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ABSTRACT
The recent proliferation of human-carried mobile devices has
given rise to the crowd sensing systems. However, the sen-
sory data provided by individual participants are usually not
reliable. To identify truthful values from the crowd sensing
data, the topic of truth discovery, whose goal is to estimate
user quality and infer truths through quality-aware data ag-
gregation, has drawn significant attention. Though able to
improve aggregation accuracy, existing truth discovery ap-
proaches fail to take into consideration an important issue in
their design, i.e., the protection of individual users’ private
information. In this paper, we propose a novel cloud-enabled
privacy-preserving truth discovery (PPTD) framework for
crowd sensing systems, which can achieve the protection of
not only users’ sensory data but also their reliability scores
derived by the truth discovery approaches. The key idea
of the proposed framework is to perform weighted aggrega-
tion on users’ encrypted data using homomorphic cryptosys-
tem. In order to deal with large-scale data, we also propose
to parallelize PPTD with MapReduce framework. Through
extensive experiments on not only synthetic data but also
real world crowd sensing systems, we justify the guarantee
of strong privacy and high accuracy of our proposed frame-
work.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy

General Terms
Design, Human Factors, Security
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1. INTRODUCTION
The recent proliferation of increasingly capable and af-

fordable mobile devices (e.g., smartphones, smartwatches,
smartglasses, etc.) packed with a plethora of on-board
sensors (e.g., GPS, accelerometer, compass, camera, etc.)
has given rise to crowd sensing, a newly-emerged sensing
paradigm where the collection of sensory data are out-
sourced to a crowd of users participating in the sens-
ing task. Recently, a large variety of crowd sensing sys-
tems [3–6, 12, 18–21, 28, 39–41, 45] have been developed,
serving a wide spectrum of applications that have signif-
icant impact on our daily lives, including urban sensing,
smart transportation, environment monitoring, localization,
health-care, public opinion analysis, and many others.

However, in crowd sensing applications, the sensory data
provided by individual participants are usually not reliable,
due to various reasons such as poor sensor quality, lack of
sensor calibration, background noise, incomplete views of
observations, and even the intent to deceive. Therefore, the
power of crowd sensing can be unleashed only by properly
aggregating unreliable information from different participat-
ing users who inevitably submit noisy, conflicting and het-
erogeneous data. When aggregating crowd sensing data, it
is essential to capture the difference in the quality of in-
formation among different participating users. Some users
constantly provide truthful and meaningful data while oth-
ers may generate biased or even fake data. In this case,
traditional aggregation methods (e.g., averaging and vot-
ing) that regard all the users equally would not be able to
derive accurate aggregated results.

Therefore, an ideal approach should be able to involve the
probability of a user providing accurate data in the form of
user weight when aggregating sensory data, and make the
aggregated results close to the information provided by re-
liable users. The challenge here, however, is that the user
reliability is usually unknown a priori and should be in-
ferred from collected data. To address this challenge, the
problem of truth discovery [29–32, 34, 35, 44, 47–50], i.e., to
discover truthful facts from unreliable user information, have
recently been widely studied. The common principle shared
in truth discovery approaches is that a particular user will
have higher weight if the data provided by him is closer to
the aggregated results, and a particular user’s data will be
counted more in the aggregation procedure if this user has
a higher weight. A variety of truth discovery approaches
have been proposed to calculate user weight and aggregated
results in a joint manner based on this principle.
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The truth discovery approaches, though having brought
significant improvement to the aggregation accuracy, fail to
take into consideration an important practical issue in the
design of crowd sensing systems, i.e., the protection of user
privacy. In many crowd sensing applications, the final ag-
gregation results can be public and beneficial to the com-
munity or society, but the data from each individual user
may contain private personal information and thus should
be well protected. For example, aggregating health data,
such as treatment outcomes, can lead to better evaluation
of new drugs or medical devices’ effects, but may jeopar-
dize the privacy of participating patients. The geotagging
campaigns can provide accurate and timely localization of
specific objects (e.g., litter, pothole, automated external de-
fibrillator, etc.) by aggregating the reports of participants,
however, at the risk of leaking participants’ sensitive loca-
tion information. Through crowd wisdom, even extremely
difficult questions can be solved via aggregating the answers
of a large crowd. However, personal information of individ-
ual users can be inferred from their answers.

