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Abstract

In typical studies of node grouping detection, the group-
ing is presumed to have a certain type of correlation
with the network structure (e.g., densely connected
groups of nodes that are loosely connected in between).
People have defined different fitness measures (modular-
ity, conductance, etc.) to quantify such correlation, and
group the nodes by optimizing a certain fitness measure.
However, a particular grouping with desired semantics,
as the target of the detection, is not promised to be
detectable by each measure. We study a fundamen-
tal problem in the process of node grouping discovery:
Given a particular grouping in a network, whether and
to what extent it can be discovered with a given fitness
measure. We propose two approaches of testing the de-
tectability, namely ranking-based and correlation-based
randomization tests. Our methods are evaluated on
both synthetic and real datasets, which shows the pro-
posed methods can effectively predict the detectability
of groupings of various types, and support explorative
process of node grouping discovery.

1 Introduction

Node grouping is an important problem in network anal-
ysis. People partition nodes into different groups based
on their linkage patterns, and often find the partitions
are meaningful in semantic, functional or social perspec-
tives. Every grouping detection algorithm is based
on some underlying assumptions of the correlation be-
tween the network structure and the grouping to be
detected. As one example, most community detection
algorithms assume high edge connectivity within each
group and low edge connectivity between groups [10].
Typically, detectors define a fitness measure such as
modularity [18] and conductance [12, 15] to quantify
such correlation, and then optimize the fitness measure
to detect the grouping. However, a particular group-
ing with certain semantics, which we referred to as the
target grouping, is not promised to be detectable un-
der every fitness measure. Although a large amount
of grouping detection algorithms have been developed,

a fundamental problem on the other hand has hardly
been studied: whether and to what extent a particular
grouping in the network can be recovered by a certain
fitness measure.

Study of this problem will support the knowledge
discovery process in network analysis in many ways,
including (i) finding appropriate fitness measures for
different grouping views (e.g., grouping researchers by
their research areas, affiliation or roles); and (ii) when
heterogeneous types of links are present, finding rel-
evant relations for a specific detection task. A pre-
validation of the fitness measures saves effort from at-
tempts of designing algorithms with mismatched as-
sumptions and avoids improper choices of evaluation
benchmark. When exploring new fitness measures or
tackling with new detection tasks, one can also test the
detectability before substantial development of new al-
gorithms.

Prior work and limitations: To the best of our
knowledge, the (un)detectability of node grouping is
rarely studied. Some theoretical work is along this line,
yet focused on analysis to specific random graph models
as well as special detection algorithms [7, 21, 22]. We
aim for a general algorithmic test that can be applied
to real networks and groupings of generic types.

Main idea of our recipe: We propose two ap-
proaches for performing such detectability test, namely
ranking-based and correlation-based tests. The first is
to compare the fitness of the target grouping to all other
possible groupings under the given measures. The sec-
ond is to test if a grouping with higher fitness measure
is closer to the target grouping. The main challenge of
these tests is how to efficiently and accurately assess the
ranking of the target grouping among all groupings, and
the correlation between a group’s fitness and proximity
to target grouping. For both tests, complete enumera-
tion of all groupings is not feasible for large networks.
Therefore, we propose to use a randomization method,
a.k.a. resampling technique, to sample a much smaller
number of random groupings, and estimate the ranking-
based and correlation-based statistics for the detectabil-



ity tests.

Contributions:

e We propose two different approaches of quantifying
detectability and several detectability statistics. We
find that the two approaches are complementary, yet
correlation-based test supports analysis in finer granu-
larity than ranking-based test in general.

e We design one resampling algorithm for the ranking-
based test, and three alternative algorithms for the
correlation-based test, for comparative study.

e We apply our approach in both synthetic and real net-
works, demonstrating the success of our detectability
test: 1) without relying on any inference algorithm, we
can predict the detectability of known groupings with
given measures; and ii) when some grouping is unde-
tectable by the known fitness measures, we can try new
measures and test the detectability with them before
developing inference algorithms.

2 Detectability Test of Node Grouping

In this section, we formally define the problem of
Detectability Test of Node Grouping (DeTeNG). We use
the two terms grouping and partition interchangeably as
we focus on non-overlapped grouping in this work.

