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ABSTRACT
Given a set of di↵erent clustering solutions to a unified
dataset, ensemble clustering is to aggregate them to yield a
more accurate and robust solution. In recent years, ensem-
ble clustering has been extensively studied and successfully
applied to many areas. In this paper, we study a new variant
of ensemble clustering, distributed ensemble clustering, mo-
tivated by the proliferation of networked sensing systems
where communication is enabled between only connected
nodes. Our goal is to aggregate the clustering solutions
produced by the sensor nodes that observe the same set
of objects. Di↵erent from traditional ensemble clustering
problems, distributed ensemble clustering aims to achieve
not only accurate clustering results, but also low communi-
cation cost among the nodes. To this end, we build a novel
geometric optimization model that can be e�ciently solved
with theoretical quality guarantee. The proposed approach,
bearing nice geometric properties, can be easily adapted to
distributed settings without any sacrifice of clustering qual-
ity, and facilitates a dimension reduction procedure which
can significantly reduce the communication complexity. We
validate our approach on two benchmark datasets. Experi-
mental results suggest that our approach can e�ciently solve
the distributed ensemble clustering problem, and outper-
form the baselines on both clustering accuracy and commu-
nication cost.

CCS Concepts
•Computer systems organization ! Embedded and
cyber-physical systems; •Networks ! Network algo-
rithms;
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Clustering is a classical and fundamental problem [25, 14]
in computer science with numerous applications in many
di↵erent areas, such as machine learning, data mining, and
networking. Its basic task is to group a set of objects in such
a way that objects in the same group (called a cluster) are
more similar to each other than to those in other groups.

The clustering problem has been extensively studied in
the past and many elegant solutions have been obtained,
with each of them adopting a di↵erent strategy. Due to its
unavoidable bias, each individual clustering method often
works well only for a certain type of datasets. Thus, a more
accurate strategy, called ensemble clustering [18], is to aggre-
gate a set of clustering solutions (of the same set of objects)
generated by di↵erent clustering algorithms (or the same
kind of clustering algorithms under di↵erent conditions as
in sensor networks; see details later) into a unified solution.
In this way, errors of each individual solution could cancel
out each other and a more reliable and accurate solution can
be achieved.

In this paper, we consider a new variant of ensemble clus-
tering, called distributed ensemble clustering. Roughly speak-
ing, we are given multiple clustering solutions of a set of
objects, with each solution stored in a di↵erent node of a
communication network with certain topology (e.g., a tree),
and the goal is to aggregate these solutions to form the
“best” solution. The challenge of this problem stems from
the fact that communication is allowed only between con-
nected nodes. In other words, each node can talk only to its
neighbors, and no global view of these clustering solutions
is available.

Figure 1: An example of networked sensing system

The problem is motivated by the proliferation of networked
sensing systems where an object or event is usually observed
by multiple sensors, as shown in Fig. 1. In many applica-
tions of sensor networks, such as target tracking [8], wildlife
monitoring [15, 20, 21], assisted living [36, 40] and environ-
ment monitoring [10], one important task is to assign the
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observed object or event to one of several predefined classes.
For example, consider the task of bird species classification
as shown in Fig. 1, we can identify the species of the observed
birds based on the video and audio information collected by
the sensor nodes. To achieve this, a set of labelled training
data are needed to derive the classification model. How-
ever, as pointed out in [34, 35], sensor networks are usually
deployed in the remote, harsh, and sometimes even hostile
locales, and thus it is extremely di�cult to manually label
a training set. Therefore, a more practical solution is to
partition the observed objects into di↵erent groups using
clustering algorithms without the use of any training data,
and ask domain experts to manually label each group after
the clustering results are delivered to the remote server op-
erated by the end users 1. To achieve this, a challenge has to
be addressed. That is, due to various reasons such as poor
sensor quality, lack of sensor calibration, background noise,
and incomplete views of observations, each individual sen-
sor node may not be very reliable and its clustering could
be inaccurate. To improve sensing quality, it is desirable
to use ensemble method to combine the clustering solutions
produced locally by each individual sensor, as observations
from di↵erent sensor nodes are often complementary to each
other and aggregating them could lead to a better global
view of the observed objects.

A straightforward approach is to gather the clustering so-
lutions of all the sensor nodes to a sink node, and apply
some traditional ensemble clustering algorithm on them.
Although this can achieve optimized clustering accuracy,
it would incur significant communication overhead, since
communication is much more energy-expensive than com-
putation, (e.g., wireless transmission of a bit can require
over 1000 times more energy than a single 32-bit computa-
tion [7]). Thus, a more reasonable strategy is to let interme-
diate nodes, instead of the sink, conduct clustering aggrega-
tions, since this could save substantial amount of communi-
cation energy that would otherwise be wasted forwarding all
the clustering solutions to the sink. The required clustering
and aggregation operations for normal sensor nodes could
impose great challenges on traditional low-end sensing plat-
forms such as Mica2 mote [24]. However, as many powerful
sensing systems [38, 31, 19, 11] are rapidly emerging, we
expect that such challenges could be eventually overcome,
and thus accurate clustering solution and low communica-
tion cost can be simultaneously achieved.

Related work. Ensemble clustering was introduced by
Strehl and Ghosh [32]. Following their seminal work, quite
a few developments on ensemble clustering were proposed
from both theory and application perspectives [16, 22, 2,
12, 33, 17]. For more detailed discussion about ensemble
clustering, the reader is referred to a recent survey [18] . In
the context of wireless sensor networks, Su et al. [34, 35]
proposed a semi-supervised approach to combine the deci-
sions of individual sensors. Their method assumes the avail-
ability of correctly labeled data and thus is quite di↵erent
from the settings of our problem. The ensemble clustering
problem studied in this paper falls under the umbrella of
distributed machine learning. Driven by numerous big data
applications, there are considerable growing interests in this

1Please note that due to the constraints of energy and band-
width, there is usually no way to deliver all the raw data such
as video and audio files to the remote server.

