Γi,i∈S qi};

// Main loop

7 while
∑

j:τj∈T Q′
j 6= 0 do

// Find the user with the minimum marginal

social welfare effectiveness

8 l = argmini∈N−
|wi|

∑

j:τj∈Γi
min{Q′

j
,qi}

;

9 S ← S ∪ {l};

10 N− ← N− \ {l};
// Update residual requirement

11 foreach j s.t. τj ∈ T do
12 Q′

j ← Q′
j −min{Q′

j , ql};

13 return S;

Myerson’s characterizations of truthfulness for single-parameter
auctions [41] are not directly applicable in our scenario, because
our SRC auction is a double-parameter auction that considers both
bundle and cost truthfulness. Moreover, different from the charac-
terizations of truthfulness for single-minded forward combinatorial
auctions proposed in [36], we describe and prove the necessary and
sufficient conditions for a truthful SRC auction in Lemma 1.

Lemma 1. An SRC auction is truthful if and only if the following

two properties hold:

• Monotonicity. Any user i who wins by bidding (Γi, bi) still
wins by bidding any b′i < bi and any Γ′

i ⊃ Γi given that

other users’ bids are fixed.

• Critical payment. Any winner i with bid (Γi, bi) is paid the

supremum of all bidding prices b′i such that bidding (Γi, b
′
i)

still wins, which is defined as user i’s critical payment.

Proof. It is easily verifiable that a truthful bidder will never receive
negative utility. If user i’s any untruthful bid (Γi, bi) is losing or
Γi 6⊆ Γi, her utility from bidding (Γi, bi) will be non-positive.
Therefore, we only need to consider the case in which (Γi, bi) is
winning and Γi ⊆ Γi.

• Because of the property of monotonicity, (Γi, bi) is also a
winning bid. Suppose the payment for bid (Γi, bi) is p and
that for bid (Γi, bi) is p. Every bid (Γi, b

′
i) with b′i > p is

losing because p is the user i’s critical payment given bun-
dle Γi. From monotonicity, bidding (Γi, b

′
i) is also losing.

Therefore, the critical payment for (Γi, bi) is at most that
for (Γi, bi), which means p ≤ p. Hence, the user will not
increase her utility by bidding (Γi, bi) instead of (Γi, bi).

• Then, we consider the case in which bidding truthfully (Γi, ci)
wins. This bid earns the same payment p as (Γi, bi). Then
her utilities from these two bids will be the same. If bidding
(Γi, ci) loses, then we have ci > p ≥ bi. Hence, bidding
(Γi, bi) will receive negative utility. Therefore, (Γi, bi) will
also not increase her utility compared to (Γi, ci).

Thus, we conclude that an SRC auction is truthful if and only if
the monotonicity and critical payment properties hold.

Algorithm 2: QoI-SRC Auction Pricing

Input: S, α, −→q , −→w ,
−→
Γ ;

Output: −→p ;
// Initialization

1 N+ ← ∅, −→p ← {0, · · · , 0};
// Find non-negative marginal welfare users

2 foreach i s.t. wi ≥ 0 do
3 N+ ← N+ ∪ {i};

// Main loop

4 foreach i ∈ S do
5 run Algorithm 1 onN \ {i} until

∑

j:τj∈Γi
Q′

j = 0;

6 S′ ← the winner set when step 5 stops;
// Calculate payment

7 if |S′| < |N+| then
8 pi ← αqi|Γi|;
9 else

10 foreach k ∈ S′ \ N+ do

11
−→
Q ′ ← tasks’ residual QoI requirement profile when
winner k is selected;

12 pi ← max
{

pi, αqi|Γi|−wk

∑

j:τj∈Γi
min{Q′

j ,qi}
∑

j:τj∈Γk
min{Q′

j
,qk}

}

;

13 return −→p ;

We utilize the rationale provided in Lemma 1 to design a qual-
ity of information aware SRC (QoI-SRC) auction. Specifically, we
present the winner determination and pricing mechanisms of the
QoI-SRC auction respectively in Algorithm 1 and 2.