Let N = (V, E) be an undirected network compris-
ing a set V={vy,vs,...,v,} of nodes together with a set
E = {(vi,vj);; } of edges, which are 2-element subsets
of V. A k-way partition (grouping) is a function defined
on the node set V of network N, i.e., g(v) € {1,2,...,k}
for v € V. It divides the node set into k disjoint subsets,
Ci = {vlg(v) = i},i = 1,...,k, each named a group.
Partition size vector is defined to be s = (s{,...,s7),
where s? = |C;].

A target partition is often assumed to satisfy a
certain criterion. Such a criterion can be formulated
as a fitness measure.

DEFINITION 1. (PARTITION FITNESS MEASURE)

A partition fitness measure is defined to be a real-
valued function on a partition g over a network N:
h(N,g) = R. It measures the fitness of g over N under
a certain criterion, so that a partition which fits the
criterion better in N receives a higher assessment.

Without loss of generality, we assume one would maxi-
mize such measures.

With a given fitness measure, one can design an
optimization algorithm (a.k.a. inference algorithm) to
find a grouping with optimal fitness score. However,
a grouping with high fitness score may not always be
highly similar to the target grouping. To prevent waste
of effort due to mismatched fitness measures, we propose
the idea of detectability test.

DEFINITION 2. (DETECTABILITY TEST) A detectabil-
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Figure 1: Detectability of the same two data mining
research groups (shown in green & red colors) in two
different networks. The target grouping is detectable in
network (b), but undetectable in (a) under the specific fitness
measure of 2 minus normalized cut. For network (a), many
other partitions qualify the criterion equally well or better;
whereas for network (b), a random partition does not quite
fit the criterion.

ity test of node grouping takes a target partition go over
a network N, and a fitness measure h(N,g) as input,
and predicts whether an inference algorithm optimizing
h over g can detect gy (or groupings similar to go ), with-
out knowing or running the algorithm.

In a practical point of view, the network IV can be a rep-
resentative example from a family of similar networks,
such that we can obtain the target grouping for N. For
example, in the co-author network, we can label some
research groups and extract a subnetwork with the la-
beled nodes. Figure 1 exhibits two instances of our De-
TeNG problem with the same input of target grouping
and fitness measures, but in different networks. A
good detectability test should predict that the grouping
is less detectable in graph (a) than in graph (b).

Our detectability test does not take any inference
algorithm as input, and thus the test can be conducted
independently of inference algorithm design. The rea-
son for the separation is two-folds: i) for most fitness
measures which already have inference algorithms, the
algorithms can only perform approximate or heuristic
optimization, which may introduce bias; and ii) for new
fitness measures which have no optimization algorithm
yet, we want to evaluate its goodness of fit before de-
voting effort to the optimization problem. We propose
two different approaches of framing the problem in Sec-
tion 2.1.



2.1 Ranking-based and correlation-based tests
The first approach of quantifying the detectability is
to examine the rank of the target grouping among all
the groupings ordered by their fitness. Previous work
has found that many fitness measures are significantly
influenced by the group size [10, 15]. For sake of clarity,
we only consider all the groupings with the same size
vector as gp, in order to remove the size effect. An
ideal fitness measure should rank the target grouping
topmost, so that an inference algorithm can perfectly
detect the target grouping by optimizing the fitness
measure. If the target grouping is ranked low, one is
unlikely to detect the target grouping by searching for
highly ranked groupings. With that intuition, we have
the following definition of ranking-based detectability.

DEFINITION 3. (RANKING-BASED DETECTABILITY)
Given a target partition gy on a network N, and a
fitness measure h(N,g), the ranking-based detectability
DetRank(N, go, h) is defined as the fraction of all
groupings on mnetwork N with lower fitness measure
than go.

This definition has another explanation in statistical
language: the ranking characterizes how significantly
go can be distinguished from a random partition g un-
der the measure h. A high ranking-based detectability
is equivalent to a low probability of observing a ran-
dom partition with equal or higher fitness score, i.e.,
P(h(N,g) > h(N, go)).