Sometimes, user reliability is another sensitive informa-
tion that should also be protected. On one hand, from user
reliability information, together with his observation values,
the attacker may be able to infer the personal information
of the user, such as major, education level, age, gender, lan-
guage, and even personality. On the other hand, in practical
crowd sensing applications, the participating users usually
trade their data with the system administrator for rewards,
and the leakage of user reliability may lead to malicious ma-
nipulation of data price. For these reasons, in some crowd
sensing applications (such as the aforementioned health data
aggregation, geotagging, and crowd wisdom), user reliability
should be kept private.

Therefore, it is essential to design a privacy-preserving
truth discovery scheme for the crowd sensing applications
where there exists variability in user reliability degrees and
the privacy of users’ data and reliability information is sus-
ceptible to leakage. Towards this end, we propose a cloud-
enabled privacy-preserving truth discovery (PPTD) frame-
work. This framework makes use of homomorphic cryptosys-
tem [8], and can guarantee both high accuracy and strong
privacy. The proposed PPTD framework works as follows.
Each participating user will first send the encrypted sum-
mation of distances between his own observation values and
the estimated aggregated values to the cloud server. Then,
the cloud server updates users’ weights in encrypted form
without decrypting the received distances information, and
sends the updated weight to each user. Next, each user cal-
culates the ciphertexts of weighted data using the received
encrypted weight. Finally, the final results are estimated
by the cloud server based on the ciphertexts received from
users. The advantage of our proposed framework is that it
can accurately calculate the final aggregated results while
protecting the privacy of user data, and in the meanwhile,
the weight information are not disclosed to any party.

Additionally, in order to deal with massive data, we also
design a parallel privacy-preserving truth discovery scheme
using the MapReduce framework [10], and thus the privacy-
preserving truth discovery procedure can be conducted in a
parallel and distributed manner.

In summary, our contributions in this paper are:

• We propose a novel cloud-enabled privacy-preserving
truth discovery framework for crowd sensing systems,

which can accurately aggregate sensory data while pro-
tecting both user observation and user reliability from be-
ing disclosed.

• A parallel extension of PPTD is also designed so that the
truth discovery procedure can be conducted in parallel
when processing large scale crowd sensing data.

• We conduct extensive experiments on both real crowd
sensing systems and synthetic data set. The results vali-
date the claim that our proposed framework can generate
accurate aggregation results while protecting the privacy
of user data and weight.

In the remaining parts of this paper, we first define the
problem in Section 2 and give preliminary in Section 3. Then
the proposed privacy-preserving truth discovery framework
and the parallel mechanism are presented in Section 4. We
analyze the privacy of our proposed framework and discuss
it in Section 5 and 6 respectively. In Section 7, we conduct a
series of experiments to demonstrate the claims given in this
paper. We discuss related work in Section 8 and conclude
the paper in Section 9.

2. PROBLEM DEFINITION
In this section, we describe the problem settings of

our proposed privacy-preserving truth discovery framework.
Our framework contains two different types of crowd sens-
ing parties: cloud server and users. Among them, users
are the crowd participants, who perform sensing tasks with
their mobile devices either voluntarily or for financial in-
centives, and cloud server is a platform which collects user
data and conduct data aggregation. Additionally, we use
objects to represent the entities or questions assigned by the
cloud server and use observation values to denote the sen-
sory readings or answers provided by crowd users. Also, the
true result or answer for each task or question is represented
as ground truth in our problem.

