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ABSTRACT

The recent proliferation of human-carried mobile devices has
given rise to mobile crowd sensing (MCS) systems that out-
source the collection of sensory data to the public crowd
equipped with various mobile devices. A fundamental issue
in such systems is to effectively incentivize worker participa-
tion. However, instead of being an isolated module, the in-
centive mechanism usually interacts with other components
which may affect its performance, such as data aggregation
component that aggregates workers’ data and data perturba-
tion component that protects workers’ privacy. Therefore,
different from past literature, we capture such interactive ef-
fect, and propose INCEPTION, a novel MCS system frame-
work that integrates an incentive, a data aggregation, and
a data perturbation mechanism. Specifically, its incentive
mechanism selects workers who are more likely to provide
reliable data, and compensates their costs for both sensing
and privacy leakage. Its data aggregation mechanism also
incorporates workers’ reliability to generate highly accurate
aggregated results, and its data perturbation mechanism en-
sures satisfactory protection for workers’ privacy and desir-
able accuracy for the final perturbed results. We validate
the desirable properties of INCEPTION through theoretical
analysis, as well as extensive simulations.

CCS Concepts

•Human-centered computing → Mobile computing;
•Networks → Network economics; •Security and pri-
vacy → Privacy protections;

Keywords

crowd sensing, incentive mechanism, privacy-preserving,
data aggregation

∗We thank Professor R. Srikant for his valuable comments.
We gratefully acknowledge the support of National Sci-
ence Foundation grants CNS-1330491, and 1566374, and the
Ralph and Catherine Fisher grant.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiHoc’16, July 04-08, 2016, Paderborn, Germany

c© 2016 ACM. ISBN 978-1-4503-4184-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2942358.2942375

1. INTRODUCTION
The recent popularity of increasingly capable human-

carried mobile devices (e.g., smartphones, smartglasses,
smartwatches) with a plethora of on-board sensors (e.g.,
compass, accelerometer, gyroscope, camera, GPS) has given
rise to mobile crowd sensing (MCS), a newly-emerged sens-
ing paradigm that outsources the collection of sensory data
to a crowd of participating users, namely (crowd) workers.
Currently, a large variety of MCS systems [1–5] have been
deployed which serve a wide spectrum of applications, in-
cluding healthcare, indoor floor plan reconstruction, smart
transportation, and many others.

Participating in MCS is usually costly for individual work-
ers, since it consumes not only workers’ time but also the
system resources (e.g., battery, computing power) of their
mobile devices. Therefore, it is essential to design incen-
tive mechanisms to stimulate worker participation. Typ-
ically, an incentive mechanism selects a subset of workers
from the pool of potential participants to execute sensing
tasks, and determines the payments to them that effectively
compensate their participation costs. In real practice, an
MCS system usually contains some other components which
interact with the incentive mechanism and thus may affect
its performance, such as data aggregation component that
aggregates workers’ data and data perturbation component
that protects workers’ privacy. Therefore, different from the
isolated design of the incentive mechanism in past litera-
ture [6–21], we capture such interactive effect, and propose
INCEPTION1, a novel MCS system framework with an in-
tegrated design of the incentive, data aggregation, and data
perturbation mechanism. Below, we would like to shed some
light on our design philosophy.

On one hand, the design of the incentive mechanism highly
depends on how the platform aggregates workers’ data. The
sensory data provided by individual workers are usually not
reliable due to various factors (e.g., poor sensor quality, en-
vironment noise, lack of sensor calibration). Therefore, the
platform (i.e., a cloud-based central server) has to properly
aggregate workers’ noisy and even conflicting data so as to
cancel out the possible errors from individual workers. Intu-
itively, if workers’ data are aggregated using naive methods
(e.g., average and voting) that regard all workers equally,
the incentive mechanism does not need to view them differ-
ently in terms of their reliability. However, a weighted aggre-
gation scheme that assigns higher weights to workers with
higher reliability is much more favorable in that it makes

1The name INCEPTION comes from INCEtive, Privacy,
and data aggregaTION.
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the aggregated results closer to the data provided by more
reliable workers. Therefore, we propose a weighted data ag-
gregation mechanism that incorporates workers’ diverse re-
liability to calculate highly accurate aggregated results. Ac-
cordingly, we jointly design our incentive mechanism which
selects workers who are more likely to provide reliable data.
On the other hand, the incentive mechanism also needs to

consider the leakage of workers’ privacy, because it incurs
costs which should be compensated as well. In many MCS
applications, the platform usually publishes the aggregated
results, which are oftentimes beneficial to the community
or society, but jeopardizes workers’ privacy. Although the
platform can be considered to be trusted, there exist adver-
saries highly motivated to infer workers’ data, which con-
tain their sensitive and private information, from the pub-
lished results. For example, publishing aggregated health
data, such as treatment outcomes, improves people’s aware-
ness about the effects of new drugs and medical devices, but
poses threats to the privacy of participating patients. Geo-
tagging campaigns provide timely and accurate localization
of physical objects (e.g, automated external defibrillator, lit-
ter, pothole), however, at the risk of leaking workers’ sensi-
tive location information. A high possibility for excessively
large privacy leakage will deter workers from participating
in the first place, even though they are promised to be com-
pensated for their privacy costs. Therefore, we propose a
data perturbation mechanism that reduces workers’ privacy
leakage to a reasonable degree by adding carefully controlled
random noises to the original aggregated results, and jointly
design the incentive mechanism that compensates their costs
for not only sensing but also the remaining privacy leakage.
In summary, this paper has the following contributions.

• In this paper, we propose INCEPTION, a novel MCS sys-
tem framework that integrates an incentive, a data ag-
gregation, and a data perturbation mechanism. Such an
integrated design, which captures the interactive effects
among these mechanisms, is much more challenging than
designing them separately.

• INCEPTION has a reverse auction-based incentive mech-
anism that selects reliable workers and compensates their
costs for both sensing and privacy leakage, which also
satisfies truthfulness and individual rationality, and min-
imizes the platform’s total payment for worker recruiting
with a guaranteed approximation ratio.

• The data aggregation mechanism of INCEPTION also in-
corporates workers’ reliability and generates highly accu-
rate aggregated results.

• Its data perturbation mechanism ensures satisfactory
guarantee for the protection of workers’ privacy, as well
as the accuracy of the final perturbed results.

2. RELATED WORK
Game theory has been widely adopted, thus far, by the re-

search community in the design of incentive mechanisms for
MCS systems [6–21] so as to tackle workers’ strategic behav-
iors. Specifically, these prior work utilize either auction [12–
21] or other game-theoretic models [6–11]. Although with
different objectives, including maximizing social welfare [11–
15] or platform’s profit [6–9, 16–19], and minimizing social
cost [20] or platform’s payment [10, 21], a common prop-
erty they ensure is that workers’ costs are compensated, at
least in expectation. However, only workers’ sensing costs

are taken into consideration by these existing work.
Different from the aforementioned prior work, we explic-

itly incorporate workers’ reliability and privacy costs (moti-
vated by [22, 23]) into the incentive mechanism and provide
an integrated design of the incentive, data aggregation, and
data perturbation mechanism. Note that the crowd’s pri-
vate information purchased by the data analyst in [22, 23] is
not necessarily obtained by sensing, and thus, sensing costs
are not considered by [22, 23].