The second approach is to examine whether the fit-
ness measure and the proximity to the target grouping
of an arbitrary grouping is positively correlated. The
idea is that if a fitness measure is good for detecting a
certain target grouping, a grouping with a higher fitness
measure should tend to be similar to the target group-
ing, so that the better an inference algorithm achieves
in optimizing the measure, the closer it approaches to
the target grouping. Let Q(g1, g2) be a function to mea-
sure the proximity between two groupings g; and go, we
have:

DEFINITION 4. (CORRELATION-BASED DETECTABILITY)
Given a target partition gy on a network N, and a fit-
ness measure h(N, g), the correlation-based detectability
DetCorr(N, go,h) is defined as the correlation between
the fitness measure h(N,-) and the proximity to the
target grouping (go,-) for all groupings g on N.

The particular definition of the proximity and the cor-
relation will be discussed in Section 4. Intuitively,
correlation-based detectability involves more compre-
hensive analysis than rank-based detectability: the
ranking only compares the target grouping with the
other candidate groupings, whereas the correlation also
compares among those groupings.

In the following two sections, we will present our
approaches to these two kinds of tests respectively.

3 Ranking-based Test

We want to test whether the target grouping is ranked
in top a% among all possible groupings, where « is a
small threshold such as 0.1. The ranking of the target
grouping can be estimated as:

DetRank(N, go,h) =1 — P(h(N,g) > h(N, go))

So testing if DetRank(N, go,h) > 1 — a% is equivalent
to testing if P(h(N,g) > h(N,g0)) =p < a%.

In order to calculate the p-value that a random
grouping has higher fitness measure than the target
grouping, we propose to use a randomization test. The
idea is to generate many replicates of the original data
with rearranged labels on the observed data points, and
estimate the distribution of a statisticial measure with
these samples. The advantage is that it does not rely on
a specific form of the data distribution, which satisfies
our requirement for the general applicability.

In our scenario, we can permute the group labels
go(v) while maintaining the size of each group. Since
there are too many possible partitions over the network
to allow for complete enumeration, we resort to an
asymptotically equivalent permutation test by Monte
Carlo sampling [20]. Tt takes a small fraction of the
total number of possible permutations as samples.

Algorithm 1: UniRank
Input: Network N = (V, E), k-way target grouping
go, fitness measure h(N, g), size of sample M
Output: ranking-based detectability

Initialize x < 0;
// # of samples with better fitness
Compute ho < h(N, go);
for iter = 1..M do
g < a grouping by randomly permuting the
labels of go;
Evaluate h(N, g);
if h(N,g) > ho then
‘ T+—x+ 1
end
end
return DetRank(N,go,h) =1—x/M ;

We name our algorithm UniRank as it estimates
ranking via uniform sampling. It is illustrated in
Algorithm 1: M samples are uniformly drawn from
all possible partitions, and their fitness measures are
calculated and compared to the fitness measure hg for
the target grouping go. This process can be explained
as a Bernoulli trial with success probability p, where the



success is defined to be observing a partition with equal
or higher fitness measure than hg. Thus the probability
of x successes in the M trials P(z) follows a binomial
distribution. The binomial confidence interval of p can
be calculated by Clopper-Pearson method [6].

4 Correlation-based Test

In this test, we study the correlation between two
variables: the fitness score h(N, g) of a grouping g, and
the proximity Q(go, g) of g to the target grouping go.

There exist several proximity measures that can
quantify the proximity of the partition identified by an
algorithm to the target grouping [10]. In this paper,
we pick the “accuracy” of cluster matching, which aims
at finding the largest overlaps between pairs of clusters
in different partitions:

g0.9) = Ace(gn.) = 7 max {ilao(5) = w(o(i)}]
where m ranges over all mappings from the grouping
indices of g to go. One can alter the measure towards
the need of more strict or loose notion of “detectable”.

For the same reason mentioned in Section 3, we re-
sort to resampling technique to estimate the correla-
tion. For each sampled grouping g;, we calculate the
fitness score h; = h(N, g;) and the proximity to target
grouping Q; = Q(go, g;) to get a set of paired variables
(hi, ;). Then we use correlation coefficients to mea-
sure correlation-based detectability. Below we present
three different methods of sampling and computing the
correlation coeflicients.