A={a1, a2, · · · , a10}A={a1, a2, · · · , a10}

S1 = {a1, a2, a3}S1 = {a1, a2, a3}

S2 = {a4, a5, a6}S2 = {a4, a5, a6}

S’1 = {a1, a9, a10}S’1 = {a1, a9, a10}

S’2 = {a2, a3, a6, a8}S’2 = {a2, a3, a6, a8}

S’3 = {a4, a5, a7}S’3 = {a4, a5, a7}
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S3 = {a7, a8, a9, a10}S3 = {a7, a8, a9, a10}
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} and {S0
1

, S0
2

, S0
3

} are two di↵erent clus-
terings of A; a bipartite graph is built with each edge con-
necting Sl and S0

l0 having the weight equal to their sym-
metric di↵erence. The blue edges are the minimum weight
bipartite matching.

area (such as distributed PCA) in recent years [3, 5, 13, 28].
Our investigation on distributed ensemble clustering could
potentially become a new step along this line.

Our contributions. To our best knowledge, this is the
first paper identifying and solving the distributed ensemble
clustering problem. In this paper, we first transform en-
semble clustering to a geometric optimization problem in
high dimensional space based on some new insights to the
problem (Section 3). We then develop a novel algorithm to
solve the basic ensemble clustering problem with theoretical
quality guarantee (Section 4.1), and further show that our
algorithm can naturally be adapted to distributed settings
(Section 4.2). In addition, since our model is formulated
in Euclidean space, dimension reduction technique can be
easily applied. This allows us to not only preserve the qual-
ity guarantee, but more importantly significantly reduce the
communication cost (Section 4.3). Comparing to existing
approaches for ensemble clustering, our proposed method
has the following advantages. (1). Our algorithm can be
e�ciently realized in distributed settings without any sacri-
fice of quality, while existing methods are usually based on
complicated graph models or optimization techniques (e.g.,
semi-definite programming [33]) which are often challenging
to be implemented in distributed settings. (2). To the best
of our knowledge, this is the first combinatorial geometric
approach for ensemble clustering. This novel design leads to
significant reduction on communication cost and thus could
potentially benefit a wide spectrum of applications.

2. PRELIMINARIES
In this section, we will introduce several definitions which

will be used throughout this paper and the system overview
for distributed ensemble clustering.

Definition 1 (Ensemble Clustering). Given a col-
lection of objects A = {a

1

, a
2

, · · · , aN} and a set of cluster-
ing solutions {C

1

, C
2

, · · · , Cm}, where each Cj partitions A
into k 2 Z+ clusters2, ensemble clustering is to find a new
single clustering C̃ for A so as to minimize its total di↵er-
ences to the m solutions

mX

j=1

�(C̃, Cj), (1)

where the function � is defined in the following Definition 2.

2Note that if Cj has less than k clusters, we can always make
up to k by adding dummy empty clusters.
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We follow the idea in [4] to define the di↵erence between
two clusterings.

Definition 2 (Clustering Difference). Let C = {S
1

,
· · · , Sk} and C0 = {S0

1

, · · · , S0
k} be two clusterings of A, and

G be a bipartite graph built between C and C0 as follows: each
of the two columns of G contains k vertices corresponding to
the k clusters in C and C0 respectively; for any pair of clusters
(Sl, S

0
l0) with Sl 2 C and S0

l0 2 C0, there is an edge connecting
their corresponding vertices in G with a weight equal to the
size of their symmetric di↵erence, i.e., |Sl \ S0

l0 |+ |S0
l0 \ Sl|.

Then, the di↵erence of C and C0, �(C, C0), is the cost of the
minimum weight bipartite matching of G.

In the above definition, the function � (i.e., minimum
weight bipartite matching) can be computed by using Hun-
garian algorithm in O(k3) time. Fig. 2 gives an example
of clustering di↵erence. The bipartite graph is built for C
and C0 (e.g., the edge connecting S

1

and S0
2

has weight 3
which is equal to their symmetric di↵erence), and the min-
imum weight bipartite matching is shown in blue, where
�(C, C0) = 3 + 2 + 3 = 8.

Remark 1. Note that � is a natural way of measuring
clustering di↵erence. If C is the ground truth, with sim-
ple calculation we know that �(C, C0) always equals to two
times of the number of wrongly clustered objects by C0. See
Appendix for details.

2.1 Distributed Ensemble Clustering and Sys-
tem Overview

We consider the ensemble clustering problem in a dis-
tributed setting, where each clustering solution Cj is stored
in a node (with a slight abuse of notation, for 1  j  m, we
denote the corresponding node as Cj as well). Thesem nodes
form a connected graph, and communication is restricted to
the pairs of nodes which are connected by edges. For any
arbitrary connected graph, we can always compute a span-
ning tree, denoted as H, using breath first search method
(see Fig. 3(a)). Throughout this paper, we will execute and
analyze our algorithm only on H, and show that the perfor-
mance of our algorithm is independent of the topology of H
(see detailed proof in Section 4.2). Note that the simplest
communication model is that all nodes are connected to a
central node, which actually form a tree with height one
(Fig. 3(c)). However, in many scenarios, this model does
not work well. For example, in wireless sensor networks [34,
35], one sensor can only transmit data to its neighborhoods
according to the unit disk graph [27]. Thus, as a generaliza-
tion, we assume that H is an arbitrary tree in this paper.