One line of past literature [24–29], highly related to this
paper, investigates mobile sensing systems that preserves
workers’ privacy. These prior work invariably protect work-
ers’ privacy against an untrusted platform. In contrast, the
platform is trusted in our model and threats to workers’ pri-
vacy come from the adversaries outside the MCS system in-
ferring workers’ data using the publicly available aggregated
results, which cannot be tackled by the cryptography-based
methods given in [24–28]. Furthermore, unlike this paper,
most of these work do not consider the issue of providing
incentives to workers. Another set of existing work [30–32],
orthogonal to this paper, studies privacy-preserving incen-
tive mechanisms for mobile sensing systems. These work do
not consider workers’ privacy leakage caused by the public
aggregated results and how it affects the design of the incen-
tive mechanism. Instead, they protect workers’ anonymity
[30, 31] or bid privacy [32] within the incentive mechanisms.

3. PRELIMINARIES
In this section, we give an overview of INCEPTION, as

well as a description of the skill level model, auction model,
and design objectives.

3.1 System Overview
INCEPTION is an MCS system framework consisting of

a cloud-based platform and a set of N participating work-
ers, denoted as N = {w1, · · · , wN}. The platform hosts a
set of K sensing tasks, denoted as T = {τ1, · · · , τK}, where
each task τj ∈ T requires workers to locally sense a spe-
cific object or phenomenon, and report to the platform the
sensory data in the form of continuous values. Such MCS
systems, collecting continuous data from the crowd, con-
stitute a significant portion of the MCS systems currently
deployed, such as geotagging campaigns that utilize work-
ers’ GPS data to localize physical objects (e.g., automated
external defibrillator, litter, pothole), and many others.

For every task τj ∈ T , the platform aggregates workers’
data into an aggregated result, denoted as xj , to cancel out
the errors from individual workers. Every task τj has a
ground truth value x∗

j , unknown to the platform and the
workers. If worker wi is selected to execute task τj , she
will provide her data xi,j to the platform. We assume that
x∗
j and xi,j ’s are normalized values within the range [0, 1]

for simplification of presentation. We define matrix x =

[xi,j ] ∈
(
[0, 1]∪{⊥}

)N×K
containing all workers’ data, where

xi,j = ⊥ means that task τj is not executed by worker wi.
In our model, the platform publishes the aggregated re-

sults (e.g., locations of automated external defibrillators, lit-
ter, potholes) to the community or society. However, di-
rectly publishing them impairs workers’ privacy. Therefore,
the platform publishes the perturbed results after adding
random noises to the original ones, and ensures ǫ-differential
privacy defined in Definition 1 (adapted from [33]).
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Definition 1 (Differential Privacy). We denote M : ([0, 1]∪

{⊥}
)N×K

→ R
K×1 as a mechanism that maps any input

data matrix to a perturbed result vector. Then, the mecha-
nism M is ǫ-differentially private if and only if for any two
data matrices x and x′ that differ in only one entry and any
A ⊆ R

K×1, we have
Pr[M(x) ∈ A] ≤ exp(ǫ)Pr[M(x′) ∈ A], (1)

where ǫ is a small positive number usually referred to as
privacy budget.

The framework of INCEPTION is illustrated in Figure 1,
and its workflow is described as follows.
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Figure 1: Framework of INCEPTION (where circled
numbers represent the order of the events).

• Firstly, the platform announces the set of sensing tasks
T and an upper bound of the privacy budget ǫ, such as
ǫ ≤ 0.5, to workers (step 1 ).

• Incentive Mechanism. Then, the platform starts the
reverse auction-based incentive mechanism, where it acts
as the auctioneer, to purchase data from participating
workers, who act as bidders. Every worker wi submits
to the platform her bid bi = (Γi, b

s
i , b

p
i ) which is a triple

containing the set of sensing tasks Γi she wants to ex-
ecute, as well as her bidding prices for executing them
bsi and unit privacy loss b

p
i (step 2 ). Based on workers’

bids, the platform determines the set of winners S ⊆ N
and the payment pi to every winner wi (step 3 ). Losers
of the auction do not execute tasks and receive no pay-
ments. We denote workers’ bid and payment profile as
b = (b1, · · · , bN ) and p = (p1, · · · , pN ), respectively.

• Data Aggregation Mechanism. Next, the platform
collects winners’ sensory data (step 4 ) and calculates an
aggregated result xj for each task τj (step 5 ).

• After collecting workers’ data, the platform pays workers
according to p and reveals to them the exact value of the
privacy budget ǫ (step 6 ), such as ǫ = 0.25. The design
rationale for keeping the exact value of ǫ confidential to
workers at the bidding stage and revealing it together with
the payments is described in detail in Section 4.2.3.

• Data Perturbation Mechanism. Finally, the platform
adds random noises to the original aggregated results and
publishes the perturbed ones (step 7 ). We use x̂j to
denote the perturbed result for task τj .

3.2 Skill Level Model
Before task τj is executed by worker wi, her data about

this task can be regarded as a random variable Xi,j . Then,
we define a worker’s skill level in Definition 2.

Definition 2. Worker wi’s skill level θi,j for task τj is de-
fined as the expected absolute difference between her data and
the ground truth, i.e.,

θi,j = E[|Xi,j − x
∗
j |] ∈ [0, 1], (2)

where the expectation is taken over the randomness of Xi,j .

We use θ = [θi,j ] ∈ [0, 1]N×K to denote the skill level matrix
of all workers.

We assume that the skill level matrix θ is a priori known
to the platform. In practice, the platform can keep a his-
torical record of θ, which can be obtained by many meth-
ods. For example, since a worker’s skill levels for similar
tasks typically tend to be similar, the platform could assign
some tasks with known ground truths to workers and utilize
workers’ sensory data about these tasks to estimate their
skill levels for similar tasks as in [34]. In scenarios where
ground truths are not available, θ can still be effectively es-
timated utilizing workers’ previously submitted sensory data
about similar tasks by algorithms proposed in [35, 36] or in-
ferred from some of workers’ characteristics (e.g., a worker’s
reputation and experience for similar tasks, the price of a
worker’s sensors) using the methods in [37].

3.3 Auction Model
In this paper, as in most prior work, we assume that work-

ers are selfish and strategic that aim to maximize their own
utilities. We use the term bundle to refer to any subset of
the overall task set T in the rest of this paper. Since ev-
ery worker bids on one bundle of tasks in the INCEPTION
framework, we model the incentive mechanism as a single-
minded reverse combinatorial auction. However, different
from the traditional combinatorial auction [38], we study
the scenario where workers explicitly consider privacy leak-
age as one of the sources for their costs. Therefore, we pro-
pose the single-minded reverse combinatorial auction with
privacy cost (pSRC auction), formally defined in Definition
3, as the incentive mechanism.

Definition 3 (pSRC Auction). In a single-minded reverse
combinatorial auction with privacy cost (pSRC auction),
each worker wi has only one interested bundle Γ∗

i . Her cost
of executing the bundle of tasks, namely sensing cost, is de-
noted as csi (unknown to the platform). Additionally, she has
a cost for privacy leakage, namely privacy cost, denoted as
C

p
i (ǫ), if ǫ-differential privacy is guaranteed. Hence, worker

wi’s cost function is defined as in Equation (3).