4.1 A baseline method
As a baseline method, we modify the Monte Carlo
sampling algorithm described in Section 3: instead of
counting the number of groupings with higher fitness
score than the target grouping, we use the samples to
estimate the correlation between h(N,-) and Q(go, -).
Two commonly used correlation measures in statis-
tics are Pearson’s correlation coefficient and Kendall’s 7
rank correlation coefficient. The former is salient only
to a linear relationship between two variables and the
latter is free of that assumption. In our case, there
could be a nonlinear relationship between fitness and
proximity. Hence we choose Kendall’s 7 rank correla-
tion to measure the extent to which, as the fitness score

h increases, the proximity {2 tends to increase.
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where

ST ={(i,4),i < jl(hi — hy)( — ;) > 0}

is the set of concordant pairs, and

§ = {(l7])77’ <j|(hz - h])(QZ - QJ) < O}
U{(i,7)hs = hy, 0 < Qj}

is the set of discordant pairs. Note that we customize
the Kendall’s rank correlation according to our need: we
count two groupings with the same fitness but different
proximity to the target grouping as a discordant pair
because such a pair increases the uncertainty of finding
the grouping closer to the target grouping.

Finally, we predict the detectability by comparing
the chosen coeflicient with a threshold 8. We name this
baseline approach UniCorr as it uses uniform sampling
to estimate the correlation.

4.2 Weighted correlation

The baseline method employs traditional correlation
coefficients in statistics but ignores an important aspect
of our problem. We assume an inference algorithm will
find groupings with high fitness score, and a grouping
with low or medium fitness score is unlikely to be chosen.
Thus, we should focus more on evaluating the ability
of the fitness measure in differentiating groupings near
the high end, not the whole space. However, the classic
Kendall’s rank correlation coefficient defined in Eq. (4.1)
is based on the whole spectrum of the fitness measure
and it gives every sample equal importance.

To address that issue, we propose to weight the sam-
ples according to their fitness score when calculating the
correlation. The higher fitness score a grouping has, the
larger weight it should receive. A common functional
form for these weights is exponential weighting.

W)

(4.2) .

w(g,t) = exp (

where t is a positive constant, and % is called the
exponential decay factor. We will emphasize more of
the samples with high fitness score when ¢ is smaller.
We choose exponential function to decrease the weight
drastically when fitness decreases, but other types of
weighting can be used as well.

The weight of a pair is the product of the weight
of the paired samples, such that more heavily weighted
samples will contribute more to both concordant and
discordant pairs. The weighted correlation coefficient
Tw 1s computed as:

(4.3)
Z(i,j)es+ w(gi)w(g;) — E(i,j)es— w(g:)w(g;)

Z(m‘)ger w(g;)w(g;) + Z(i,j)eS* w(gi)w(g;)

Tw =

To compute the weighted correlation, we can use the
above formula based on the samples from the same



Monte Carlo algorithm. We name this approach Uni-
WCorr.

4.3 Weighted sampling One potential problem
with UniWCorr is that it samples groupings uniformly,
regardless of their fitness score, from a huge space of
candidate groupings. However, it is usually the case
that the samples with high fitness score only take a small
portion of the whole set. Consequently, it requires the
sample size M to be extremely large in order to ob-
tain a sufficient number of samples with high fitness for
accurate correlation estimation.

To achieve a better estimate with affordable sam-
pling complexity, we propose a sampling method based
on the Metropolis-Hastings algorithm [5]: we design
an auxiliary distribution over all the candidate group-
ings according to Eq.(4.2), such that the chance for
each grouping to be sampled is proportional to its
weight. Then, applying Eq.(4.1) with these samples,
we can directly obtain the weighted correlation. This
is an asymptotically equivalent way of estimating the
weighted correlation.

In order to efficiently collect the samples and avoid
being trapped by some low probability barriers [16], we
appeal to the parallel tempering method for sampling
[9] (we refer to it as PT sampling). In PT sampling, in-
stead of only sampling from one auxiliary distribution
(specified by the decay factor %), we simulate T replicas
of the original distribution of interest, with each replica
associating a different setting of ¢ (referred to as tem-
perature). As we have discussed in Section 4.2, higher
values of t generally lead us to explore large volumes
of grouping space with less emphasis on the samples of
high fitness scores; whereas lower values of ¢ promise
precise sampling in a local region of high fitness scores,
but may trap the samples in local fitness score maxi-
mum. PT sampling achieves good sampling results by
allowing the auxiliary distributions with different decay
factors to exchange complete configurations, so that the
distribution with lower temperatures can access a rep-
resentative set of grouping space.