Definition 3 (Communication Complexity). Given
a tree H formed by a set of nodes with each of them storing
a set of data, the communication complexity of an algorithm
is the total amount of bits transmitted along all the edges of
H.

For instance, in Fig. 3 (b), if the node a transmits 1 bit
to the root, the total communication complexity is 2 since
the data travel through two edges.

Furthermore, to avoid packet collision and overhearing
during the process of clustering aggregation, we can employ
some existing distributed aggregation scheduling algorithms
such as [39]. Under such scheduling strategy, at any time
slot only a subset of the sensor nodes are allowed to send

packets and their transmissions do not interfere with each
other. The wireless interfaces of the rest nodes are shut
down so as to save the energy of idle listening.
Main challenges. There are two di�culties in solving dis-
tributed ensemble clustering. Firstly, ensemble clustering
itself is a challenging combinatorial optimization problem.
Its challenge mainly comes from that fact that we do not
know which cluster should be matched to which cluster in
the function � according to Definition 2, since C̃ is unknown
in advance. In other words, we have to find the desired C̃
and minimize the total cost of bipartite matchings simulta-
neously.

Secondly, the distributed setting makes the problem even
more challenging. To overcome this di�culty, one simple
solution is to let all nodes send their data to the root and
thus convert the problem to a centralized ensemble clus-
tering problem. However, this could result in rather high
communication cost (see the example in Fig. 3(d), where
the nodes form a chain; if each node sends its data con-
taining L bits to the root, the total communication cost
is

Pm�1

j=1

j ⇤ L = O(m2L)). Note that some existing com-
pressive sensing techniques for data gathering [30, 37, 23]
are not appropriate to handle this issue, since they require
that the data is sparse. However, the data in our ensemble
clustering problem may not necessarily be sparse (see the
detailed explanation at the end of Section 4.3). Another
possible solution is to let each node compute a local solu-
tion for the data stored in its children and itself, and return
the result to its parent; finally an aggregated solution can
be obtained in the root. However, as illustrated in [34], this
strategy cannot always yield a global optimal solution and
could sacrifice quite a bit in accuracy. Thus, for distributed
ensemble clustering, we need to minimize the communica-
tion cost while preserving the accuracy of the solution. In
following sections, we will show that our approach yields a
quality guaranteed solution with communication complexity
linear in m and independent of the topology of H.

3. OUR NEW FORMULATION FOR ENSEM-
BLE CLUSTERING

In this section, we focus on developing a new formulation
for ensemble clustering, which transforms it to a geometric
optimization problem in high dimensional Euclidean space.
In Section 4, we will present an algorithm solving the geo-
metric problem in both centralized and distributed settings.

Mapping. Following the notations in Definition 1, we map
each clustering Cj to k-tuple points in RN , where N is the
number of objects and each cluster corresponds to one point
as follows. Each coordinate of RN indicates the membership
of one individual object in A, that is, each cluster S 2 Cj is
mapped to a point

p(S) = (x
1

, x
2

, · · · , xN ), 81  i  N,

where xi = 1 if ai 2 S, else xi = 0. (2)

The following lemma shows that the di↵erence of two
clusters, i.e., their symmetric di↵erence according to Def-
inition 2, can be naturally embedded into Euclidean space
by the above mapping.

Lemma 1. Given any two clusters S, S0 ⇢ A, the size of
their symmetric di↵erence |S\S0|+|S0\S| = ||p(S)�p(S0)||2.
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a
(a) (b) (c) (d)

Figure 3: (a) Wireless sensor network with each node representing a sensor; each edge indicates a link and the blue edges
form a spanning tree. (b) Illustration of sending data from node a to the root of H. (c) and (d) show two extreme cases for
H, all the nodes connecting to the root and the nodes forming a chain.

Proof. From formula (2), it is easy to know that

||p(S)� p(S0)||2 = |S \ S0|⇥ 12 + |S0 \ S|⇥ (�1)2

= |S \ S0|+ |S0 \ S|, (3)

which completes the proof.

For convenience, we use p(Cj) to denote the mapped k-
tuple of points in RN , and similar to Definition 2, we still use
� to denote the cost of minimum weight bipartite match-
ing between two k-tuples in RN , where each edge has the
weight equal to their squared Euclidean distance (according
to Lemma 1). We have the following theorem revealing the
correctness of our new formulation.

Theorem 1. Given an instance of ensemble clustering
as in Definition 1, finding the optimal clustering solution
C̃ minimizing the objective function (1) is equivalent to find-
ing a k-tuple of points T ⇢ RN such that

Pm
j=1

�(T , p(Cj))
is minimized, where each point t 2 T is a boolean vector,
i.e., each coordinate has the value equal to either 0 or 1, andP

t2T t = (1, 1, · · · , 1)| {z }
N

.

Remark 2. t is required to be a boolean vector since it
should be able to be mapped back to a cluster (i.e., a subset)
of A, and

P
t2T t = (1, 1, · · · , 1) guarantees that each object

of A belongs to one and only one cluster.

The combinatorial nature of requiring each point in T
to be a boolean vector makes the problem quite challeng-
ing3. A natural idea is to relax this requirement, and see
whether the result still makes sense. For ease of discussion,
in the remaining parts of this paper we denote that the op-
timal k-tuple T̃ = {t̃

1

, · · · , t̃k} and p(Cj) = {cj
1

, · · · , cjk} for
each 1  j  m. Furthermore, the minimum weight bipar-
tite matching between T̃ and p(Cj) is denoted as �j , i.e.,
�(T̃ , p(Cj)) =

Pk
l=1

||t̃l � cj�j(l)||
2.

Lemma 2. If each point of T̃ is not restricted to be a
boolean vector,

Pk
l=1

t̃l will be automatically guaranteed to
be (1, 1, · · · , 1)| {z }

N

, and each t̃l has non-negative value in each

coordinate.