Ci(Γ, ǫ) =

{
c
s
i + C

p
i (ǫ), if Γ ⊆ Γ∗

i

+∞, otherwise
. (3)

For the tasks that do not belong to worker wi’s interested
bundle Γ∗

i , either she is not able to execute them or executing
these tasks incurs a large cost. Therefore, we assign a +∞
cost to these tasks in Equation (3).

A major difference between the cost function defined in
Equation (3) and those in prior work [7–21] is that the pri-
vacy cost Cp

i (ǫ) is explicitly integrated into it. Such integra-
tion is reasonable and necessary. In an MCS system where
the platform utilizes a worker’s private and sensitive data in
a way that incurs privacy leakage, the worker will not be ef-
fectively incentivized to participate unless both her sensing
and privacy cost are compensated. For any worker wi the
privacy cost C

p
i (ǫ) is positively correlated with the privacy

budget ǫ, because ǫ in fact captures the amount of privacy
leakage of the MCS system. Therefore, we adopt the natural
linear model for privacy cost as in [22, 23] where Cp

i (ǫ) = c
p
i ǫ

with c
p
i representing worker wi’s cost for unit privacy leak-

age. Similar to csi , c
p
i is also unknown to the platform. Next,

we define a worker’s utility in Definition 4.

Definition 4 (Worker’s Utility). Any worker wi’s utility ui
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is defined as

ui =

{
pi − c

s
i − c

p
i ǫ, if wi ∈ S

0, otherwise
. (4)

Apart from workers’ utilities, we are also interested in the
platform’s total payment defined in Definition 5.

Definition 5 (Platform’s Total Payment). Given the pay-
ment profile p and the winner set S, the platform’s total
payment is P =

∑
i:wi∈S pi.

3.4 Design Objective
In this paper, we aim to ensure that INCEPTION bears

the following desirable properties.
Since workers are strategic in our model, it is possible

that any worker wi submits a bid (Γi, b
s
i , b

p
i ) that deviates

from the true value (Γ∗
i , c

s
i , c

p
i ). However, one of our objec-

tives is to design a truthful incentive mechanism defined in
Definition 6.

Definition 6 (Truthfulness). A pSRC auction is truthful if
and only if bidding the true value (Γ∗

i , c
s
i , c

p
i ) is the dominant

strategy for each worker wi, i.e., bidding (Γ∗
i , c

s
i , c

p
i ) maxi-

mizes each worker wi’s utility for all possible values of other
workers’ bids and the privacy budget ǫ.

By Definition 6, we aim to ensure the truthful bidding
of the interested bundle Γ∗

i , the sensing cost csi , and the
cost for unit privacy leakage c

p
i for every worker wi. Apart

from truthfulness, another desirable and necessary property
is individual rationality defined in Definition 7.

Definition 7 (Individual Rationality). A pSRC auction is
individual rational if and only if no worker receives negative
utility, i.e., we have ui ≥ 0 for each worker wi.

Individual rationality in our pSRC auction means that
a worker’s sensing and privacy cost are both compensated,
which is crucial to effectively incentivize worker participa-
tion. As mentioned in Section 3.1, we aim to design an MCS
system that ensures ǫ-differential privacy. However, the per-
turbation added to the aggregated results impairs their ac-
curacy which is mathematically defined in Definition 8.

Definition 8 ((α, β)-Accuracy). For two random variables
Y1 and Y2 within the range [0, 1], Y1 is (α, β)-accurate to Y2

if and only if Pr[|Y1 − Y2| ≥ α] ≤ β, where α, β ∈ (0, 1).
Note that Y2 could also be a constant.

We use X̂j to denote the random variable corresponding to
x̂j (i.e., the perturbed result for task τj). Facing the trade-
off between privacy and accuracy, we also need to carefully
control the amount of noises added to the aggregated results

and ensure that X̂j is (α, β)-accurate to the ground truth
x∗
j for every task τj with sufficiently small α and β within

(0, 1). That is, we aim to ensure that the perturbed results
are fairly close to ground truths with high probability.
In short, our objective is to design a differentially private

MCS system that provides satisfactory accuracy guarantee
for the final perturbed results, and incentivizes worker par-
ticipation in a truthful and individual rational manner.

4. DESIGN DETAILS
In this section, we provide our design details for the incen-

tive, data aggregation, and data perturbation mechanism.

4.1 Data Aggregation Mechanism

4.1.1 Proposed Mechanism

Although the data aggregation mechanism comes after the

incentive mechanism in INCEPTION’s workflow, we intro-
duce it first, as it affects the design of incentive mechanism.

To guarantee that the perturbed results have satisfactory
accuracy, the original aggregated results before perturbation
need to be accurate enough in the first place. Therefore, we
reasonably assume that the platform uses a weighted aggre-
gation method to calculate the aggregated result xj for each
task τj based on workers’ data. That is, given the winner
set S determined by the incentive mechanism, we have

xj =
∑

i:wi∈S,τj∈Γi

λi,jxi,j , (5)

where λi,j > 0 is the weight of worker wi on task τj with∑
i:wi∈S,τj∈Γi

λi,j = 1 for every task τj .

The motivation for utilizing weighted aggregation is to
capture the effect of workers’ diverse skill levels on the cal-
culation of the aggregated results. Intuitively, we should as-
sign higher weights to workers whose sensory data are more
likely to be close to the ground truths, which makes the
aggregated results closer to the data provided by more re-
liable workers. In fact, many state-of-the-art data aggrega-
tion methods [35, 36] utilize such weighted aggregation to
calculate the aggregated results. Since the accuracy of the
aggregated results highly depends on how exactly the weight
λi,j ’s are chosen, we propose the following data aggregation
mechanism in Algorithm 1.

Algorithm 1: Data Aggregation Mechanism

Input: α, θ, b, x, S;
Output: (x1, · · · , xK);

1 foreach j s.t. τj ∈ T do

2 xj ←
∑

i:wi∈S,τj∈Γi

(αj−θi,j)xi,j∑
k:wk∈S,τj∈Γk

(αj−θk,j)
;

3 return (x1, · · · , xK);

Besides the skill level matrix θ, the bid profile b, workers’
data x, and the winner set S, Algorithm 1 also takes as input
a vector of positive real numbers α = (α1, · · · , αK) chosen
by the platform with maxi:τj∈Γi

θi,j < αj < 0.5. Note that
large θi,j indicates low reliability, and any worker wi with
θi,j ≥ 0.5 will not be selected by the incentive mechanism
to execute task τj . The aggregated result xj for every task
τj is calculated (line 2) using Equation (5) with the weight

λi,j =
αj − θi,j∑

k:wk∈S,τj∈Γk
(αj − θk,j)

, ∀wi ∈ S, τj ∈ Γi. (6)

By Equation (6), worker wi’s weight for task τj , namely
λi,j , increases with the decrease of θi,j . Such a design choice
conforms to our intuition that the less the expected devia-
tion of worker wi’s data compared to the ground truth x∗

j ,
the more xi,j should be counted in the calculation of the
aggregated result xj . Formal analysis about the data aggre-
gation mechanism is provided in Section 4.1.2.

4.1.2 Analysis

In Theorem 1, we prove that the aggregated result xj

calculated using Algorithm 1 guarantees desirable accuracy
compared to the ground truth x∗

j .