The algorithm of our PT sampling method for es-
timating weighted correlation (PTWCorr) is illustrated
in Algorithm 2. The target decay factor is %, where 7
is a selected temperature in the input set of tempera-
tures. The example exchange rate y controls how often
we swap samples across temperatures. The new group-
ing candidate within each temperature is proposed by
a symmetric proposal of randomly swapping the group
labels of two nodes from different groups.

The key to the success of PT Sampling is to
find an appropriate temperature setting. Kofke [13]
showed that a geometric progression of temperatures

Algorithm 2: PTWCorr
Input: Network N = (V| E), k-way target grouping
go, fitness measure h(N, g), size of samples
M, set of temperatures {t1,...,tr}, sample
exchange rate ~, and target decay factor
index I, 1 <I<T.
Output: correlation-based detectability
while n < M do
if Unif(0,1) > ~ then
for j=1...7T do
Propose a new grouping ¢g™°";

. . w(g™e™ t;)

< Wl t5)
if Unif(0,1)< w0 ) then
()

Int1 < gnew§ ,
else gfﬂrl — gsl]);
hglj-?-l < h(N, QELJ-?J);

95121 + Q(go, 97(1]+)1)§

end
n<+<n+1;

end

else
Draw j from Unif(1,2,...,T —1);
. . w(gd T ) w(gl tj41)
if Unif(0,1)< w(gﬁf),tj);(gﬁf“),tjﬂ) then
swap(g, g7 ™);

end

end

return 7 according to Eq. (4.1) using A" and QP

(t-til = const) results in equal acceptance ratios and
k2
good performance.

5 Related Work

The most relevant work we found is in theoretical
computer science and physics literatures. Condon and
Karp studied the planted partitioning problem [7]. The
goal is to discover a special built-in cluster structure:
every group has an equal size and a pair of nodes
are linked with probability p;, if they belong to the
same group, and with p,,: < pin otherwise. They
proved that a cluster can be recovered correctly by a
special algorithm with high probability when p,.: — pin
is sufficiently large. Similar bounds were provided
by Carson and Impagliazzo [4], and Onsjo et al. [21].
Reichardt and Leone [22] considered the sparse networks
where these bounds are meaningless since both p,,; and
Pin scale with the network size. The common limitation
for these studies is they only considered special networks
generated by certain models with a special detection
algorithm or objective.

In the next, we review other related work in group-
ing detection, and in randomization test respectively.



5.1 Grouping detection in networks

A multitude of methodologies have been proposed for
community detection or graph clustering problem in
network analysis (see [24] and [10] for comprehensive
surveys).  Most of them had consistent assumptions
about what constitutes a “good” partition, and some
tried to optimize certain partition quality measures,
e.g., normalized graph cut [25, 19] and modularity [18,
26] with approximation methods. There has been some
comparative analysis of graph clustering techniques on
benchmark graphs [8, 14], or real networks [15]. Those
studies provide evidence for a universal limit of cluster
detectability across a variety of algorithms.

The existence of different types of groupings has
received more attentions recently, and a number of
recent studies pursued generic methods to discover
broad types of groupings [17, 3]. A very recent study by
Abrahao et al. [1] reported that communities extracted
by different algorithms form separable structural classes
and are often different from real communities. This
makes it necessary to study in what case the real
community can be recovered by a certain criterion. Our
work can be used as a statistical validation tool when
one explores new detection criteria before substantial
development of detection algorithms.

5.2 Randomization test

Randomization test has been successfully applied in the
network analysis tasks (e.g., [2]). The main benefit is
that one is released from the difficult, and sometimes
impossible, task of defining an asymptotic distribution
for the test statistics. Rosvall and Bergstrom [23]
performed permutation test on robustness of community
structure in networks. The major difference between
their test and ours is that they permuted the positions
of the edges and compared the optimal division of
the perturbed network to the optimal division of the
original network; we keep the original network structure
unchanged and compare other possible partitions in the
network against the target one.