The platform calculates users’ marginal social welfare profile−→w
using users’ bids

{

(Γ1, b1), · · · , (ΓN , bN )
}

and utilizes −→w as in-
put to the winner determination algorithm shown in Algorithm 1.
Firstly, the platform includes all users with non-negative marginal
social welfare into the winner set S (line 2-3). By removing the
current winners fromN , the platform gets the set of usersN−with
negative marginal social welfare (line 4). Then, the platform cal-

culates tasks’ residual QoI requirement profile
−→
Q ′ by subtracting

from
−→
Q the QoI provided by the currently selected winners (line

5-6). The main loop (line 7-12) is executed until every task’s QoI
requirement is satisfied. In the main loop, winner selection is based
onmarginal social welfare effectiveness (MSWE), defined as the ra-
tio between the absolute value of user i’s marginal social welfare
|wi| and her effective QoI contribution

∑

j:τj∈Γi
min{Q′

j , qi}. In

every iteration, the user with the minimum MSWE among the re-
maining users in N− is included into S (line 8-9). After that, the
platform updates N− and tasks’ residual QoI requirement profile
−→
Q ′ (line 10-12).
Algorithm 2 describes the corresponding pricing mechanism. It

takes the winner set S as input and outputs the payment profile −→p .
Firstly,−→p is initialized as a zero vector (line 1). Then, the platform
includes all users with non-negative marginal social welfare into
N+ (line 2-3). The main loop (line 4-12) calculates the platform’s
payment to every winner. For every winner i ∈ S, the winner
determination mechanism in Algorithm 1 is executed with all users
except user i until the QoI requirement of every task in Γi has been
fully satisfied (line 5). We reach the point such that it is impossible
for user i to be selected as a winner in future iterations of Algorithm
1. Then, the platform gets the current winner set S ′ (line 6) and
calculates pi differently in the following two cases.

• Case 1 (line 7-8). Any winner i belonging to case 1 haswi ≥
0. Hence, this user’s critical payment is the bidding price b′i
that satisfies w′

i = αqi|Γi| − b′i = 0. That is, pi = αqi|Γi|.
• Case 2 (line 10-11). For any winner i belonging to case 2,

we go through every user k ∈ S ′ \ N+. We calculate user



i’s maximum bidding price b′i to be able to substitute user k
as the winner. That is, b′i satisfies Equation 10.

b′i − αqi|Γi|
∑

j:τj∈Γi
min{Q′

j , qi}
=

|wk|
∑

j:τj∈Γk
min{Q′

j , qk}
. (10)

This means

b
′
i = αqi|Γi| − wk

∑

j:τj∈Γi
min{Q′

j , qi}
∑

j:τj∈Γk
min{Q′

j , qk}
. (11)

Finally, the maximum value among all b′i’s is used as the
payment to user i.

4.3 A Walk-through Example

1 2 3

Users

Tasks

Figure 2: Bidding graph

Parameters Value

α 0.1
−→q {0.8, 1.2, 1.2}
−→
b {0.2, 2.6, 2.7}
−→
Q {1.1, 0.8}
−→w {0.4,−0.2,−0.3}

Table 2: Parameter setting

We use a simple toy example to illustrate how the QoI-SRC auc-
tion works. In this example, there are 3 users N = {1, 2, 3} and
2 tasks T = {τ1, τ2}. In Figure 2, an edge between a user i and a
task τj indicates that τj ∈ Γi. That is, users’ bidding bundles are
Γ1 = {τ1}, Γ2 = {τ1, τ2} and Γ3 = {τ1, τ2}. Other parameters
are shown in Table 2. The process of the QoI-SRC winner deter-
mination is shown in Table 3. We show the corresponding pricing
process in Table 4.

S −→
Q ′ New Winner Reason

∅ {1.1, 0.8} {1} w1 > 0

{1} {0.3, 0.8} {2} MSWEuser 2 = 0.2
1.1

< MSWEuser 3 = 0.3
1.1

{1, 2} {0, 0} ∅ Q′
1 = Q′

2 = 0 and w3 < 0

Table 3: The QoI-SRC auction winner determination

Winner S′ Payment

1 {2} p1 = 0.1 × 0.8 × 1 + 0.2 × 0.8
1.9

≈ 0.164

2 {1, 3} p2 = 0.1 × 1.2 × 2 + 0.3 × 1.1
1.1

≈ 0.540

Table 4: The QoI-SRC auction pricing

4.4 Analysis
Firstly, we analyze the truthfulness and individual rationality of

the QoI-SRC auction in Theorem 2 and 3.

Theorem 2. The QoI-SRC auction is truthful.

Proof. Suppose user i wins by bidding (Γi, bi). We consider user
i’s any other bid (Γ′

i, b
′
i) such that b

′
i < bi or Γ

′
i ⊃ Γi.