Theorem 1. We use Xj to denote the random variable rep-
resenting the aggregated result for task τj. The data aggre-
gation mechanism proposed in Algorithm 1 minimizes the
upper bound of the probability Pr[|Xj − x∗

j | ≥ αj ] and en-
sures that for every task τj , we have

Pr
[∣∣Xj − x∗

j

∣∣ ≥ αj

]
≤ exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
. (7)
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Proof. From Equation (5), we have
∣∣Xj − x

∗

j

∣∣ =
∣∣∣∣

∑

i:wi∈S,τj∈Γi

λi,jXi,j − x
∗

j

∣∣∣∣

=

∣∣∣∣
∑

i:wi∈S,τj∈Γi

λi,j

(
Xi,j − x

∗

j

)∣∣∣∣

≤
∑

i:wi∈S,τj∈Γi

∣∣∣∣λi,j

(
Xi,j − x

∗

j

)∣∣∣∣.

We define a random variable Yj for every task τj as Yj =∑
i:wi∈S,τj∈Γi

∣∣λi,j(Xi,j − x∗
j )
∣∣, which is the sum of random

variables Yi,j ’s with Yi,j = |λi,j(Xi,j −x∗
j )| ∈ [0, λi,j ]. Thus,

E[Yj ] =
∑

i:wi∈S,τj∈Γi

λi,jE
[∣∣Xi,j − x

∗

j

∣∣] =
∑

i:wi∈S,τj∈Γi

λi,jθi,j .

Therefore, from the Chernoff-Hoeffding bound, we have

Pr
[∣∣Xj − x

∗
j

∣∣ ≥ αj

]
≤ Pr

[ ∑

i:wi∈S,τj∈Γi

∣∣λi,j

(
Xi,j − x

∗
j

)∣∣ ≥ αj

]

= Pr[Yj ≥ αj ]

= Pr
[
Yj − E[Yj ] > αj − E[Yj ]

]

≤ exp

(
−

2
(
αj − E[Yj ]

)2
∑

i:wi∈S,τj∈Γi
λ2
i,j

)

= exp

(
−

2
(
αj −

∑
i:wi∈S,τj∈Γi

λi,jθi,j
)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

)

= exp

(
−

2
(∑

i:wi∈S,τj∈Γi
λi,j(αj − θi,j)

)2
∑

i:wi∈S,τj∈Γi
λ2
i,j

)
.

We denote the vector λj as λj = [λi,j ] for every task
τj containing every λi,j such that wi ∈ S and τj ∈ Γi.
Therefore, minimizing the upper bound of Pr[|Xj−x∗

j | ≥ αj ]
is equivalent to maximizing the function ϕ(λj) defined as

ϕ(λj) =

(∑
i:wi∈S,τj∈Γi

λi,j(αj − θi,j)
)2

∑
i:wi∈S,τj∈Γi

λ2
i,j

.

From the Cauchy-Schwarz inequality, we have that

ϕ(λj) ≤

(∑
i:wi∈S,τj∈Γi

λ2
i,j

)(∑
i:wi∈S,τj∈Γi

(αj − θi,j)
2
)

∑
i:wi∈S,τj∈Γi

λ2
i,j

=
∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

and equality is achieved when λi,j ∝ αj − θi,j .
Using the fact that

∑
i:wi∈S,τj∈Γi

λi,j = 1, we have

λi,j =
αj − θi,j∑

k:wk∈S,τj∈Γk
(αj − θk,j)

. (8)

Therefore, when λi,j ’s satisfy Equation (8), we have

Pr
[∣∣Xj − x∗

j

∣∣ ≥ αj

]
≤ exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
,

which is exactly the Equation (7) in Theorem 1.
By Theorem 1, the data aggregation mechanism proposed

in Algorithm 1 upper bounds the probability of Pr[|Xj −
x∗
j | ≥ αj ] by exp

(
− 2

∑
i:wi∈S,τj∈Γi

(αj − θi,j)
2
)
which is in

fact the minimum upper bound for this probability. Then,
we introduce Corollary 1 which is directly utilized in the
design of the incentive mechanism in Section 4.2.

Corollary 1. For the data aggregation mechanism proposed
in Algorithm 1, if

∑

i:wi∈S,τj∈Γi

(
αj − θi,j

)2
≥

1

2
ln

(
1

βj

)
, (9)

then we have Pr[|Xj − x∗
j | ≥ αj ] ≤ βj , where βj ∈ (0, 1) for

every task τj, is a parameter chosen by the platform. We
use β to denote the vector (β1, · · · , βN ).

Proof. Corollary 1 directly follows from Theorem 1. If we
let the upper bound of Pr[|Xj − x∗

j | ≥ αj ] guaranteed by

Algorithm 1 to be no greater than βj ∈ (0, 1), we have

exp

(
− 2

∑

i:wi∈S,τj∈Γi

(αj − θi,j)
2

)
≤ βj ,

which is equivalent to exactly
∑

i:wi∈S,τj∈Γi

(
αj − θi,j

)2
≥

1

2
ln

(
1

βj

)
. (10)

Therefore, together with Theorem 1, we know that In-
equality (10) implies Pr[|Xj − x∗

j | ≥ αj ] ≤ βj .
Corollary 1 states that (αj , βj)-accuracy is guaranteed for

the aggregated result of task τj compared to the ground
truth x∗

j , if the condition specified by Inequality (9) is satis-
fied by the set of selected winners S in the incentive mech-
anism proposed in Section 4.2.

4.2 Incentive Mechanism
In this section, we introduce the mathematical formula-

tion, design details and the analysis of the proposed incen-
tive mechanism.

4.2.1 Mathematical Formulation

As mentioned in Section 3.3, our incentive mechanism is
based on the pSRC auction defined in Definition 3. In this
paper, we aim to design a pSRC auction that minimizes the
platform’s total payment with satisfactory data aggregation
accuracy. Such a design choice exactly captures the objec-
tive of most MCS systems, that is to collect high quality
data from the crowd with minimum total expense. The for-
mal mathematical formulation is given in the following pSRC
auction total payment minimization (pSRC-TPM) problem.

pSRC-TPM Problem:

min
∑

i:wi∈N
piyi (11)

s.t.
∑

i:wi∈N ,τj∈Γi

(
αj − θi,j

)2
yi ≥

1

2
ln

(
1

βj

)
, ∀τj ∈ T (12)

yi ∈ {0, 1}, pi ∈ [0,+∞), ∀wi ∈ N (13)

Constants. The pSRC-TPM problem takes as inputs the
worker set N , the task set T , workers’ bid profile b, the skill
level matrix θ, and the β and α vector.

Variables. The pSRC-TPM problem has a vector of N
binary variables, denoted as y = (y1, · · · , yN ). The variable
yi = 1 indicates that the worker wi is selected as a winner
(i.e., wi ∈ S); otherwise wi 6∈ S. The second vector of
variables is the payment profile p = (p1, · · · , pN ), where
every element takes a non-negative real value.