6 Empirical Evaluation

This section consists of three parts. First, we introduce
the fitness measures used in our test. Second, we
present the effectiveness of our detectability test in
benchmark datasets. Third, we showcase applications
of the detectability test in real-world networks.

6.1 Fitness measures

Let d; be the summation of node degree in C;; m;; the
number of edges with one end in C; and the other end
in Cj, mi; = [{(u,v)lu € C;,v € Cj}|; m;; the number
of edges with one end in C; and the other end not in

Cj, my; = {(u,v)|u € Ci,v ¢ C;}|; and p;; the density

of links between C; and Cj, p;j; = #\CZI if i # j, and
A Mg

Pi = el -7z

We study the following fitness measures in this
paper since their variations are widely employed in the
literature.

e Modularity (+): ﬁzfﬂ(m“ — E(my;)), where

E(my;) = IdT;I is the expected number of edges between
the nodes in C; in a random graph with the same node
degree sequence [18].
e Conductance® (+): %Zle .
e Modularity (—): 1— modularity (+).
e Conductance (—): 1— conductance (+).
We use + (resp., —) to indicate if high (resp., low)
conductance or modularity corresponds to high fitness.
In addition, we coin a fitness measure which has no
known inference algorithm, but has potential usage for
grouping detection. It is based on the comparison of
link density between different group pairs. We use an
ordered quadruple of the group index ¢ = (¢1, 92, ¢3, q4)
to represent a desired comparison pq, ¢, > Pgs.qe- A
set of such quadruples () characterizes all the desirable
density comparison for a grouping. For a particular
grouping g, QT (N, g) = {q € Qlpg,,q2 > Pys,qu} is the
set of satisfied quadruples, and Q™ (N, g) = Q\Q 1 (N, g)
is the rest. And our measure GMoDD is defined as:
(6.4)

1
i
quQﬂN,g)(qu,qz — Pgs,qa) 12T 0l

GMoDDg(N,g) = Q- (V9]

GMoDD is the Geometric Mean of the Density Dif-
ference of every density pair in the satisfied quadruple
set, penalized by the number of violated quadruples.
By varying @ one can gear the fitness measure towards
different types of groupings. For example, by making
Q = {(i,i,4,5)|i # j}, we require that every group has
denser links to itself than to other groups.

6.2 Test on benchmark

The goal of this evaluation is to validate the capability
of the proposed methods on the networks with known
detectability of node partitions. We use LFR bench-
mark graphs for the community detection task.  The
distributions of node degree and community size fol-
low the power law in LFR benchmark [14]. The parti-
tion’s detectability is controlled by a mixing parameter
(0 < p < 1): each vertex shares a fraction 1 — p of
its edges with the other vertices of its community and
a fraction p with the vertices of the other communities.

TThere are different definitions of conductance. We adopt the

one in [15]
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Figure 2: Scatter plot of fitness measure and proximity to
target grouping for samples under uniform sampling and
PT Sampling. Uniform sampling obtains samples with
medium fitness which is not discriminative of detectable and
undetectable cases.

We evaluate the four algorithms described in Sec-
tions 3 and 4: UniRank (ranking-based test); UniCorr
(unweighted correlation via uniform sampling); Uni-
WCorr (weighted correlation via uniform sampling);
PTWCorr (weighted correlation via parallel temper-
ing). Although we have several parameters in our test-
ing framework, they can be decided by some princi-
ple. If there is no further specification, we use 1 —
a% = 99.9%, B = 0.1 as the threshold for ranking-based
and correlation-based detectability respectively, and the
choice will be discussed in Section 6.2.1. For the sam-
pling algorithms, the number of samples M = 20K.
With confidence analysis in Section 6.2.2, this number
of M is sufficient for our experiments. The sample ex-
change rate v = 0.15 in PT Sampling, which is not
sensitive to it. We use the following temperature sched-
ule: {1,0.4,0.2,0.1,0.04,0.02,0.01,...}. The number of
temperatures T' = 20, and the target temperature ¢; is
selected automatically such that we have sufficient sam-
ples with fitness score no worse than the highest score
by 10% under ¢;. So we do not need to tune ¢t; manually.