3To the best of our knowledge, there is no prior work show-
ing the hardness of ensemble clustering. A closely related
problem, consensus clustering, is proved to be even APX-
hard [2, 12] when the number of clusters k is not fixed.

Prior proving Lemma 2, we need the following lemma first.

Lemma 3. If each point of T̃ is not restricted to be a
boolean vector, t̃l is the mean point of {cj�j(l) | 1  j  m}
for each 1  l  k.

Proof. Note that the objective function (1) is

mX

j=1

�(T̃ , p(Cj)) =
mX

j=1

kX

l=1

||t̃l � cj�j(l)||
2

=
kX

l=1

(
mX

j=1

||t̃l � cj�j(l)||
2). (4)

Since T̃ is the optimal k-tuple minimizing the objective func-
tion, from (4) we know that each t̃l should be the mean point
of {cj�j(l) | 1  j  m}.

Proof. (of Lemma 2) Since each cj�j(l) is a boolean vec-

tor, we know that t̃l has non-negative value in each coordi-
nate from Lemma 3. Furthermore,

kX

l=1

t̃l =
kX

l=1

(
1
m

mX

j=1

cj�j(l))

=
1
m

mX

j=1

kX

l=1

cj�j(l) =
1
m

mX

j=1

kX

l=1

cjl . (5)

Note that
Pk

l=1

cjl = (1, · · · , 1)| {z }
N

. Thus
Pk

l=1

t̃l = (1, · · · , 1)| {z }
N

as well.

Relaxation to fractional memberships. From Lemma 2,
we know that the k values in each i-th coordinate from T̃
are non-negative with a summation equal to 1. This can be
interpreted as they forming a probabilistic distribution. In
other words, for each ai 2 A, we can claim its membership to
k clusters based on this distribution. Although this is not an
exact solution for ensemble clustering, it is acceptable and
makes sense in practice. For instance, we may claim that
one object belongs to class 1, 2, and 3 with probabilities of
70%, 20%, and 10%, respectively. Moreover, each minimum
weight bipartite matching �(T̃ , p(Cj)) can be viewed as the
clustering di↵erence between a probabilistic clustering result
T̃ and a hard clustering result p(Cj).

4. THE ALGORITHM
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4.1 The Basic Algorithm
We first present our algorithm for basic ensemble cluster-

ing, and then show how to accommodate the algorithm in a
distributed setting in Section 4.2.

Key observation: From Lemma 3, we know that the pointsSm
j=1

p(Cj) associated with the matchings {�j | 1  j  m}
actually form k clusters, i.e., {cj�j(l) | 1  j  m} for

l = 1, · · · , k, and each t̃l serves as the cluster center, which
is similar to the well known k-means but has the particu-
lar “bipartite matching” requirement from Definition 2, i.e.,
each cluster has one and only one point from each p(Cj).
The most common and easily-implementable algorithm for
k-means is Lloyd’s algorithm [29], which randomly selects
k initial cluster centers, and then alternatively updates the
partition and cluster centers iteratively. Although the ob-
jective value decreases after each iteration, there is no any
strict quality guarantee in theory. However, we find that a
similar strategy for ensemble clustering actually ensures a
quality guaranteed solution based on some new geometric
insights.

Lemma 4. Given an instance of ensemble clustering as in
Definition 1, one can randomly select a k-tuple points from
{p(Cj) | 1  j  m} as the initial solution, such that with
probability 1/2, it yields a 6-approximation with respect to
the objective function (1).

Proof. First, we know that the objective value (1) isPm
j=1

�(T̃ , p(Cj)), which is the sum of the costs caused by
{p(Cj) | 1  j  m}. So if one randomly select one k-tuple,
denoted as p(Cj

0

) w.l.o.g., then from Markov inequality we
know that its contribution to the objective value is no more
than 2 times of the average cost with probability at least
1/2, i.e.,

�(T̃ , p(Cj
0

))  2
1
m

mX

j=1

�(T̃ , p(Cj))

= 2
1
m

mX

j=1

kX

l=1

||t̃l � cj�j(l)||
2. (6)

Furthermore, if we replace T̃ by p(Cj
0

) as an initial solution,
the objective value becomes

mX

j=1

kX

l=1

||cj0�j
0

(l) � cj�j(l)||
2 (7)


mX

j=1

kX

l=1

(||cj0�j
0

(l) � t̃l||+ ||t̃l � cj�j(l)||)
2 (8)


mX

j=1

kX

l=1

(2||cj0�j
0

(l) � t̃l||2 + 2||t̃l � cj�j(l)||
2) (9)

= 2m
kX

l=1

||cj0�j
0

(l) � t̃l||2 + 2
mX

j=1

kX

l=1

||t̃l � cj�j(l)||
2(10)

 6
mX

j=1

kX

l=1

||t̃l � cj�j(l)||
2 = 6

mX

j=1

�(T̃ , p(Cj)), (11)

where (8) and (9) follow from triangle inequality and the
fact that (a+ b)2  2a2 + 2b2 for any a and b 2 R, and (11)
follows from (6). Finally, (11) implies that p(Cj

0

) yields a
6-approximation.

Algorithm 1 Basic Algorithm

Input: {p(Cj) | 1  j  m}, k 2 Z+, and ⌘ 2 (0, 1).
Output: An approximate ensemble clustering solution.

1. Randomly select dlog 1

⌘
e k-tuples from {p(Cj) | 1 

j  m}, and choose the one with the smallest ob-
jective value (denoted as T = {t

1

, · · · , tk}) as the
initial solution.

2. Iteratively perform the following steps until the ob-
jective value becomes stable.

(a) Update the minimum weight bipartite match-
ing �j from p(Cj) to T for each 1  j  m
using Hungarian algorithm.