• Case 1 (wi ≥ 0). The marginal social welfare for bidding
(Γ′

i, b
′
i) is w

′
i = αqi|Γ

′
i| − b′i > αqi|Γi| − bi ≥ 0.

• Case 2 (wi < 0). Bidding (Γ′
i, b

′
i) will make w′

i ≥ 0 or
decrease the value of user i’s MSWE.

Hence, user i is still a winner by bidding (Γ′
i, b

′
i) and the QoI-

SRC auction winner determination algorithm satisfies both bidding
bundle and price monotonicity. Furthermore, it is easily verifiable
that the pricing mechanism in Algorithm 2 uses the supremum of
bidding prices b′i such that bidding (Γi, b

′
i) still wins. Hence, from

Lemma 1 we conclude that the QoI-SRC auction is truthful.

Theorem 3. The QoI-SRC auction is individual rational.

Proof. From Theorem 2, we have proved that users bid truthfully
in our QoI-SRC auction. Hence, any user i bids its true cost ci.
Since every winner i is paid the supremum of bidding prices given
the bundle Γi, we have pi ≥ ci for every winner. Apparently,
losers have zero utilities in our QoI-SRC auction. Therefore, the

utility for every user i satisfies ui ≥ 0 and the QoI-SRC auction is
individual rational.

Then, we analyze the algorithmic properties of the QoI-SRC auc-
tion including its computational complexity and approximation ra-
tio to the optimal social welfare in Theorem 4 and 5.

Theorem 4. The computational complexity of the QoI-SRC auction

is O(N2M).

Proof. The computational complexity of Algorithm 1 is dominated
by the main loop, which terminates after N iterations in the worst
case. In every iteration, the algorithm goes through every task
τj ∈ T . Hence, the computational complexity of Algorithm 1
is O(NM). Similarly, we have that the computational complexity
of Algorithm 2 is O(N2M). Therefore, we conclude that compu-
tational complexity of the QoI-SRC auction is O(N2M).

Then, we provide our analysis about the approximation ratio
of the QoI-SRC auction using the method similar to the one pro-
posed by Rajagopalan et al. [42]. In our following analysis, we

use N− to denote all users i ∈ N with negative wi and
−→
Q− =

{Q−
1 , · · · , Q

−
M} to denote tasks’ residual QoI requirement profile

after Algorithm 1 includes all users with wi ≥ 0 into the winner
set. Then, we normalize the wi for every user i ∈ N−, such that
the normalized marginal social welfare w′

i = wi

max
n∈N− wn

> 0.

Thus, with only a multiplicative factor change to the objective func-
tion, we formulate the linear program relaxation of the residual
SRC-WD problem defined on user set N− as the normalized pri-
mal linear program P. The dual program is formulated in program
D.

P : min
∑

i∈N−

w
′
ixi (12)

s.t.
∑

i:τj∈Γi,i∈N−

qixi ≥ Q
−
j , ∀τj ∈ T (13)

0 ≤ xi ≤ 1, ∀i ∈ N−
(14)

D : max
∑

j:τj∈T

Q
−
j yj −

∑

i∈N−

zi (15)

s.t.
∑

j:τj∈Γi

qiyj − zi ≤ w
′
i, ∀i ∈ N−

(16)

yj ≥ 0, ∀τj ∈ T (17)

zi ≥ 0, ∀i ∈ N−
(18)

It is easily verifiable that the |maxi∈N− wi| multiplicative fac-
tor difference between the objective functions of P and the SRC-
WD problem does not affect the approximation ratio of Algorithm
1. Next, we introduce several notations and concepts utilized in our
following analysis.

We define any task τj ∈ T as alive at any particular iteration
of the main loop in Algorithm 1 if its QoI requirement is not fully
satisfied. Furthermore, we define that task τj is covered by Γi if
τj ∈ Γi and τj is alive when user i is selected. The coverage
relationship is represented as τj � Γi. Then, we define the min-
imum measure of QoI as ∆q, the unit QoI. Suppose when user
i is about to be selected, the residual QoI requirement profile is
−→
Q ′ = {Q′

1, · · · , Q
′
M} and Γi is the ij th set that covers τj , the

corresponding normalized MSWE in terms of unit QoI can be rep-
resented in Equation 19.