In practical crowd sensing systems, the security threats
mainly come from the parties themselves (i.e., cloud server
and users). For the sake of curiosity or financial purpose, the
cloud server may try to deduce the observation and reliabil-
ity values of each user. On the other hand, each user may
also try to infer the information of other parties. Thus, it is
of paramount importance to preserve the privacy of users’
observation values. Moreover, in order to prevent any party
to maliciously manipulate the data price in the scenarios
where crowd users trade their data with the could server,
we propose to protect the reliability value of each user from
being disclosed to any party (including the user himself).
Certainly, our proposed framework can be easily modified
to make each user’s weight known only to himself, which is
discussed in detail in section 6.

We formally define the problem targeted in this paper as
follows:

Suppose there are K users, denoted as K = {1, 2, · · · ,K},
and a cloud server S that released M objects represented as
M = {1, 2, · · · ,M}. Let xk

m denote the observation value
provided by the k-th user for the m-th object and wk de-
note the weight of the k-th user. Our goal is to let server
S accurately estimate the ground truths {x∗m}Mm=1 for all
the objects based on the information collected from users.
In this procedure, each observation value (i.e., xk

m) should
not be disclosed to any party except the user who provides
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this value (i.e., the k-th user). Also, the weight information
{wk}Kk=1 should not be disclosed to any party in the system.

To solve this problem, we propose a privacy-preserving
truth discovery framework based on homomorphic cryp-
tosystem, which enables the cloud server to conduct truth
discovery on encrypted sensing data so that the private in-
formation could be effectively protected while the ground
truths can be accurately estimated.

3. PRELIMINARY
Since truth discovery and homomorphic encryption tech-

nology are two important components in our proposed
framework, we introduce the concepts and general proce-
dures of them in this section.

3.1 Truth Discovery
Towards the goal of resolving conflicts in multiple noisy

data sources, truth discovery has been widely studied in var-
ious domains. Although there are differences in the ways to
compute user weights and estimate ground truths, the com-
mon procedure of existing truth discovery approaches can
be summarized as follows. A truth discovery algorithm usu-
ally starts with a random guess of ground truths, and then
iteratively conducts weight update and truth update until
convergence.

Weight Update: In this step, we assume the estimated
ground truth of each object is fixed. The basic idea is that
a user’s weight should be assigned a high value if this user
provides data which is close to the estimated ground truths.
Typically, the user weights are calculated as follows:

wk = f(

M∑
m=1

d(xk
m, x∗m)) (1)

where f is a monotonically decreasing function, and d(·) is
the distance function which can measure the difference be-
tween users’ observation values and the estimated ground
truths. In this paper, we adopt the weight calculation func-
tion of CRH [30] as f due to its good practical performance:

wk = log

(∑K
k′=1

∑M
m=1 d(xk′

m, x∗m)∑M
m=1 d(xk

m, x∗m)

)
(2)

The distance function d(·) will be chosen based on the
application scenarios. The proposed framework can han-
dle various applications by plugging different functions. In
this paper, we discuss two example functions for applica-
tions involving continuous or categorical data, the two most
common data types in crowd sensing applications.

For the applications (e.g., environment monitoring) where
the sensory data are continuous (e.g., temperature and hu-
midity), we adopt the following normalized squared distance
function:

d(xk
m, x∗m) =

(xk
m − x∗m)2

stdm
(3)

where stdm is the standard deviation of all observation val-
ues for object m. For the applications (e.g., crowd wisdom)
where the data are categorical (e.g., multiple-choice answer),
there are usually multiple candidate choices, and only one of
them is correct. In this case, we define an observation vector

xk
m = (0, ..., 1

q
, ..., 0)T to denote that user k selects the q-th

choice for object m. We then use the squared distance func-
tion to measure the difference between observation vector
xk
m and the truth vector x∗m:

d(xk
m, x∗m) = (xk

m − x∗m)T (xk
m − x∗m) (4)

Truth Update: In this step, we assume the weight of
each user is fixed. Then we can estimate the ground truth
for the m-th object as

x∗m ←
∑K

k=1 wk · xk
m∑K

k=1 wk

(5)

For continuous data, x∗m represents the estimated ground
truth value. But for categorical data, x∗m is actually a proba-
bility vector in which each element represents the probability
of a particular choice being the truth. The final estimation
should be the choice with the largest probability in vector
x∗m.