6.2.1 Effectiveness
We generate 100 networks, each with 100 nodes in 2 to
4 clusters, from LFR Benchmark for testing purpose.
The node degree follows the power law distribution
with expectation 35 and maximum value 50. The
mixing parameter p in LFR is varied from 0.3 to
0.6. Previous theoretical analysis indicated the
transition between undetectable and detectable phases
begins from somewhere between p = 0.4 and g =
0.5 [22]. We perform our detectability test with the
fitness measure conductance (—) to see whether it can
produce consistent results.

Table 1 summarizes the result of using conductance

as the fitness measure. The result with modularity is
similar. From Table 1, we find that all the testing
methods except UniWCorr roughly identify the tran-
sition from detectable to undetectable phase, albeit in
different extent.

e UniRank performs well in detectable cases (u < 0.4).
However, it is not very informative around the transition
point, and misjudges 20% undetectable groupings. The
reason is that the target grouping may indeed rank
very high, say top 0.1% among all groupings, but the
ranking does not tell anything about the accuracy of
those top 0.1% groupings. Another disadvantage is that
the threshold 1—a% must be set very high (above 0.999)
to reduce false “detectable” predictions. It requires
a large number of samples for confident estimates of
whether the ranking is above threshold.

e UniCorr produces correlation coefficients in a narrow
range of mean (—0.09 to 0.36). Though the mean of
the correlation efficients for p from 0.3 to 0.6 roughly
has a decreasing trend, the variance is high and they
do not separate detectable and undetectable cases well.
For example, it produces a negative score —0.0012 for
a detectable graph with g = 0.4, while both UniRank
and PTWCorr predict 1. From Figure 2 we can see the
reason. The uniform sampling obtains most samples
with medium fitness score, whereas the detectable and
undetectable networks are mainly distinguished by the
samples in the high fitness region.

e UniWCorr produces even worse results, with many
negative correlation coefficients even for undetectable
networks. The reason is the same as we analyzed above:
the uniform sampling misses most samples with high
fitness score, and assigns inappropriate high weight to
samples with medium or low fitness.

e PTWCorr outputs high correlation (mostly 1.0) when
w = 03 and pu = 04, low correlation for p = 0.5
with relatively larger variance, and mostly negative
correlation coefficient for u = 0.6. The large variance
for p = 0.5 is due to the fact that 0.5 is close to the
transition point and some networks with © = 0.5 happen
to present weak detectability because of randomness
in the graph generation. Therefore, it reveals more
information than UniRank when a network is neither
strongly detectable nor strongly undetectable. We
note that the fitness and proximity may present weak
positive correlation in the high fitness region even in
undetectable cases. So the threshold 8 should be set as
a small positive value such as 0.1 instead of 0.

In summary, UniRank is good in detectable
and strongly undetectable cases, and PTWCorr has
strongest capability when it is difficult to determine
the detectability. They both outperform the other two
methods and should be combined to perform a compre-



Table 1: Test on LFR networks. UniRank ranges from 0 to 1, and the other three range from —1 to 1. Higher
value implies more detectable. The left part shows the output mean and deviation, and the right shows the output
range (bold means no overlap with the opposite case). UniRank produces “false detectable”; PTWCorr separates
the detectable and undetectable cases well; and other two methods confuse the two cases.

u 0.3 (detectable) 0.4 (detectable) 0.5 (transition) 0.6 (undetectable) |  detectable undetectable
UniRank 1.000 £ 0.000 1.000 £ 0.000 0.963 £ 0.069 0.226 £ 0.400 [1.000,1.000] [0.000,1.000]
UniCorr 0.175 £0.104 0.171 £ 0.097 0.063 £ 0.060 —0.029 £ 0.053 [—0.001,0.363] [—0.094, 0.075]

UniWCorr 0.093 £0.821 0.049 £ 0.050 —0.111 £0.471 —0.082 £0.534 [—1.000, 1.000] [—0.940,0.972]
PTWCorr 1.000 £ 0.000 0.998 £ 0.009 0.235 £ 0.446 —0.013 £ 0.089 [0.955,1.000] [-0.117,—0.063]

hensive test.