Objective function. The objective function given by∑
i:wi∈N piyi =

∑
i:wi∈S pi is exactly the total payment

made by the platform to all winners.
Constraints. Constraint (12) is equivalent to Inequal-

ity (9) given in Corollary 1, which specifies the condition
that the selected winners should satisfy. By Corollary 1,
any feasible solution y to the pSRC-TPM problem gives a
winner set S which ensures that the aggregated result of
every task τj is (αj , βj)-accurate to the ground truth x∗

j .
To simplify presentation, we introduce the following extra
notations, qi,j = (αj − θi,j)

2, q = [qi,j ] ∈ [0,+∞)N×K ,
Qj = 1

2
ln

(
1
βj

)
, and Q = [Qj ] ∈ [0,+∞)K×1. Therefore,

Constraint (12) is simplified as∑

i:wi∈N ,τj∈Γi

qi,jyi ≥ Qj , ∀τj ∈ T . (14)

Besides Constraint (12), any solution to the pSRC-TPM
problem should also satisfy two other inherent constraints,
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Algorithm 2: pSRC Auction Winner Determination

Input: ǫ, b, q, Q, N , T ;
Output: S;
// Initialization

1 S ← ∅, Q′ ← Q;
// Calculate the winner set S

2 while
∑

j:τj∈T Q′
j 6= 0 do

// Find the worker with the minimum bidding price
effectiveness

3 l = argmini:wi∈N
bsi+b

p
i
ǫ∑

j:τj∈Γi
min{Q′

j
,qi,j} ;

4 S ← S ∪ {wl};
5 N ← N \ {wl};

// Update the Q′ vector
6 foreach j s.t. τj ∈ T do

7 Q′
j ← Q′

j −min{Q′
j , ql,j};

8 return S;

namely truthfulness and individual rationality, which are
difficult to fomulate mathematically.
In Theorem 2, we prove the NP-hardness of the pSRC-

TPM problem.

Theorem 2. The pSRC-TPM problem is NP-hard.

Proof. We consider a special case of the pSRC-TPM prob-
lem with a constant payment profile p. With constant pi’s,
it becomes a binary linear program (BLP). We prove the
NP-hardness of the BLP by a polynomial-time reduction
from the minimum weight set cover (MWSC) problem.
The reduction starts from an instance of the NP-complete

MWSC problem with a universe T = {τ1, · · · , τK} and a set
of subsets of T defined as R = {Γ1, · · · ,ΓN}. Each set
Γi ∈ R has a non-negative weight pi. The objective of the
MWSC problem is to find the subset of R with the mini-
mum total weight whose union equals to T . We transform
Γi to Γ′

i where each element τj ∈ Γi has ai,j ∈ Z
+ copies

and require each τj to be covered for exactly Aj ∈ Z
+ times.

By now, an instance of the BLP with q = [ai,j ] ∈ (Z+)N×K ,
Q = [Aj ] ∈ (Z+)K×1, and payment profile p has been con-
structed. Actually, a richer family of problems can be repre-
sented by the BLP because elements in q and Q can be any
positive real numbers besides positive integers. Hence, every
instance of the MWSC problem is polynomial-time reducible
to the BLP, which proves its NP-hardness. Furthermore,
because the BLP is only a special case of the pSRC-TPM
problem, the pSRC-TPM problem is also NP-hard.

4.2.2 Proposed Mechanism

Because of the NP-hardness of the pSRC-TPM problem
proved in Theorem 2, directly solving it to obtain the win-
ner set S and the payment profile p is computationally in-
tractable when the cardinality of N and T become large.
Therefore, we propose our own winner determination and
pricing algorithm for the pSRC auction in Algorithm 2 and
3, respectively. The proposed algorithms are computation-
ally efficient and approximately minimize the platform’s to-
tal payment with a guaranteed approximation ratio.
The inputs of the winner determination algorithm given

in Algorithm 2 include the privacy budget ǫ, bid profile b, q
matrix, Q vector, worker set N , and task set T . Firstly, it
initializes the winner set S as ∅ and the residual vector of Q,
namely Q′, as Q (line 1). Then, the main loop (line 2-7) cal-
culates the winner set S. It is executed until the winner set S
makes the pSRC-TPM problem feasible (line 2). We define

Algorithm 3: pSRC Auction Pricing

Input: ǫ, b, q, Q, N , T , S;
Output: p;
// Initialization

1 p← (0, · · · , 0);
2 foreach i s.t. wi ∈ S do

3 run Algorithm 2 on N \ {wi} until
∑

j:τj∈Γi
Q′

j = 0;

4 S′ ← the winner set when step 3 stops;
// Calculate payment

5 foreach k s.t. wk ∈ S
′ do

6 Q′ ← tasks’ Q′ vector when wk is selected;

7 pi ← max

{
pi, (b

s
k
+ b

p
k
ǫ) ·

∑
j:τj∈Γi

min{Q′
j ,qi,j}∑

j:τj∈Γk
min{Q′

j
,qk,j}

}
;

8 return p;

worker wi’s virtual bidding price as bvi = bsi +b
p
i ǫ. In each it-

eration, Algorithm 2 finds the worker wl with the minimum
bidding price effectiveness (line 3) defined as the ratio be-
tween her virtual bidding price and her contribution to the
improvement of the feasibility of Constraint (12). Next, wl

is included into the winner set S (line 4) and excluded from
the worker set N (line 5). Finally, the Q′ vector is updated
(line 6-7) before the start of the next iteration.

Apart from the same inputs taken by Algorithm 2, the
pricing algorithm given in Algorithm 3 also uses the winner
set S calculated by Algorithm 2. Firstly, it initializes the
payment profile p as a vector of N zeros (line 1). Then, the
main loop (line 2-7) calculates the payment to each winner.
For each winner wi ∈ S, Algorithm 2 is executed on the
worker set containing all workers except wi until the point
after which wi will never be selected as a winner (line 3).
The winner set at this point is recorded as S ′ (line 4). For
each worker wk ∈ S ′, Algorithm 3 calculates worker wi’s
maximum virtual bidding price bvi,k that makes her substi-
tute wk as the winner. To achieve this, bvi,k should satisfy

bv
i,k∑

j:τj∈Γi
min{Q′

j , qi,j}
=

bs
k
+ b

p
k
ǫ

∑
j:τj∈Γk

min{Q′
j , qk,j}

,

which is equivalent to

bvi,k = (bsk + b
p
k
ǫ) ·

∑
j:τj∈Γi

min{Q′
j , qi,j}∑

j:τj∈Γk
min{Q′

j , qk,j}
.

Then, the maximum value among these bvi,k’s is chosen as
the payment pi to worker wi (line 7).

4.2.3 Analysis

Firstly, we analyze the truthfulness of the proposed pSRC
auction in Theorem 3.

Theorem 3. The proposed pSRC auction is truthful.

Proof. Firstly, we fix the privacy budget ǫ and assume a
worker wi wins the auction by bidding bi = (Γi, b

s
i , b

p
i ). We

show that the pSRC auction satisfies the property of mono-
tonicity and critical payment in terms of the bidding bundle
Γi and virtual bidding price bvi = bsi + b

p
i ǫ.

• Monotonicity. Consider worker wi’s bid b̃i = (Γ̃i, b̃
s
i , b̃

p
i )

with Γ̃i ⊃ Γi and b̃vi = b̃si + b̃
p
i ǫ < bvi . Algorithm 2 selects

winners in an increasing order of the bidding price effec-

tiveness. Hence, b̃i will also make worker wi a winnner,
as it increases her priority of winning compared to bi.

• Critical payment. Algorithm 3 in fact pays every win-
ner the supremum of all virtual bidding prices that can
still make her a winner, namely critical payment.