The general truth discovery procedure can be described by
Algorithm 1. The algorithm starts with randomly guessing
ground truth for each object, then iteratively updates users’
weights and estimated ground truths until some convergence
criterion is satisfied. Usually, the convergence criterion is set
depending on the requirements of specific applications. For
example, it can be a threshold of the change in the estimated
ground truths in two consecutive iterations.

Algorithm 1: Truth Discovery Algorithm

Input: Observation values from K users: {xk
m}

M,K
m,k=1

Output: Estimated ground truths for M objects:
{x∗m}Mm=1

1 Randomly initialize the ground truth for each object;
2 repeat
3 for each user k do
4 Update weight based on estimated ground truths

(e.g., Eqn. (2));
5 end
6 for each object m do
7 Update the estimated ground truth based on

current weights (e.g., Eqn. (5));
8 end

9 until Convergence criterion is satisfied ;

10 return The estimated ground truths {x∗m}Mm=1;

3.2 Cryptographic Tools

3.2.1 Homomorphic Cryptographic Scheme
In our proposed privacy-preserving truth discovery frame-

work, an additive homomorphic asymmetric cryptosystem is
adopted. As widely known, there are two types of keys in
the asymmetric cryptosystem: public key pk and private key
sk. The public key is used to encrypt plaintext and the pri-
vate key is used to decrypt the ciphertext. Considering a
plaintext m ∈ Zn, where n is a large positive integer and Zn

is the set of integers modulo n, we denote the encryption of
m as Epk(m). If a cryptographic scheme is said to be addi-
tive homomorphic, there should be two operators ⊕ and ⊗
which satisfy the following properties:

Epk(m1 + m2) = Epk(m1)⊕ Epk(m2) (6)

Epk(a ·m1) = a⊗ Epk(m1) (7)
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where m1, m2 are the plaintexts that need to be encrypted
and a is a constant.

Based on the above properties, we can directly calculate
the encrypted sum of plaintexts from the encryptions of
them by conducting operators ⊕ or ⊗.

3.2.2 Threshold Paillier Cryptosystem
Although there are several additive homomorphic cryp-

tographic schemes, we use the threshold variant of Paillier
scheme [9] in our framework, because it not only has addi-
tive homomorphic properties but also satisfies the design of
a threshold cryptosystem, both of which allow us to conduct
secure summation on the data collected from crowd users.

In this cryptosystem, an user can encrypt the plaintext
m ∈ Zn with the public key pk = (g, n) as

c = Epk(m) = gmrnmod n2 (8)

where r ∈ Z∗n (Z∗n denotes the multiplicative group of invert-
ible elements of Zn) is selected randomly and privately by
this user. According to Equation (6), (7) and (8), the ho-
momorphic properties of this cryptosystem can be described
as

Epk(m1 + m2) = Epk(m1) · Epk(m2)

= gm1+m2(r1r2)nmod n2
(9)

Epk(a ·m1) = Epk(m1)a = gam1r1
anmod n2 (10)

where m1,m2 are the plaintexts which need to be encrypted,
and r1, r2 ∈ Z∗n are the private randoms and a is a constant.

In this paper, the (p, t)-threshold Paillier cryptosystem is
adopted, in which the private key sk is divided (denoted as
sk1, sk2, · · · , skp) and distributed to p parties. Any single
party doesn’t have the complete private key. If one party
wants to accurately decrypt ciphertext c, it has to cooper-
ate with at least t − 1 other parties. So in the decryption
step, each party i(1 ≤ i ≤ p) needs to calculate the partial
decryption ci of c with private key ski as

ci = c2∆ski (11)

where ∆ = p!. Then based on the combining algorithm
in [9], at least t partial decryptions can be combined together
to get the plaintext m.