W (τj , ij) =
w′

i∆q
∑

j:τj∈Γi
min{Q′

j , qi}
. (19)

We assume that τj is covered by kj sets and we haveW (τj , 1) ≤
· · · ≤ W (τj , kj) from Equation 19. Then, we define constants
θ = maxi,j qi|Γi|w

′
j and m = 1

∆q

∑

j:τj∈T Q−
j that are used in

the presentation of the following Lemma 2.



Lemma 2. The following assignments of yj and zi for ∀τj ∈ T
and ∀i ∈ N− are feasible to D.

yj =
W (τj , kj)

2θHm∆q
, ∀τj ∈ T ,

zi =











∑

j:τj�Γi

(

min{Q′
j , qi}

(

W (τj , kj)−W (τj , ij)
)

)

2θHm∆q
, i ∈ S

0, i 6∈ S

.

Proof. Suppose for any user i ∈ N−, there are ti tasks in bundle
Γi. We reorder these tasks in the order in which they are fully
covered.
If user i is not selected as a winner in S, then we have zi = 0.

Suppose when the last unit QoI of τj is about to be covered, the

residual QoI requirement profile is
−→
Q ′′ = {Q′′

1 , · · · , Q
′′
M}, then

the total residual QoI of alive tasks contained by Γi is represented
as

∑ti
h=j

min{Q′′
h, qi}. We have

W (τj , kj) ≤
w′

i∆q
∑ti

h=j
min{Q′′

h, qi}
.

Therefore, we have
ti
∑

j=1

qiyj − zi ≤

ti
∑

j=1

w′
iqi

2θHm

∑ti
h=j

min{Q′′
h
, qi}

− 0

≤
w′

i

Hm

(

1 +
1

2
+ · · ·+

1

m

)

≤ w′
i

If user i ∈ S, then we assume that when user i is selected as a
winner, t′i tasks in Γi have already been fully covered. We have

ti
∑

j=1

qiyj − zi

=

∑ti
j=1

qiW (τj , kj)

2θHm∆q
−

∑ti

j=t′
i
+1

min{Q′
j , qi}

(

W (τj , kj) − W (τj , ij)
)

2θHm∆q

=

∑t′i
j=1

qiW (τj , kj)

2θHm∆q
+

∑ti

j=t′
i
+1

min{Q′
j , qi}W (τj , ij)

2θHm∆q

+

∑ti

j=t′
i
+1

(

qi − min{Q′
j , qi}

)

W (τj , kj)

2θHm∆q

≤

∑t′i
j=1

qiw
′
i

∑ti
h=j

min{Q′
h
,qi}

2θHm

+
w′

i

2θHm

+
θ

2θHm

≤w
′
i

Therefore, we arrive at the conclusion that the assignments of yj
and zi in Lemma 2 are feasible to D.
Then in Theorem 5, we present our result regarding the approxi-

mation ratio of Algorithm 1.

Theorem 5. Algorithm 1 is a 2θHm-approximation algorithm for

the residual SRC-WD problem defined on user set N−.

Proof. By substituting the dual assignments given in Lemma 2 into
the objective function 15, we have

∑

j:τj∈T

Q−
j yj −

∑

i∈N−

zi

=

∑

i∈N−∩S

∑

j:τj�Γi

(

min{Q′
j , qi}

(

W (τj , ij)−W (τj , kj)
)

)

2θHm∆q

+

∑

j:τj∈T Q−
j W (τj , kj)

2θHm∆q

=

∑

i∈N−∩S

∑

j:τj�Γi
min{Q′

j , qi}
w′

i∆q
∑

j:τj∈Γi
min{Q′

j
,qi}

2θHm∆q

=

∑

i∈N−∩S w′
i

2θHm

Because D is the dual program of P, we have
∑

i∈N−∩S w′
i

2θHm

≤ OPTD ≤ OPTP ≤ OPTSRC-WD.

Therefore, Algorithm 1 is a 2θHm-approximation algorithm for
the residual SRC-WD problem defined on user set N−.

5. MRC AUCTION
In this section, we present the mathematical formulation, mech-

anism design and the corresponding analysis for the MRC auction.

5.1 Mathematical Formulation
In the MRC auction, we also use the form of the platform’s value

function V−→q (·) given in Equation 5. If the platform is given users’

cost function profile, denote as
−→
C = {C1(·), · · · , CN (·)}, the

MRC auction winner determination (MRC-WD) problem can be
formulated as follows.