(b) Update tl to be the mean of {cj�j(l) | 1  j 
m} for each 1  l  k.

Boost the success probability. In fact, we can select mul-
tiple k-tuples to increase the success probability in Lemma 4.
Given any small ⌘ 2 (0, 1), we can select log 1

⌘
k-tuples and

choose the one with the smallest objective value; then the
success probability becomes

1� (1/2)log
1

⌘ = 1� ⌘. (12)

For example, if the probability is required to be 90%, we
just need to select dlog 10e = 4 k-tuples.

Now, we are ready to introduce our Algorithm 1 for solv-
ing ensemble clustering. Roughly speaking, Step 1 pro-
vides a 6-approximation as the initial solution according to
Lemma 4, and Step 2 yields a local improvement. In both
Step 1 and 2(a), for each 1  j  m building the bipartite
graph takes O(k2N) time and computing the matching �j
via Hungarian algorithm costs O(k3) time. Note that usu-
ally k ⌧ N , thus the total complexity for obtaining each �j
is O(k2N). In Step 2(b), similar to Lemma 3, we know that
each tl should be the mean point of {cj�j(l) | 1  j  m}
in order to reduce the objective value. Thus, the algorithm
improves the objective value in each round of Step 2. From
the above analysis we have the following theorem.

Theorem 2. Algorithm 1 outputs a 6-approximation with
probability 1 � ⌘, and the objective value converges in each
round of Step 2. The total time complexity is O((log 1

⌘
+

s)mk2N), where s is the number of rounds performed in
Step 2.

Note that the value of s does not influence the approx-
imation ratio “6”, however, in practice (such as our exper-
iment) the objective value reduces significantly in the first
3-5 rounds. So usually we set s  5. Moreover, as what we
will show in Section 4.3, the influence of s is quite limited
in the communication complexity after applying dimension
reduction.

4.2 Adapting to Distributed Settings
Now, we consider the distributed settings described in Sec-

tion 2.1 and show how to adapt Algorithm 1 to it. We will
first discuss the two steps of Algorithm 1 separately, and
then analyze the communication complexity.
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a

b

c d

(1, 1, 0, … 0, 0, 0)

(0, 0, 0, … 1, 0, 0)

(0, 0, 1, … 0, 0, 1)

k ⇥Nk ⇥N log k ⇥Nlog k ⇥N

(a) (b) (c)

Figure 4: (a) and (b) illustrate the procedure of performing Step 1 on tree H: node a is randomly selected, and it transmits
its stored k-tuple to the root firstly; then the root broadcasts this k-tuple to all the nodes; the total cost is aggregated from
the leaves, e.g., node b needs to sum its own value of � and the values transmitted from its children c and d. (c) illustrates
how to encode the k-tuple p(Cj

0

) into log k ⇥ N bits, where the left is a k ⇥ N boolean matrix representing the k points of
p(Cj

0

) in RN (there is one and only one entry equaling to 1 in each column) and in the right each column of the log k bits
represents one column in the left.

Step 1. Each time for randomly selecting a k-tuple, the root
can randomly determine a path to some node in H, then the
node transmits its stored k-tuple, say p(Cj

0

), to the root
through this path, and the root can broadcast p(Cj

0

) to all
the nodes in H. When each node obtains the selected p(Cj

0

),
it computes the function� with its own k-tuple. Then start-
ing from the leaves of H, each node sums its own value of
� and the values transmitted from its children, and returns
this summation to its parent. Finally, the root has the total
objective value

Pm
j=1

�(p(Cj
0

), p(Cj)). See Fig. 4(a) and (b)
for an illustration. To complete Step 1, we can repeat this
procedure log 1

⌘
times, and broadcast the final determined

k-tuple with the smallest objective value to all nodes.

Step 2. In each round of Step 2, it is also a bottom-to-top
procedure similar to the strategy for computing total costPm

j=1

�(p(Cj
0

), p(Cj)) in Step 1. Once the root broadcasts
T , each node computes its bipartite matching �j . Note that
each point tl 2 T should be updated to the mean point of
{cj�j(l) | 1  j  m} according to Step 2(b), i.e.,

tl =)
1
m

mX

j=1

cj�j(l). (13)

We can first ignore the front 1

m
temporarily, and only ag-

gregate
Pm

j=1

cj�j(l). For each 1  l  k, each node sums

cj�j(l) to the corresponding points (with respect to the in-

dex l) from its children; then the node transmits these k
new points after the summation to its parent. Finally, the
root obtains the point-set {

Pm
j=1

cj�j(l) | 1  l  k}, and

just needs to average each of the points by m. Thus, T is
updated within this round.

Total communication cost. Now, we analyze the total
communication cost of the two steps. Firstly, we note that
each k-tuple p(Cj

0

) can be encoded by using log k ⇥N bits
as follows. Since each point of p(Cj

0

) is a boolean vector
and for each of the N coordinates there is one and only one
of the k points having the value of 1 according to the con-
struction in (2), p(Cj

0

) can be represented by a log k⇥N -bit
matrix, where the i-th column indicates the point having
value 1 in its i-th coordinate (see Fig. 4(c)). Since there
are m � 1 edges in H, it results in O(log k ⇥ Nm) commu-
nication cost for selecting and broadcasting one k-tuple in
Step 1. Also from the definition of � and Lemma 1, we
know that

Pm
j=1

�(p(Cj
0

), p(Cj)) is a non-negative integer
no more than 2Nm, which implies that each node just needs
to transmitO(log(Nm)) bits when aggregating the total cost