4. PRIVACY-PRESERVING TRUTH DIS-
COVERY

In this section, we discuss the details of our novel privacy-
preserving truth discovery (PPTD) framework.

4.1 PPTD Overview
Figure 1 shows the framework of PPTD in crowd sensing

systems. Before the truth discovery procedure, we assume
a semantically secure (p, t)-threshold Paillier cryptosystem
has been given (e.g., established by a trusted key manage-
ment center). Here p is the number of parties including both
the cloud server and users, and t is the minimum number
of parties needed to complete the decryption. Thus, each
party in this framework has known the public encryption
key pk = (g, n), while the matching private decryption key
has been divided and distributed to all parties (i.e., party i
has got his private key share ski).

Figure 1: Privacy-preserving truth discovery frame-
work

As shown in Fig. 1, after the objects are assigned by the
cloud server, the PPTD parties will iteratively conduct the
following two phases:

Phase 1: Secure Weight Update. In this phase, each
user firstly calculates the distances between his observation
values and the estimated ground truths provided by the
cloud server according to the distance functions, then en-
crypts the distance information and submits the ciphertexts
to the cloud server. After receiving the ciphertexts from all
users, the cloud server securely updates the weight in en-
crypted form for each user. Then the ciphertext of updated
weight is sent to each corresponding user.

Phase 2: Secure Truth Estimation. Based on the en-
crypted weight received from the cloud server, each user cal-
culates the ciphertexts of weighted observation values with-
out decrypting the weight, and then submits them to the
cloud server. When the cloud server receives all the cipher-
texts of weighted observation values from crowd users, it is
able to estimate the ground truth for each object.

The above two phases start with a random initialization
of the ground truth for each object, and are then iteratively
conducted until convergence. Throughout the PPTD pro-
cedure, all the operations are conducted on encrypted data.
Thus, it is ensured that the observation values of each user
are known only to himself and the user weights are not dis-
closed to any party in the crowd sensing system.

4.2 PPTD Mechanism
In this part, we will elaborate on the mechanism of the

proposed PPTD framework. Before we get into the details of
the aforementioned Secure Weight Update and Secure Truth
Estimation phases, we will first introduce a Secure Sum Pro-
tocol designed to calculate the summation of the data col-
lected from users without disclosing them to any unintended
party of the system.

4.2.1 Secure Sum Protocol
According to Eqn. (2) and Eqn. (5), the cloud server needs

to calculate the summation of the data collected from users
in order to update user weights and estimate ground truths.
However, the plaintext of each user’s data should not be
accessible to the cloud server due to privacy concerns. To
address this problem, we design a secure sum protocol based
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on the threshold Paillier cryptosystem [8]. As shown in Pro-
tocol 1, the proposed secure sum protocol can calculate the
summation of users’ data without disclosing any of them.

Protocol 1: Secure Sum Protocol
Input: The value vk ∈ Zn from each user k ∈ K
Output: The summation

∑K
k=1 vk

1 According to Eqn. (8), each user k ∈ K encrypts value vk
and sends the ciphertext Epk(vk) to the cloud server S;

2 Server S calculates C = Epk(
∑K

k=1 vk) =
∏K

k=1 Epk(vk)
based on Eqn. (9);

3 Server S randomly selects t− 1 users and sends C to
them;

4 Each selected user k′ calculates the partial decryption
Ck′ of C based on Eqn. (11) and sends Ck′ to the cloud
server;

5 Server S calculates its partial decryption CS and then
combines it with t− 1 other partial decryptions received

from users to get the summation
∑K

k=1 vk;

As we can see, in this protocol what the cloud server re-
ceived from users are the encrypted values and partial de-
cryptions. Moreover, all the calculations on the cloud server
are conducted on encrypted data. What the cloud server
can know at last is the summation of all the users’ data,
based on which each user’s data can not be inferred. So the
privacy of users is preserved.