MRC-WD Problem:

max
∑

i∈N

(

αqi|Γi| − Ci(Γi)
)

xi (20)

s.t. Γi ⊆ Γj
i , ∃Γ

j
i ∈ Ti, ∀i ∈ N (21)

xi ∈ {0, 1}, ∀i ∈ N (22)

TheMRC-WD problem takes the parameter α, users’ QoI profile
−→q and users’ cost function profile

−→
C as input. It has a set of binary

variables {x1, · · · , xn} indicating whether user i is selected in the
winner set S. That is, if i ∈ S, then xi = 1. Otherwise, xi = 0.

Furthermore, for every user i, we have a variable Γi indicat-
ing the set of sensing tasks that the platform allocates to this user.
Constraint 21 ensures that Γi is the subset of at least one bundle
Γj
i ∈ Ti. Therefore, the MRC-WD problem aims to find the set of

winners S and the corresponding task allocation profile denoted as
−→
Γ = {Γ1, · · · ,ΓN} that maximize the social welfare represented
by the objective function. We use Γi

max to denote the bundle with
the maximum cardinality in Ti and wi

max = αqi|Γ
i
max| − ci to

denote user i’s marginal social welfare for Γi
max. The maximum

social welfare is achieved by selecting all users with positive wi
max

as winners and allocating to every winner i the set of tasks Γi
max.

However, the challenge is that cost function profile
−→
C is not

known by the platform and we still aim to design a mechanism that
approximately maximizes the social welfare with a guaranteed ap-
proximation ratio. Then, we present the design of our mechanism
in Section 5.2 that achieves this objective while ensuring individual
rationality and polynomial computational complexity.

5.2 Mechanism Design
Requiring truthfulness in multi-minded combinatorial auctions

limits the family of mechanisms that can be used, as mentioned in
[39]. As long as the mechanism can achieve close-to-optimal so-
cial welfare with a guaranteed approximation ratio, it is justifiable
for us to relax the truthfulness requirement, as pointed out in [37].
In Algorithm 3 we describe our design of the iterative descending
dominant-strategy quality of information aware MRC (QoI-MRC)

auction which is different from the mechanisms designed for multi-
minded forward combinatorial auctions proposed in [37, 40].

The QoI-MRC auction described in Algorithm 3 consists of a
winner determination phase (line 1-18) and a pricing phase (line
19). Every winner i ∈ S will be allocated her bidding bundle Γi

and be paid her bidding price bi of the final iteration of the winner
determination phase. We assume that the platform has the informa-
tion about the upper bound and lower bound of users’ costs denoted
as cmax and cmin respectively. The platform initializes every user
i’s bidding bundle and bidding price as Γi = ∅ and bmax ≥ cmax

(line 2). Moreover, the input parameters β > 1 and ǫ ∈ (0, cmin].
The main loop (line 3-17) is executed until every user is either

a winner or a loser. In every iteration of the main loop, every user
i such that αqi|Γi| − bi ≥ ǫ is included in the winner set S (line



Algorithm 3: QoI-MRC Auction

Input: N , bmax, ǫ, α, β,
−→q ;

Output: S, −→p ,
−→
Γ ;

// Winner determination

// Initialize winner and loser sets

1 S ← ∅, L ← ∅;
// Initialize bidding bundles and prices

2
−→
Γ ← {∅, · · · , ∅},

−→
Γ ′ ←

−→
Γ ,
−→
b ← {bmax, · · · , bmax};

// Main loop

3 while S ∪ L 6= N do
4 foreach i ∈ N \ (S ∪ L) do
5 if αqi|Γi| − bi ≥ ǫ then
6 S ← S ∪ {i};
7 else

// Give user i the option to enlarge

her bidding bundle

8 allow user i to enlarge Γi to any Γ
′
i s.t. Γ

′
i ⊇ Γi;

// Update bidding bundle

9 if Γi 6= Γ′
i then

10 Γi ← Γ′
i;

11 if αqi|Γi| − bi ≥ ǫ then
12 S ← S ∪ {i};

13 foreach i ∈ N \ (S ∪ L) do
// Give user i two options

14 option 1: bi ←
bi
β
;

15 option 2: bi ← 0;
16 if bi = 0 then
17 L ← L ∪ {i};

18
−→
Γ ← {Γi ∈

−→
Γ |i ∈ S};

// Pricing

19 −→p ←
−→
b ;

20 return S, −→p ,
−→
Γ ;

5-6). For any user i that is neither a winner nor a loser in the cur-
rent iteration, the Algorithm gives her an option to choose whether
she will enlarge her current bidding bundle Γi to any bundle Γ

′
i that

contains Γi (line 5). If after the bundle enlarging αqi|Γ
′
i| − bi ≥ ǫ

holds, this user is included in the winner set (line 11-12). Other-
wise, she is given the following two options to choose from.