Pm
j=1

�(p(Cj
0

), p(Cj)). Consequently, Step 1 costs

O(log
1
⌘
(log k ⇥N + log(Nm))m) = O(log

1
⌘
log(km)⇥Nm) (14)

total communication cost.
The communication cost of Step 2 follows from a simi-

lar analysis, where the only di↵erence is that the cost for
transmitting {

Pm
j=1

cj�j(l) | 1  l  k} (or T ) is no longer

log k ⇥ N . For convenience, we just consider {
Pm

j=1

cj�j(l) |
1  l  k} since T can be easily obtained by multiplying
the factor of 1

m
. The k points in {

Pm
j=1

cj�j(l) | 1  l  k}
can be similarly represented as a k ⇥ N matrix, with each
entry being an integer between 0 and m. Thus the k ⇥ N
matrix can be encoded by using k ⇥ N ⇥ logm bits. If the
algorithm runs s rounds in Step 2, the total communication
cost is

O(skNm logm). (15)

In total, the communication complexity of the whole Al-
gorithm 1 is

O((log
1
⌘
log(km) + sk logm)Nm). (16)

From the above analysis, we can see two advantages of
our algorithm. (1) The communication complexity is alway
nearly linear inm and independent of the topology of H;
(2) it is a solution without any sacrifice in quality comparing
to the aggregated solution in [34]. Thus, we have following
theorem.

Theorem 3. Algorithm 1 can be implemented without sac-
rificing any quality of solution in a distributed setting where
all the nodes form a communication network containing a
spanning tree H of arbitrary shape, and the total communi-
cation complexity is O((log 1

⌘
log(km) + sk logm)Nm).

4.3 Reducing Communication Cost via Dimen-
sion Reduction

From Section 4.2 we know that the communication com-
plexity is linear in the dimensionality N , which is also the
number of observed objects in Definition 1 and can be very
large in practice. Thus, a smaller N can result in a signifi-
cant reduction on the communication complexity.

The famous Johnson-Lindenstrauss (JL)-Lemma [26] tells
us that if there are n points in any dimensional Euclidean
space, one can randomly project all the points to anO( logn

✏2
)-

dimensional sub-space and approximately preserves all the
pairwise distances for any given small parameter ✏ > 0. Note
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p(Cj)p(Cj)

⇧(p(Cj))⇧(p(Cj))

Figure 5: Each k-tuple p(Cj) is projected to the subspace,
and the projection is ⇧(p(Cj)).

that preserving pairwise distances does not immediately im-
ply a quality-guaranteed solution for our ensemble cluster-
ing problem, since the feasible domain of the solution (i.e.,
the k-tuple T ) is the whole continual space RN ; this means
that there are infinite number of possible k-tuples as the
candidates for T , but JL-Lemma can only preserve a finite
number of pairwise distances. The following lemma resolves
this issue and gives a positive answer to the problem.

Lemma 5. Let d = O( log(km)

✏2
), ✏ 2 (0, 1), and ⇧ be a

random projection RN 7�! Rd for {p(Cj) | 1  j  m}.
Then with high probability, any ↵-approximation ( for any
↵ > 1) of the ensemble clustering problem in Rd yields an
↵( 1+✏

1�✏
)2-approximation in the original RN .

Prior proving Lemma 5, we need the following basic result
(see Appendix for the proof).

Lemma 6. Given a set of points X in any Euclidean space,P
x2X

P
y2X ||x�y||2 = 2|X |

P
x2X ||x�o||2, where o is the

mean point of X .

Lemma 6 reveals the relationship between the total pairwise
squared distances and the variance.

Proof. (of Lemma 5) Note that there are |
Sm

j=1

p(Cj)| =
km points in total. From JL-Lemma, we know that with
high probability ⇧ preserves the pairwise distances, i.e., for
any two points x, y 2

Sm
j=1

p(Cj),

(1� ✏)
d

N
||x� y||2  ||⇧(x)�⇧(y)||2

 (1 + ✏)
d

N
||x� y||2. (17)

Suppose that T
⇧

= {t
⇧,l | 1  l  k} and T̃

⇧

= {t̃
⇧,l |

1  l  k} are respectively an ↵-approximation and an
optimal solution of the ensemble clustering for the set of
ponts {⇧(p(Cj)) | 1  j  m} in Rd. Then,

mX

j=1

�(T
⇧

,⇧(p(Cj)))  ↵

mX

j=1

�(T̃
⇧

,⇧(p(Cj))). (18)

We also denote the corresponding bipartite matching deter-
mined by �(T

⇧

,⇧(p(Cj))) and �(T̃
⇧

,⇧(p(Cj))) as ⇡j and
⇡̃j respectively for each j. Now, we construct a mapping
f which transforms T

⇧

and T̃
⇧

to the solutions of ensemble
clustering on {p(Cj) | 1  j  m} in the original space RN .

f(t
⇧,l) =

1
m

mX

j=1

cj⇡j(l)
, f(T

⇧

) = {f(t
⇧,l) | 1  l  k}; (19)

f(t̃
⇧,l) =

1
m

mX

j=1

cj⇡̃j(l)
, f(T̃

⇧

) = {f(t̃
⇧,l) | 1  l  k}. (20)

Actually, the above construction of f is quite intuitive. Ac-
cording to Lemma 3, each t

⇧,l and t̃
⇧,l are the means of the

corresponding clusters in Rd; then f(t
⇧,l) and f(t̃

⇧,l) are
still their means in RN . Additionally, since ⇧ is a linear
mapping, for each 1  l  k we have

⇧(f(t
⇧,l)) = t

⇧,l and ⇧(f(t̃
⇧,l)) = t̃

⇧,l. (21)

In the remaining of the proof, we will show that f(T
⇧

) is
an ↵( 1+✏

1�✏
)2-approximation. From Lemma 6, (17), (18), and

(21), we know that

mX

j=1

�(f(T
⇧

), p(Cj)) 
1

1� ✏

N

d

mX

j=1

�(T
⇧

,⇧(p(Cj))) (22)


1

1� ✏

N

d

↵

mX

j=1

�(

˜T
⇧

,⇧(p(Cj)))(23)


1 + ✏

1� ✏

↵

mX

j=1

�(f(

˜T
⇧

), p(Cj)). (24)

Recall that T̃ is the optimal solution in the original Rd. By
a similar strategy in (22)-(24), we have

mX

j=1

�(f(T̃
⇧

), p(Cj)) 
1 + ✏

1� ✏

mX

j=1

�(T̃ , p(Cj)). (25)

Combining (24) and (25), we complete the proof.