As proved in [13, 38], the monotonicity and critical pay-
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ment property make the pSRC auction truthful in terms of
the bidding bundle and the virtual bidding price. That is
worker wi maximizes her utility by bidding Γ∗

i and (bsi , b
p
i )

such that bsi + b
p
i ǫ = csi + c

p
i ǫ. For a fixed ǫ, the worker still

has incentive to bid (bsi , b
p
i ) 6= (csi , c

p
i ). However, since the

exact value of ǫ is not revealed to workers in the bidding pro-
cess, the only strategy that maximizes her utility under all
possible values of ǫ is to bid bsi = csi and b

p
i = c

p
i . Therefore,

the pSRC auction is truthful.
The proposed pSRC auction ensures that truthful bidding

is a dominant strategy for every worker under any possible
value of ǫ. As stated in the proof of Theorem 3, it is crucial
to keep the exact value of the privacy budget ǫ confidential
to workers in the bidding process to ensure the truthfulness
of a worker’s bidding prices for the costs of sensing and unit
privacy leakage, i.e., to achieve bsi = csi and b

p
i = c

p
i for every

worker wi. The reason that the platform firstly announces
to workers an upper bound of ǫ is to avoid their concerns of
the possibility for excessively large privacy leakage. Next,
we analyze the individual rationality of the pSRC auction.

Theorem 4. The pSRC auction is individual rational.

Proof. By Definition 4, losers of the auction receive zero
utilities. From Theorem 3, every winner wi bids to the plat-
form the true value (csi , c

p
i ) and the payment pi to this win-

ner is exactly the supremum of all virtual bidding prices
for her to win the auction. Therefore, it is guaranteed that
pi ≥ csi + c

p
i ǫ, which is equivalent to ui ≥ 0. Hence, the

proposed pSRC auction is individual rational.
In our INCEPTION framework, the platform reveals the

exact value of the privacy budget ǫ when workers receive
their payments so that they can evaluate their utilities after
participating and confirm that their utilities are in fact non-
negative. Next, we analyze the algorithmic properties of the
pSRC auction.

Theorem 5. The computational complexity of the proposed
pSRC auction is O(N3 +N2K).

Proof. The main loop (line 2-7) of Algorithm 2 terminates
in worst case after N iterations. In every iteration, it takes
O(N) time to find the worker with the minimum bidding
price effectiveness (line 3), and at most K other iterations
are needed to update the Q′ vector (line 6-7). Therefore, the
computational complexity of Algorithm 2 is O(N2 +NK).
Furthermore, the computational complexity of Algorithm

3 is O(N3 +N2K), because there is one more layer of loop
that executes for N iterations in worst case. In conclu-
sion, the computational complexity of the pSRC auction is
O(N3 +N2K).
Before analyzing the approximation ratio of the platform’s

total payment generated by the pSRC auction to the opti-
mal total payment, we introduce Lemma 1 and 2 that are
utilized in the analysis. The two lemmas are directly related
to the pSRC auction social cost minimization (pSRC-SCM)
problem defined as follows.
pSRC-SCM Problem:

min
∑

i:wi∈N
(csi + c

p
i ǫ)yi (15)

s.t.
∑

i:wi∈N ,τj∈Γi

qi,jyi ≥ Qj , ∀τj ∈ T (16)

yi ∈ {0, 1}, ∀wi ∈ N (17)
The pSRC-SCM problem has the same set of inputs, con-

straints, and variables y = {y1, · · · , yN} as the pSRC-TPM
problem. Instead of the platform’s total payment, it min-

imizes the social cost, i.e.,
∑

i:wi∈S(c
s
i + c

p
i ǫ), which is the

sum of all winners’ costs.

Lemma 1. For any individual rational pSRC auction, the
optimal social cost of the pSRC-SCM problem, denoted as
COPT, is a lower bound of the optimal total payment of the
pSRC-TPM problem, denoted as POPT.

Proof. Suppose (y∗,p∗) is the optimal solution to the pSRC-
TPM problem. We have POPT =

∑
i:wi∈N p∗i y

∗
i .

Since the two problems have the same set of constraints,
y∗ is also feasible to the pSRC-SCM problem. Furthermore,
from individual rationality, we have p∗i ≥ (csi + c

p
i ǫ)y

∗
i for

every worker wi. Therefore, we have

COPT ≤
∑

i:wi∈N
(csi + c

p
i ǫ)y

∗
i ≤

∑

i:wi∈N
p
∗
i y

∗
i = POPT.

That is, COPT is a lower bound of POPT for any individual
rational pSRC auction.

Then, we introduce Lemma 2 which is borrowed from [13]
(Theorem 5 in [13]) with some minor adaptations. Similar
to [13], we introduce the following notations including γ =
maxi,j:wi∈N ,τj∈T (csi + c

p
i ǫ)qi,j |Γi| and m = 1

∆q

∑
j:τj∈T Qj

where ∆q is the unit measure of elements in q and Q.

Lemma 2. The social cost generated by Algorithm 2 satis-
fies 2γHm-approximation to the optimal social cost, i.e.,∑

i:wi∈S
(csi + c

p
i ǫ) ≤ 2γHmCOPT,

where Hm = 1 + 1
2
+ · · ·+ 1

m
.

The proof to Lemma 2, which can be found in [13] is omit-

ted in this paper. We define δ = maxi,k:wi,wk∈N
csi+c

p
i
ǫ

cs
k
+c

p
k
ǫ
and

introduce the following Theorem 6 regarding the approxi-
mation ratio of the proposed pSRC auction in terms of the
platform’s total payment.

Theorem 6. The platform’s total payment generated by the
proposed pSRC auction satisfies 2mδγHm-approximation to
the optimal total payment, i.e.,∑

i:wi∈S
pi ≤ 2mδγHmPOPT.

Proof. Based on Algorithm 3, for every winner wi there ex-
ists some worker wki

such that

pi = (cski
+ c

p
ki
ǫ) ·

∑
j:τj∈Γi

min{Q′
j , qi,j}∑

j:τj∈Γki

min{Q′
j , qki,j}

,

where Q′
j denotes the element corresponding to task τj in

the Q′ vector determined on line 6 of Algorithm 3 when the
worker wki

is selected as a winner. Therefore, we have
∑

i:wi∈S
pi =

∑

i:wi∈S
(cski

+ c
p
ki
ǫ) ·

∑
j:τj∈Γi

min{Q′
j , qi,j}∑

j:τj∈Γki
min{Q′

j , qki,j}

≤ m|S| max
i:wi∈N

(csi + c
p
i ǫ).

(18)

Furthermore, the social cost satisfies that∑

i:wi∈S
(csi + c

p
i ǫ) ≥ |S| min

i:wi∈N
(csi + c

p
i ǫ). (19)

From Inequality (18) and (19), and Lemma 1 and 2, we
have that

∑

i:wi∈S
pi ≤ m

(

max
i,k:wi,wk∈N

csi + c
p
i ǫ

cs
k
+ c

p
k
ǫ

)
∑

i:wi∈S
(csi + c

p
i ǫ)

= mδ
∑

i:wi∈S
(csi + c

p
i ǫ) ≤ 2mδγHmCOPT

≤ 2mδγHmPOPT.