• Option 1 (line 14). By choosing option 1, user i divides her
bidding price bi by β. As long as she is fully rational, she
will choose option 1 rather than option 2 to drop out of the
auction, if bi

β
> ci hold. By doing so, she keeps herself in

the auction and makes it still possible for her to win in one
of the future iterations to receive positive utility.

• Option 2 (line 15). By choosing option 2, the user i drops
out of the auction. If bi

β
≤ ci, any rational user i will choose

option 2 because it is impossible for her to obtain positive
utility even though she remains in the auction in this case.

Finally, every winner i is allocated her bidding bundle Γi (line
18) and be paid her bidding price bi (line 19) of the final iteration
of the winner determination phase.

5.3 Analysis
Although the QoI-MRC auction cannot guarantee truthfulness

because users’ bidding prices when Algorithm 3 terminates will
possibly not be equal to users’ true costs, we show in the following
Theorem 6 that every user still has a dominant strategy.

Theorem 6. Every user i ∈ N has the following dominant strategy

in the QoI-MRC auction.

• User i enlarges bundle Γi to Γ
i
max in the first iteration.

• When user i is given the options to divide her bidding price

bi by β or drop out of the auction, she will always choose the

former as long as
bi
β

> ci and the latter if
bi
β

≤ ci.

Proof. Obviously, any rational user i will choose to divide her cur-
rent bidding price bi by β as long as bi

β
> ci when she is given

the two options. By doing so, it is still possible for her to win the
auction and be paid pi > ci. If

bi
β

≤ ci, then even if she wins the
auction the payment pi will not be larger than ci. Hence, she will
drop out in this case.

Then, we study whether any user i will enlarge her bundle to
some Γ′

i 6= Γi
max in the first iteration.

• Case 1 (αqi|Γ
i
max| − bmax > αqi|Γ

′
i| − bmax ≥ ǫ). Both

Γi
max and Γ′

i will make the user win the auction in the first
iteration and be paid bmax. We have u(Γi

max) = u(Γ′
i).

• Case 2 (αqi|Γ
i
max|−bmax ≥ ǫ > αqi|Γ

′
i|−bmax). The user

will win and be paid bmax by enlarging to Γi
max in the first

iteration and we have u(Γi
max) = bmax − ci. If she proposes

Γ′
i instead of Γi

max, she will be asked to decrease her bid or
drop out in the first iteration. Eventually, she could lose or
win with being paid b′i < bmax. Her utility could either be
u(Γ′

i) = 0 or u(Γ′
i) = b′i − ci. We have u(Γi

max) > u(Γ′
i).

• Case 3 (ǫ > αqi|Γ
i
max| − bmax > αqi|Γ

′
i| − bmax). Both

Γi
max and Γ′

i will make the user face the choices of decreas-
ing her bid or dropping out in the first iteration. If eventually
she wins in both cases, then the number of iterations before
she wins if she proposes Γi

max will be smaller than or equal
to that of Γ′

i. The payments pi and p′i for the two cases sat-
isfy pi ≥ p′i and we have u(Γi

max) ≥ u(Γ′
i). If she loses in

both cases, then u(Γi
max) = u(Γ′

i) = 0. The last scenario is
that she wins by proposing Γi

max and loses by proposing Γ′
i

in the first iteration. Then, we have u(Γi
max) > 0 = u(Γ′

i).

We have u(Γi
max) ≥ u(Γ′

i) with at least one scenario with strict
inequality. Hence, user i enlarges bundle Γi to Γi

max in the first
iteration. We arrive at the conclusion about any user’s dominant
strategy stated in Theorem 6.

Theorem 7. The QoI-MRC auction is individual rational.

Proof. When a user is given the choices to decrease her bid or drops
out of the auction, any user i will drop out if bi

β
≤ ci. She becomes

a loser and obtains ui = 0. The user only chooses to divide bi by
β if bi

β
> ci, which ensures that her payment pi > ci if she wins.