4.2.2 Secure Weight Update
The first phase in our proposed framework is the secure

weight update for each user. As aforementioned, the weight
information needs to be updated in encrypted form in order
not to be disclosed to any party. A challenge here is that, the
cryptosystem we use is defined over an integer ring, but the
values needed to be encrypted in our framework may not be
integers. To tackle this challenge, we introduce a parameter
L (a magnitude of 10) to round the fractional values. For
example, the value h can be rounded by multiplying L as

h̃ = bhLc. Here we use h̃ to denote the rounded integer
of h and other values in this paper will be represented in a
similar way. The approximate value of h can be recovered

by dividing L (i.e., h̃/L).
Based on Eqn.(2), the encrypted weight can be updated

as follows

Epk(w̃k) = Epk(bL · (log(

K∑
k′=1

Distk′)− log(Distk))c) (12)

where Distk =
∑M

m=1 d(xk
m, x∗m) is the summation of dis-

tances between the k-th user’s observation values {xk
m}Mm=1

and the estimated ground truths {x∗m}Mm=1. As we can see,
in order for the cloud server to update Epk(w̃k), it needs to
collect the information about Distk from users. This proce-
dure can be shown in Fig. 2. For the sake of simplicity, we
take the k-th user as an example in this figure.

Since the distance functions for continuous data and cat-
egorical date are different, we need to consider them sepa-
rately when calculating distances. For categorical data, user
k can easily calculate distances based on Eqn. (4). But for
continuous data, we need to know the standard deviation
stdm according to Eqn. (3), which is difficult to derive with-
out knowing the observation values of other users. Next, we
first introduce the common steps (W1 and W6 in Fig. 2) for

all the data types to update user’s weight, and then specif-
ically discuss the calculation of stdm for continuous data
(W2, W3, W4 and W5 in Fig. 2).

Figure 2: Secure weight update for user k

Step W1. Cloud server sends the estimated ground
truths {x∗m}Mm=1 to user k. If it is the first iteration, the esti-
mated ground truths will be randomly initialized. If it is not,
the estimated ground truths are obtained from the previous
iteration. When user k receives the estimated ground truths,
he will first calculate two values: Distk and logDistk. Be-
fore the two values are submitted, user k needs to encrypt
them for the purpose of privacy. For Distk, user k privately
selects a random rk1 ∈ Z∗n, and then encrypts it as follows
based on Eqn. (8).

Epk(D̃istk) = gD̃istkrnk1 mod n2 (13)

Similarly for logDistk, user k privately selects another ran-
dom rk2 ∈ Z∗n, and encrypts it as

Epk( ˜logDistk) = g
˜log Distkrnk2 mod n2 (14)

Step W6. After the encryption in above step, user k

submits both Epk(D̃istk) and Epk( ˜logDistk) to the cloud
server S. Upon receiving the ciphertexts from all users, S
calculates sumD =

∑K
k=1 D̃istk/L and log sumD based on

the secure sum protocol. Then S encrypts log sumD accord-
ing to Eqn. (8) as

Epk( ˜log sumD) = g
˜log sumDrns1 mod n2 (15)

where rs1 ∈ Z∗n is the private random selected by server
S. With above ciphertexts, S can update the encrypted
weight for user k as follows based on Eqn. (9), Eqn. (10)
and Eqn. (12).

Epk(w̃k) = Epk( ˜log sumD) · Epk(− ˜logDistk)

= Epk( ˜log sumD) · Epk( ˜logDistk)−1
(16)

As for continuous data, as discussed previously, the stan-
dard deviation stdm should be firstly calculated. The cal-
culation steps are described in detail as below (these steps
only need to be performed once throughout the whole truth
discovery procedure).

Step W2. According to Eqn. (8), user k encrypts his
observation value for object m as Epk(x̃k

m) and sends the
ciphertext to the cloud server S.