Therefore, the proposed pSRC auction satisfies 2mδγHm-
approximation to the optimal total payment.
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4.3 Data Perturbation Mechanism

4.3.1 Proposed Mechanism

As previously mentioned, any adversary curious about
workers’ data could try to infer them utilizing the aggre-
gated results if they are published directly. One example
of such an adversary could be another competing platform
hosting similar sensing tasks. The portion of workers’ data
inferred with reasonable accuracy could be utilized by the
adversary platform to calculate the results of its own tasks.
In this way, it could reduce the number of workers recruited
by itself, and thus its financial expense for worker recruiting.
To enable such inference, the adversary needs the informa-

tion about workers’ weights, namely λi,j ’s, defined in Equa-
tion (6). That is, it has to know α and θ, which is usu-
ally feasible for the adversary platform. For similar sensing
tasks, α is typically a common and standard design choice
across different platforms, and workers’ skill levels for sim-
ilar tasks tend to be similar as well. Therefore, θ can also
be effectively estimated or inferred by the adversary plat-
form using the methods mentioned in Section 3.2, such as
utlilizing workers’ sensory data about similar tasks collected
during its past interactions with them as in [35, 36], using
some of workers’ characteristics (e.g., reputation and experi-
ence for similar tasks) as in [37], and many others. To tackle
such inference attack, we propose a novel data perturbation
mechanism in Algorithm 4 by tailoring the Laplace mecha-
nism in [22, 33] to our problem setting.

Algorithm 4: Data Perturbation Mechanism

Input: (x1, · · · , xN ), α, β;
Output: (x̂1, · · · , x̂N );

1 foreach j s.t. τj ∈ T do

2 nj ← random noise sampled from Lap
(
0,−

αj

ln βj

)
;

3 x̂j ← xj + nj ;

4 return (x̂1, · · · , x̂N );

Algorithm 4 takes as inputs the vector of the aggregated
results (x1, · · · , xN ) output by the data aggregation mech-
anism and the α and β vector. α and β are the same sets
of platform-chosen parameters utilized by Algorithm 1, 2,
and 3 with αj , βj ∈ (0, 1). For every task τj , Algorithm 4
independently samples a random noise nj from the Lapla-
cian distribution with mean 0 and scaling −

αj

ln βj
, denoted as

Lap
(
0,−

αj

ln βj

)
(line 2) and adds it to the aggregated result

xj (line 3). Although adding Laplacian noise as in [22, 33]
is a well-established approach to achieve differential privacy,
the scaling of the Laplacian distribution is application spe-
cific and has to be carefully designed to achieve a desirable
trade-off between privacy and data accuracy.

4.3.2 Analysis

We firstly analyze the accuracy guarantee of Algorithm 4.

Theorem 7. The data perturbation mechanism given in Al-
gorithm 4 satisfies

Pr
[∣∣X̂j −Xj

∣∣ ≥ αj

]
= βj . (20)

Proof. We use Nj to denote the random variable represent-
ing the random noise sampled from the Laplacian distribu-

tion Lap
(
0,−

αj

ln βj

)
, i.e., Nj ∼ Lap

(
0,−

αj

ln βj

)
. Thus,

Pr
[∣∣X̂j −Xj

∣∣ ≥ αj

]
= Pr

[∣∣Nj

∣∣ ≥ αj

]
= 2Pr

[
Nj ≥ αj

]

= 2

∫ +∞

αj

−
lnβj

2αj

exp

(
z lnβj

αj

)
dz = βj ,

which gives us Pr[|X̂j −Xj | ≥ αj ] = βj .
Theorem 7 states that (αj , βj)-accuracy is guaranteed for

the perturbed result compared to the original one before
perturbation for every task τj . However, our ultimate goal
is to achieve that the perturbed results has satisfactory ac-
curacy compared to ground truths, which is proved in the
following Theorem 8.

Theorem 8. For every task τj ∈ T , we have
Pr

[∣∣X̂j − x
∗
j

∣∣ ≥ 2αj

]
≤ 1− (1− βj)

2
. (21)

Proof. As discussed in Section 4.1 and 4.2, the aggregated
result for every task τj satisfies that Pr

[∣∣Xj − x∗
j

∣∣ ≥ αj

]
≤

βj . From Theorem 7 and the fact thatXj−x∗
j and X̂j−Xj =

Nj are two independent random variables, we have
Pr
[∣∣X̂j − x∗

j

∣∣ > 2αj

]
≤Pr

[∣∣X̂j −Xj

∣∣+
∣∣Xj − x∗

j

∣∣ > 2αj

]

≤1− (1− βj)
2,

which gives us Pr[|X̂j − x∗
j | ≥ 2αj ] ≤ 1− (1− βj)

2.

Therefore, Theorem 8 gives us that (2αj , 1 − (1 − βj)
2)-

accuracy is satisfied for the perturbed result of every task
τj compared to its ground truth. In Theorem 9, we analyze
the privacy guarantee of the data parturbation mechanism.

Theorem 9. The data perturbation mechanism given in Al-
gorithm 4 satisfies ǫ-differential privacy, where the privacy

budget ǫ = maxj:τj∈T
(
−

ln βj

αj

)
.

Proof. For any O ⊆ R and r ∈ R, we use O − r to denote

the set {x′ = x − r|x ∈ O}, and x
(i)
j and x̂

(i)
j to denote the

aggregated result for task τj before and after perturbation

when one entry xi,j changes. We have
∣∣xj − x

(i)
j

∣∣ ≤ 1, and

Pr
[
X̂j ∈ O

]
= Pr

[
Nj ∈ O − Xj

]

=

∫

z∈O−Xj

−
ln βj

2αj

exp

(
|z| ln βj

αj

)
dz

≤ exp

(
−

ln βj

αj

)∫

z∈O−X
(i)
j

−
ln βj

2αj

exp

(
|z| ln βj

αj

)
dz

= exp

(
−

ln βj

αj

)
Pr
[
X̂

(i)
j

∈ O
]
.

Note that the previous analysis focuses on a specific task
τj . The overall privacy budget considering all tasks in T is

thus ǫ = maxj:τj∈T
(
−

ln βj

αj

)
.

4.4 Summary of Design Details
Thus far, we have finished the description of the design de-

tails of INCEPTION. Its incentive mechanism (Section 4.2)
selects a set of winners that are more likely to provide reli-
able data and determines the payments to compensate their
sensing and privacy costs. Meanewhile, it approximately
minimizes the platform’s total payment (Theorem 6), and
satisfies computational efficiency (Theorem 5), truthfulness
(Theorem 3), and individual rationality (Theorem 4). In-
corporating workers’ skill levels, the data aggregation mech-
anism (Section 4.1) provides aggregated results with high
accuracy (Corollary 1), and the data perturbation mecha-
nism (Section 4.3) adds carefully controlled noises to the
aggregated results to achieve differential privacy (Theorem
9), and small degradation of data accuracy (Theorem 7).