In this case, we have ui > 0. Therefore, ui ≥ 0 and the QoI-MRC
auction is individual rational.

Then, we analyze the algorithmic properties of the QoI-MRC
auction including its computational complexity and approximation
ratio in Theorem 8 and 9.

Theorem 8. The computational complexity of the QoI-MRC auc-

tion is O(N).

Proof. It is easily verifiable that the main loop of Algorithm 3 ter-
minates after O

(

logβ
bmax

cmin

)

number of iterations. The computa-

tional complexity inside the main loop is O(N). Therefore, the
computational complexity of the QoI-MRC auction is O(N).

In Theorem 9, we present our results about the approximation
ratio of the QoI-MRC auction to the optimal social welfare. We use
SOPT to denote the winner set of the optimal solution of the MRC-
WD problem, qmax to denote the maximum QoI in −→q and Γmax to
denote the maximum-cardinality bundle in {Γ1

max, · · · ,Γ
N
max}.

Theorem 9. The approximation ratio of the QoI-MRC auction to

the optimal social welfare is
|S|ǫ

|SOPT|(αqmax|Γmax|−cmin)
.

Proof. We use APP to denote the social welfare resulted by the
QoI-MRC auction. From Theorem 6, every user i ∈ N enlarges
her bundle to Γi

max in the first iteration. The winner set S output



by Algorithm 3 consists of winners S1 that win in the first iteration
and S2 that win in iteration ri > 1 with bidding price brii . We have

APP =
∑

i∈S

(αqi|Γ
i
max| − ci)

≥
∑

i∈S1

(αqi|Γ
i
max| − bmax) +

∑

i∈S2

(αqi|Γ
i
max| − b

ri
i )

≥ |S1|ǫ+ |S2|ǫ
= |S|ǫ

Similarly, the optimal solution OPT is

OPT =
∑

i∈SOPT

(αqi|Γ
i
max| − ci)

≤ |SOPT|(αqmax|Γmax| − cmin)

=
|SOPT|(αqmax|Γmax| − cmin)

|S|ǫ
· |S|ǫ

≤
|SOPT|(αqmax|Γmax| − cmin)

|S|ǫ
· APP

Therefore, the approximation ratio of the QoI-MRC auction to

the optimal social welfare is
|S|ǫ

|SOPT|(αqmax|Γmax|−cmin)
.

6. PERFORMANCE EVALUATION

6.1 Baseline Method
The first baseline approach is a modified version of the tradi-

tional VCG auction [19, 20]. We integrate the concept of QoI and
the QoI coverage constraint defined in Section 4 into the VCG win-
ner determination (VCG-WD) problem. We call the modified VCG
auction quality of information aware VCG (QoI-VCG) auction, in
which the VCG-WD problem is solved optimally and the VCG
pricing mechanism [19, 20] is utilized to derive winners’ payments.
Another baseline method is the marginal social welfare greedy

(MSW-Greedy) auction. Its winner determination algorithm firstly
includes every user i with wi ≥ 0 into the winner set. Then, it
selects the user with the largest marginal social welfare among the
remaining users in every iteration until tasks’ QoI requirements are
fully satisfied. The pricing mechanism is similar to Algorithm 2
which essentially pays every winner her supremum bidding price
to win given her current bidding bundle. It is easily verifiable that
the MSW-Greedy auction is truthful and individual rational.

6.2 Simulation Settings
Setting α ci qi Qj |Γi| N M

I 0.1 [2, 4] [1, 2] [10, 13] [20, 30] [200, 500] 100
II 0.1 [4, 8] [2, 4] [10, 13] [20, 30] 300 [300, 600]

Table 5: Simulation settings for SRC auction

Setting α bmax ci qi |Γi| N M

III 0.2 100 [4, 6] [1, 2] [20, 30] [200, 500] 100
IV 0.2 100 [6, 10] [2, 4] [20, 30] 300 [200, 400]

Table 6: Simulation settings for MRC auction

For our simulation of the SRC auction, we consider the two set-
tings described in Table 5. In setting I, we fix the number of tasks as
M = 100 and vary the number of users from 200 to 500. In setting
II, we fix the number of users as N = 300 and vary the number of
tasks from 300 to 600. The parameter α = 0.1 in both settings and
the values of ci, qi, |Γi| for any user i ∈ N and Qj for any task
τj ∈ T are generated uniformly at random from the ranges given in
Table 5. User i’s maximum executable task set Γi consists of |Γi|
tasks selected uniformly at random from T . Furthermore, the opti-
mal solution to the VCG-WD problem of the QoI-VCGmechanism
is calculated using the GUROBI optimization solver [43].