From Lemma 5 we know that through random projec-
tion, the dimensionality can be totally independent of the
dimensionality N and the quality can still be guaranteed.
Below we discuss how to realize such a dimension reduction
in wireless sensor networks.

Realization. A nice property of the JL-Lemma is that the
random projection matrix can be generated in multiple ma-
chines as long as they all use the same random seed; in other
words, each node of H can independently generate a unified
random O( log(km)

✏2
)-dimensional subspace in advance. Then

each k-tuple points is projected into RO(

log(km)

✏2
), and Al-

gorithm 1 is performed in this lower dimensional sub-space.

Finally, we map the solution from RO(

log(km)

✏2
) to RN using a

similar idea in (19) and (20), i.e., computing the mean point
of each cluster in RN determined by the bipartite matchings.
Note that this mapping can be similarly implemented in H
as Step 2 in Section 4.2.

As for the communication complexity, we need several
modifications compared to Theorem 3. As mentioned in
Section 4.2, when transmitting p(Cj

0

) in our original Algo-
rithm 1, it needs only log k⇥N bits due to the nice property
of the boolean vectors (Fig. 4(c)). However, the points of
⇧(p(Cj

0

)) are no longer boolean vectors. Instead, using the
random sign matrix as random projection matrix [1], each

point of ⇧(p(Cj
0

)) becomes an O( log(km)

✏2
)-dimensional vec-

tor where the value in each dimension is an integer between
�N and N . Consequently, the communication complexity
of Algorithm 1 after dimension reduction becomes

log
1
⌘
k
log(km)

✏2
(logN)m+ sk log(Nm)

log km
✏2

m, (26)

where the first term is for Step 1 and the second term is for
Step 2 of Algorithm 1. With simple calculations, we know
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that (26) equals to

O(k
log(km)

✏2
m(log

1
⌘
logN + s log(Nm)))

= O(
log(km)

✏2
km(log

1
⌘
+ s) log(Nm)). (27)

Finally, in the mapping step the k-tuple f(T
⇧

) (recall the
proof of Lemma 5) is aggregated in H which costs

O(kNm logm) (28)

communication cost (similar to (15) but without the factor
s).

In summary, we have the following theorem.

Theorem 4. If all the points
Sm

j=1

p(Cj) are randomly

projected to a subspace RO(

log km
✏2

), the approximation ratio
becomes 6( 1+✏

1�✏
)2, and the communication complexity is re-

duced to

O(
log(km)

✏2
km(log

1
⌘
+ s) log(Nm) + kNm logm). (29)

Remark 3. Actually, when N is very large, the second
term of (29) dominates the whole communication complex-
ity. In other words, (29) can be written as O(kNm logm) in
short. Compared to the communication complexity in The-
orem 3 which is O((log 1

⌘
log(km) + sk logm)Nm), the re-

duction is quite significant.

Di↵erence with compressed sensing based data gath-
ering. It is worthy pointing out that our JL-lemma based
distributed ensemble clustering is significantly di↵erent from
those compressed sensing based data gathering techniques.
Data gathering in a sensor network is to collect data di
from each sensor i through the wireless network formed by
the sensors. To reduce the communication cost, compressed
sensing [9] has been widely used in data gathering [30, 37,
23]. Note that although compressed sensing is closely re-
lated to JL-Lemma in mathematics [6], these compressed
sensing based approaches are in general not applicable to
our distributed ensemble clustering problem. There are sev-
eral reasons. Firstly, compressed sensing requires the values
acquired by the sensors to form a sparse vector (or have a
sparse representation); but the data {p(Cj) | 1  j  m}
in our problem does not necessarily have such a property.
Secondly, according to our algorithmic framework in Sec-
tion 4.1 and 4.2 it is not necessary to know each p(Cj), in-
stead, we just need to aggregate their summations based on
each individual �j . Roughly speaking, compressed sensing
for data gathering is to compress the whole data-set in a
global manner, while our approach is to use JL-lemma to
locally compress the data in each individual sensor (node).

5. PERFORMANCE EVALUATION
In order to evaluate the performance, we test our algo-

rithm on two benchmark datasets and present below the
clustering errors and communication costs.

Datasets. We use two benchmark datasets from UCI ma-
chine learning repository for clustering purpose: (1). Plants
from USDA Plants Database and (2). US Census from
the U.S. Department of Commerce Bureau, which contain
N = 22632 and N = 238713 objects respectively. For each
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50

Figure 6: Network topology

dataset, we run k-means to obtain a clustering result as the
ground truth (where k is set to be 10), and then generate
m = 100 to 400 di↵erent clustering solutions based on a
given noise level. For example, if the noise level is e 2 (0, 1),
we generate each of the m clustering solutions as follows:
randomly pick e ⇤N objects and change their cluster mem-
berships in the ground truth; we also merge 0.1 ⇤ k pairs of
clusters which are randomly picked from the ground truth.