Overall, INCEPTION guarantees maxj:τj∈T
(
−

ln βj

αj

)
-

differential privacy and (2αj , 1−(1−βj)
2)-accuracy for every

task τj (Theorem 8). The platform could carefully select the
parameter αj , βj ∈ (0, 1) for every task τj to achieve satis-
factory guarantee for data accuracy and workers’ privacy.
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5. PERFORMANCE EVALUATION
In this section, we introduce the baseline methods, and

simulation settings, as well as results.
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Figure 2: Platform’s total
payment (setting I)
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Figure 3: Platform’s total
payment (setting II)
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Figure 4: Platform’s total
payment (setting III)
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Figure 5: Platform’s total
payment (setting IV)
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Figure 6: MAE of data
aggregation
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Figure 7: EP after per-
turbation

5.1 Baseline Methods
Ideally we need to compare the proposed pSRC auction

with a truthful and individual rational auction that returns
exact optimal solutions to the pSRC-TPM problem. How-
ever, because solving the pSRC-TPM problem is notori-
ously challenging, we instead use the following VCG auction
[39, 40] as one of the baseline methods. The VCG auction
solves the pSRC-SCM problem optimally and pays every
winner according to the VCG payment. This choice is rea-
sonable as the optimal social cost offers a lower bound to
the optimal total payment as proved in Lemma 1. Hence,
a good approximation to the optimal social cost indicates a
better approximation to the optimal total payment.
Another baseline method is the bidding price effectiveness

greedy (BPE-Greedy) auction. Initially, it sorts workers ac-
cording to an increasing order of their bidding price effective-
ness. Winners are selected in this order until the feasibility
of the pSRC-TPM problem is satisfied. Its pricing mecha-
nism pays every winner her critical payment as Algorithm
3 does. It is easily provable that the BPE-Greedy auction
also satisfies truthfulness and individual rationality.
Furthermore, we compare our weighted data aggregation

mechanism with two other schemes that calculate the mean
and median of winners’ data, respectively.

5.2 Simulation Settings
In our simulation, we generate xi,j (i.e., worker wi’s data

about task τj) from a normal distribution with mean µi,j and
standard deviation σi,j , truncated within the range [0, 1].
The platform maintains the value of θi,j , calculated as

θi,j =
ci,jσi,j√

2π

(
2 exp

(−b2i,j

2σ2
i,j

)
− exp

(−a2
i,j

2σ2
i,j

)
− exp

(−
(
1 − ai,j

)2

2σ2
i,j

))

+ ci,jbi,j

(
Φ

(−ai,j

σi,j

)
+ Φ

(
1 − ai,j

σi,j

)
− 2Φ

(−bi,j

σi,j

))
,

where ci,j =
(
Φ
( 1−µi,j

σi,j

)
− Φ

(
−

µi,j

σi,j

))−1

, bi,j = µi,j − x∗
j ,

ai,j = x∗
j + bi,j , and Φ(·) denotes the c.d.f. of the standard

normal distribution. We omit the derivation for θi,j due to
space limit. The parameter settings are given in Table 1.
Setting αj , βj csi , c

p

i
µi,j , x

∗
j σi,j |Γ∗

i | N K

I (0, 0.1] [1, 2] [0, 1] [1, 2] [15, 20] [91, 120] 40
II (0, 0.1] [1, 2] [0, 1] [1, 2] [15, 20] 100 [21, 50]
III (0, 0.1] [1, 2] [0, 1] [1, 2] [25, 35] [2100, 5000] 500
IV (0, 0.1] [1, 2] [0, 1] [1, 2] [25, 35] 1000 [710, 1000]

Table 1: Simulation settings

In setting I and II, αj , βj , c
s
i , c

p
i , x

∗
j , µi,j , σi,j , and |Γ∗

i | are
generated uniformly at random from the intervals given in
Table 1. The bundle Γ∗

i contains |Γ∗
i | tasks randomly chosen

from T . In setting I, we fix the number of tasks as 40 and
vary the number of workers from 91 to 120. In contrast,
we fix the number of workers as 100 and vary the number
of tasks from 21 to 50 in setting II. In setting III and IV,
αj , βj , c

s
i , c

p
i , x

∗
j , µi,j , σi,j , and |Γ∗

i | are generated in the
same way as in setting I and II from the intervals given in
Table 1. Different from the previous two settings, setting III
and IV take instances with larger sizes, given in Table 1, as
inputs. The optimal solutions to the pSRC-SCM problem
are calculated using the GUROBI optimization solver [41].

5.3 Simulation Results
Figure 2 and 3 show that the platform’s total payment of

the pSRC auction is far less than that of the BPE-Greedy
auction and fairly close to the optimal social cost given by
the VCG auction. Since the optimal social cost lower bounds
the optimal total payment, the pSRC auction thus gives
us close-to-optimal total payment. Next, we compare the
execution time of the VCG and the BPE-Greedy auction.

From Table 2, we observe that the VCG auction has ex-
cessively long running time so that it can hardly be utilized
in practice. The running time of the VCG auction lower
bounds that of the auction that gives us the optimal to-
tal payment, because solving the pSRC-SCM problem is in
fact easier and faster than solving the pSRC-TPM problem.
Hence, calculating the optimal total payment becomes com-
putationally infeasible in practice. However, the execution
time of the pSRC auction keeps in the order of microsecond,
which is much less that of the VCG auction.

N 91 95 99 103 107 111 115 119
VCG 20.23 79.11 227.5 257.7 308.7 836.4 1199 1537
pSRC 0.008 0.009 0.007 0.008 0.008 0.006 0.007 0.006

K 21 25 29 33 37 41 45 49
VCG 0.300 6.676 13.09 30.60 1063 1160 1330 1677
pSRC 0.003 0.005 0.003 0.007 0.009 0.009 0.003 0.003

Table 2: Execution time (s) for setting I and II

In Figure 4 and 5, we show our simulation results about
the platform’s total payment for setting III and IV with
larger-size problem instances where the VCG auction is not
able to terminate in reasonable time. We can observe that
the proposed pSRC auction still gives us a total payment far
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less than that of the BPE-Greedy auction.
We evaluate the accuracy guarantee of INCEPTION in

setting II with a minor change of the parameter βj , i.e., βj

is fixed as 0.05 for every task τj to simplify presentation.
We compare the mean absolute error (MAE) for all tasks,
defined as MAE = 1

K

∑
j:τj∈T |xj − x∗

j |, of the weighted

aggregation mechanism given in Algorithm 1 with those of
the mean and median aggregation. The simulation for each
combination of worker and task number is repeated for 10000
times and the means and standard deviations of the MAEs
are plotted. We observe from Figure 6 that the MAE of
our weighted aggregation is far less than those of the mean
and median aggregation. Then, we show simulation results

regarding Pr[|X̂j −x∗
j | ≥ αj ], referred to as the error proba-

bility (EP) of the perturbed results for task τj . After 10000
repetitions of the simulation for any specific combination of
worker and task number, empirical values for the EPs are
calculated and we plot the means and standard deviations of
the empirical EPs over all tasks. From Figure 7, we observe
that the empirical EPs are far less than the required upper
bound (i.e., 1− (1− βj)

2 = 1− (1− 0.05)2 = 0.0975).

6. CONCLUSION
We propose INCEPTION, a novel MCS system framework

that integrates an incentive, a data aggregation, and a data
perturbation mechanism. Its incentive mechanism selects re-
liable workers, and compensates their costs for sensing and
privacy leakage, which meanwhile satisfies truthfulness and
individual rationality. Its data aggregation mechanism in-
corporates workers’ reliability to generate highly accurate
aggregated results, and its data perturbation mechanism en-
sures satisfactory guarantee for workers’ privacy, as well as
the accuracy for the final perturbed results. The desirable
properties of INCEPTION are validated through both the-
oretical analysis and extensive simulations.
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