Step W3. After receiving the ciphertexts from all users,
server S calculates sumx =

∑K
k=1 x̃

k
m/L and x̄m = sumk/K

based on the secure sum protocol, and then sends x̄m to
users.
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Step W4. User k calculates dkm = (xk
m − x̄m)2 and en-

crypts dkm as Epk(d̃km). Then k sends Epk(d̃km) to server S.

Step W5. When server S receives Epk(d̃km) from all

users, S calculates sumd =
∑K

k=1 d̃
k
m/L and stdm (equals

to
√

sumd/K) through the secure sum protocol. Then S
sends stdm to users.

4.2.3 Secure Truth Estimation
After updating user weights, the next thing is to estimate

the ground truth for each object. As shown in Fig. 3, there
are two major steps in this phase, which are detailed as
follows.

Figure 3: Secure Truth Estimation

Step T1. The cloud server sends the encrypted weight
Epk(w̃k) (updated in the secure weight update phase) to
user k. Then user k calculates the ciphertexts of weighted
observation values based on the encrypted weight. For con-
tinuous data, user k calculates the ciphertexts according to
Eqn. (10) using the following formula:

Epk(w̃k · x̃k
m) = Epk(w̃k)x̃

k
m (17)

For categorical data, xk
m is a vector as described in Sec-

tion 3.1, so user k needs to calculate the ciphertext for each
element in this vector as follows:

Epk(w̃k · xk
m(i)) =

{
Epk(0) if xk

m(i) = 0

Epk(w̃k) · Epk(0) if xk
m(i) = 1

(18)

where xk
m(i) denotes the i-th element in vector xk

m. Please
note that Epk(0) can be dynamically changing because every
time the encryption procedure is conducted with a different
random rk ∈ Z∗n.

Step T2. After the calculation in the above step, user k
submits the ciphertexts of weighted data for all the objects
to the cloud server S. When receiving ciphertexts from all
the users, S will first calculate the numerator of Eqn. (5) as
follows.

For continuous data, server S calculates the summation
of weighted data (i.e.,

∑K
k=1(w̃k · x̃k

m)) with the help of the
secure sum protocol, and then derives the approximation of∑K

k=1(wk · xk
m) (i.e., the numerator) via dividing the sum-

mation by L2.
For categorical data, we need to consider each element

in the vector separately. Specifically, for the i-th element,
server S calculates the summation of the weighted data (i.e.,∑K

k=1(w̃k ·xk
m(i)) via the secure sum protocol, and then get

the approximation of
∑K

k=1(wk ·xk
m(i)) (i.e., the numerator).

The summations of other elements are calculated in the same
way.

As the denominator of Eqn. (5), the summation of weights
is also needed to estimate the ground truths. This can be

easily calculated through the secure sum protocol, because
S has already stored encrypted weights in the weight update
phase. Then the ground truth for each object m ∈ M can
be estimated by the cloud server based on Eqn. (5).

Please note that the ground truths estimated in this step
for categorical data are probability values, which are used
for updating user weights in the next iteration. The final
estimation for object m should be the choice with the largest
probability in vector x∗m obtained in the final iteration.

Combining the secure weight update and secure truth
estimation phases, we summarize the proposed privacy-
preserving truth discovery procedure in Protocol 2. This
protocol repeats the aforementioned two phases iteratively
until some convergence criterion is satisfied. Then the cloud
server can output the final estimated ground truth for each
object.