Network topology. As illustrated in Fig. 6, m (= 100
to 400) nodes are firstly randomly placed on a 50 ⇥ 50 re-
gion, and their unit disk graph G is then built. According
to the problem setting in Section 2.1, we require that G is
connected (note that we can always double the radius of the
disk until G becomes connected). Finally, a spanning tree H
(shown in Fig. 6 by thick red lines) of G is computed, and
the communication is restricted between only parents and
their children.

Results. The computation in each node is simulated on
a Linux workstation (2 GHz Intel Core i7 and 4 GB Meo-
mory). For showing the advantage from dimension reduc-
tion, we also conduct the experiment after projecting all the
data from RN to a randomly selected subspace Rd, where d
is set to be d 8

0.32
log kme, d 6

0.32
log kme, and d 4

0.32
log kme,

respectively. For each noise level e = {0.25, 0.30, · · · , 0.70},
the experiment is repeated 10 times and both of the aver-
age clustering error and communication cost are reported in
Fig. 7.

For comparisons with existing approaches, we use Meta-
CLustering Algorithm (MCLA) [32] to produce the base-
lines. Note that there are also a couple of other existing
approaches (see [18]), but most of them either need to build
a correlation graph with quadratic complexity or solve some
complicated optimization problem (e.g., semidefinite pro-
gramming [33]), which could cost several hours or even run
out of memory in a local workstation (for a setting of N be-
tween 2⇤104 to 2⇤105 andm = 100 to 400). We use two ways
to simulate MCLA in distributed settings: (1) every node
sends its data to the root, and the root performs MCLA on
the global dataset; (2) each node performs MCLA on the
data from its children and itself, reports the result to its
parent, and finally the root obtains an aggregated solution.

Analysis. From Fig. 7, we can see that the clustering error
does not change too much when the dimension is reduced,
while the di↵erence in communication cost is large, which
implies that the benefit from dimension reduction is signifi-
cant while the sacrifice in accuracy is neglectable. Further-
more, the di↵erence in communication cost with respect to
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Figure 7: (a) and (b) are for Plants dataset; (c) and (d) are for US Census dataset.

di↵erent values of d is small, because due to Theorem 4, the
communication complexity is dominated by the last term
kNm logm especially when N is much larger than k and m.
Comparing to baselines by global and aggregated MCLA,
our clustering errors are much lower; aggregated MCLA has
similar communication cost to ours with dimension reduc-
tion since it also needs to transmit the data along the tree
once, which is roughly kNm logm; global MCLA has much
larger communication cost since it needs to transmit all the
data to the root, and the communication complexity could
be as worse as quadratic in m.

6. CONCLUSION
In this paper, we present an e�cient distributed ensemble

clustering framework for networked sensing systems where
an object is usually observed by multiple sensors. Specifi-
cally, we first propose a novel formulation for ensemble clus-
tering based on some new geometric insights, and then give
an e�cient algorithm with quality guarantee. We also show
how to extend our approach to distributed settings, and re-
duce the communication complexity through dimension re-
duction. Experiments on benchmark datasets suggest that
our approach outperforms baselines on both clustering ac-
curacy and communication cost.
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APPENDIX
A. CLUSTERING ERROR FUNCTION �

Suppose that C = {S
1

, · · · , Sk} is the ground truth clus-
tering for the set of objects A, and C0 = {S0

1

, · · · , S0
k} is an-

other clustering result. We define the clustering error made
by C0 as the total number of wrongly clustered objects over
|A|, i.e.,

Err(C0
) = min

�

1

|A|

kX

j=1

|S0
j \ S�(j)|, (30)

where � is any bijection from [k] to [k].
Claim. For any �,

Pk
j=1

|S0
j \S�(j)| = 1

2

Pk
j=1

(|S0
j \S�(j)|+

|S�(j) \ S0
j |).

Proof. Since each object fromA appears in one and only
one cluster of C and C0, for any 1  j

1

6= j
2

 k,

(S

0
j
1

\ S�(j
1

)

) \ (S

0
j
2

\ S�(j
2

)

) = ; (31)

(S�(j
1

)

\ S

0
j
1

) \ (S�(j
2

)

\ S

0
j
2

) = ;. (32)

Thus
Pk

j=1

|S0
j \ S�(j)| = | [k

j=1

S0
j \ S�(j)| and

Pk
j=1

(|S0
j \

S�(j)| + |S�(j) \ S0
j |) = | [k

j=1

S0
j \ S�(j)| + | [k

j=1

S�(j) \ S0
j |.

Also, for any a 2 S0
j \ S�(j), there must exist some j0 6= j,

such that a 2 S�(j0) \ S0
j0 , and vice versa. This means that

[k
j=1

S0
j \ S�(j) = [k

j=1

S�(j) \ S0
j . Hence,

Pk
j=1

|S0
j \ S�(j)| =

1

2

Pk
j=1

(|S0
j\S�(j)|+|S�(j)\S0

j |). The proof is completed.

According to the definition for � and the above claim, we
have �(C, C0) = 2|A|Err(C0).

B. PROOF OF LEMMA 6
Lemma 6 reveals the relationship between the total pair-

wise squared distances and the variance, and can be easily
obtained by the following calculation.

X

x2X

X

y2X
||x� y||2

=

X

x2X

X

y2X
||x� o+ o� y||2

=

X

x2X

X

y2X
(||x� o||2 + 2 < x� o, o� y > +||o� y||2)

= |X |
X

x2X
||x� o||2 + |X |

X

y2X
||y � o||2

= 2|X |
X

x2X
||x� o||2, (33)

where < x�o, o�y > denotes the inner product of x�o and
o� y, and the third equality follows from the fact

P
y2X <

x� o, o� y >=< x� o,
P

y2X (o� y) >= 0.
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