6.2.2 Efficiency

We analyze the running time of three parts in our
methods: generating samples, computing the fitness
and proximity of each sample, and calculating the
detectability. The first part is linear to the number
of samples M and network size |V|. The second part
depends on the fitness measure to test. For conductance
and modularity, the complexity is linear to M and the
number of edges |E| in the network. The third part
is O(Mlog M) for correlation and O(M) for ranking.
So the overall complexity of UniRank and PTWCorr
are O(M|E|) and O(TM|E| + M log M) respectively.
PTWCorr has to generate T replicas of samples though
eventually only one replica of samples will be used for
correlation computation, so it costs roughly 7' times of
UniRank in order to test with equal number of samples.

The average time for performing UniRank test with
1K samples is 3.15s in LFR networks with 1M edges
on our CentOS server running MATLAB R2011a with
Intel Xeon X5687 3.6GHz and 96GB RAM. And the
confidence interval is below 0.02 for both sampling when
the number of samples is greater than 3K. So the cost
of our algorithms is acceptable. We need to point out
that the fitness measure computation is the dominant
cost in our experiments.

Considering both effectiveness and efficiency, we
suggest a two-stage detectability test in practice: in the
first stage, run UniRank for a quick ranking-based test;
and only if it is asserted as detectable, run PTWCorr
for a slower but more precise test. Failure in either test
suggests undetectability.

6.3 Application

We apply our detectability test in real networks. We
show the application of finding suitable fitness measures
for the following grouping detection task. A grouping is
deemed to be detectable by a fitness measure if it passes
both ranking-based test UniRank and correlation-based
test PTWCorr.

Low h-index
density within group: 0.10%
LR

density between groups: 0.11%

density
between
groups:
0.17%

Medium h-index
density within

density between group: 0.25%

High h-index groups: 0.41%
density within group: 0.75%

Figure 3: Co-author network of 2000 data mining re-
searchers, grouped by their h-indices as high (> 9), medium
(2-8) and low (0-2). In general the links between group (a, b)
are denser than (a, c) if group b has higher indices than c.

We use a co-author network of 2000 data mining
researchers [11]. Instead of grouping them by research
topics, we group them into 3 groups according to their
h-indices: high (group 1), medium (group 2) and low
(group 3). We test the detectability of this grouping by
modularity (+)/(—) and conductance (+)/(—). None
of these four fitness measures can be used to detect the
author groups by h-indices, according to our test. The
reason can be found from the visualization in Figure 3:
it is no longer true that most authors collaborate with
other authors in the same h-index group, neither the
opposite. Instead, authors with lower h-index have a
tendency to collaborate with authors with higher h-
index. With that intuition, we propose to use a new
fitness measure GMoDDg (Eq. (6.4)), and specify
Q = {(,j,i,7+ i = 1,2,3,7 = 1,2}. We perform
detectability test for this measure. As shown in Table 2,
the result is promising and encourages an inference
algorithm for optimizing GMoDDg,.



Table 2: Test on data mining co-author network.
A grouping is predicted to be detectable only if
UniRank > 1—a% = 0.999 and PTWCorr > 8 =0.1.

UniRank PTWCorr Detectability

Modularity (+)  0.931(<) —0.706(<) undetectable

Modularity (—)  0.071(<) —0.006(<) undetectable

Conductance (+) 1.000(>) —0.092(<) undetectable

Conductance (—) 0.986(<)  0.226(>) undetectable
GMoDDg 1.000(>) 0.504(>) detectable

7 Conclusions

In this paper, we study the novel problem of node group-
ing detectability test. Our recipe is based on two condi-
tions for a grouping to be detectable by a fitness mea-
sure: the target grouping must present strong fitness
with the network structure than most other groupings;
and a random grouping that is more similar to the tar-
get grouping should in general have higher fitness score.
The experiments show that our approach enables the
estimation of achievable detection performance a pri-
ori. It provides a tool for validation of known criteria
on new detection tasks and for exploration of new types
of structures when a grouping is undetectable with clas-
sical criteria.
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