For our simulation of the MRC auction, we consider the two set-
tings described in Table 6. In setting III, we fix the number of tasks
asM = 100 and vary the number of users from 200 to 500. In set-
ting II, we fix the number of users asN = 300 and vary the number
of tasks from 200 to 400. The parameters α = 0.2 and bmax = 0.2
in both settings and the values of ci, qi, |Γi| for any user i ∈ N
are generated uniformly at random from the ranges given in Table
6. User i’s maximum executable task set Γi consists of |Γi| tasks
selected uniformly at random from T . User i’s interested bundle
set consists of randomly selected subsets of Γi whose union is Γi.
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Figure 3: Social welfare for
setting I
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Figure 4: Social welfare for
setting II
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Figure 5: Social welfare for
setting III (varying ǫ)
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Figure 6: Social welfare for
setting IV (varying ǫ)
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Figure 7: Social welfare for
setting III (varying β)
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Figure 8: Social welfare for
setting IV (varying β)

6.3 Simulation Results
In Figure 3 and 4, we compare the social welfare generated by

the QoI-VCG auction, the QoI-SRC auction and the MSW-Greedy
auction. The social welfare of the QoI-VCG auction equals to the
optimal solution of the SRC-WD problem. From Figure 3 and 4,
we arrive at the conclusion that the social welfare of the QoI-SRC
auction is close to optimal and far better than that of the baseline
MSW-Greedy auction.

In Table 7 and 8, we show the comparison of the execution time
of the QoI-VCG and QoI-SRC auctions. It is obvious from these
two tables that the QoI-SRC auction executes in significantly less
time than the QoI-VCG auction. With the increasing of the num-
ber of users and tasks, the execution time of the QoI-VCG auction
gradually becomes so long that makes it infeasible to be utilized
in practice. In contrast, the QoI-SRC auction keeps low execution
time regardless of the growth of the user and task numbers. The
QoI-SRC auction is much more computationally efficient than the
QoI-VCG auction.

In Figure 5 and 6, we compare the social welfare generated by
the QoI-MRC auction with the optimal social welfare in both set-



ting III and IV. We fix the parameter β = 1.01 and vary the choices
of ǫ. From the two figures, we observe that the QoI-MRC auction
obtains close-to-optimal social welfare and it becomes closer to the
optimal social welfare when ǫ approaches 0.

N 200 220 240 260 280 300 320 340

QoI-VCG 10.19 16.06 11.22 11.71 58.64 63.14 79.37 10.51

QoI-SRC 0.019 0.014 0.015 0.015 0.020 0.022 0.018 0.019

N 360 380 400 420 440 460 480 500

QoI-VCG 43.52 93.44 94.25 273.6 52.54 72.26 860.9 2043

QoI-SRC 0.019 0.021 0.021 0.019 0.023 0.021 0.021 0.024

Table 7: Execution time (s) for setting I

M 300 320 340 360 380 400 420 440

QoI-VCG 18.70 1.337 2.715 15.47 21.42 43.38 88.57 224.3

QoI-SRC 0.066 0.076 0.075 0.076 0.073 0.090 0.075 0.077

M 460 480 500 520 540 560 580 600

QoI-VCG 67.85 50.68 183.5 229.3 474.8 751.1 1206 1269

QoI-SRC 0.079 0.117 0.099 0.130 0.111 0.122 0.123 0.147

Table 8: Execution time (s) for setting II

In Figure 7 and 8, we fix the parameter ǫ = 0.01 and vary the
choices of β. From these two figures, we also observe that the
QoI-MRC auction obtains close-to-optimal social welfare and as β
approaches 1, it becomes closer to the optimal social welfare.

7. CONCLUSION
In this paper, we design QoI aware incentive mechanisms for

MCS systems based on RC auctions. For the SRC auction, we
design a truthful, individual rational and computationally efficient
mechanism that approximately maximizes the social welfare with
a guaranteed approximation ratio. For the MRC auction, we design
an iterative descending mechanism that achieves close-to-optimal
social welfare with a guaranteed approximation ratio while satisfy-
ing individual rationality and computational efficiency. Moreover,
our theoretical analysis is validated through extensive simulations.
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