Protocol 2: Privacy-Preserving Truth Discovery
Protocol

Input: K users, M objects, observation values {xk
m}

M,K
m,k=1

and rounding parameter L
Output: Estimated ground truths {x∗m}Mm=1

1 The cloud server S randomly initializes the ground truth
for each object;

2 The cloud server S sends the estimated ground truths

(i.e., {x∗m}Mm=1) and the rounding parameter L to users;

3 Each user k ∈ K calculates Distk =
∑M

m=1 d(xk
m, x∗m)

and gets the rounded values (i.e., D̃istk and ˜logDistk)
with parameter L. Then user k encrypts them as

Epk(D̃istk), Epk( ˜logDistk) and sends the ciphertexts to
the cloud server;

4 After receiving ciphertexts from all the users, the server

S calculates sumD =
∑K

k=1 D̃istk/L based on the secure
sum protocol, then updates the encrypted weight of each
user according to Eqn. (15) and Eqn. (16). Also, the
updated ciphertext of weight is sent to each
corresponding user;

5 When user k ∈ K receives encrypted weight from the
cloud server, the user calculates ciphertexts of weighted
data for continuous data and categorical data
respectively according to Eqn. (17) and Eqn. (18). Then
these ciphertexts are sent to the cloud server;

6 After receiving ciphertexts from all the users, the cloud

server S estimates the ground truths {x∗m}Mm=1 based on
step T2;

7 Repeat step 2∼6 until the convergence criterion is

satisfied and then output {x∗m}Mm=1;

4.3 Parallel PPTD
With the proliferation of human-carried sensing devices,

an explosive increase of crowd sensing data is expected in
the near future. In order to deal with such kind of massive
data, we extend our proposed scheme in a parallel way us-
ing the MapReduce framework, which contains two major
functions: the Map function that processes input values to
generate a set of intermediate key/value pairs, and the Re-
duce function that merges all intermediate values associated
with the same intermediate key. Here we just borrow the
existing MapReduce framework, in which we do not make
research contribution.

We only adapt the truth estimation phase to MapReduce
framework, and there is no change in the weight update pro-
cedure. In the Map function for estimating ground truths,
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the input is a list of records: (m,Epk(w̃k · x̃k
m), k), where

m ∈M, k ∈ K and Epk(w̃k · x̃k
m) is the encrypted weighted

data. As shown in Algorithm 2, during the mapping pro-
cess, all the input records are re-organized into key/value
pairs, where the key is the ID of each object (i.e., m), and
the value is the rest information. Before these key/value
pairs are fed to Reducers, they will be sorted by Hadoop so
that the pairs that have the same key (i.e., the same object
ID m) will go to the same Reducer. In the Reducers, as
seen in Algorithm 3, the truth value for each object is esti-
mated based on step T2 described in Section 4.2.3. Since
users’ weight information is also needed, we use an exter-
nal file to store the encrypted weights, and all the Reducer
nodes can read it. Finally, for each object a key/value pair
is outputted, where the key is object ID m and the value is
the estimated ground truth. The two procedures (i.e., dis-
tributed weight update and parallel truth estimation) are
iteratively conducted until the whole procedure converges.

Algorithm 2: Map function for estimating truths

Input: A list of records:
(m,Epk(w̃k · x̃k

m), k),m ∈M, k ∈ K
Output: A list with each element in format of

[m, [Epk(w̃k · x̃k
m), k]],m ∈M, k ∈ K

1 output list← [ ];
2 for each record from input do
3 Parse the record;
4 Append output list with the new record

[m, [Epk(w̃k · x̃k
m), k]];

5 end
6 return output list;

Algorithm 3: Reduce function for estimating truths

Input: A list of records (sorted by object ID m):
[m, [Epk(w̃k · x̃k

m), k]],m ∈M, k ∈ K
Output: A list with each element in the format of [m,x∗m]

1 output list← [ ];
2 Read encrypted weights of crowd users from file;
3 Calculate the summation of weights based on the secure

sum protocol;
4 for all the records with the same objectID m do
5 Calculate the summation of weighted data through

the secure sum protocol;
6 Estimate ground truth x∗m based on step T2;
7 Append output list with the new record [m,x∗m];

8 end
9 return output list;

5. PRIVACY ANALYSIS
In this paper, our proposed framework is based on two

assumptions: all the parties are semi-honest [33] and there
is no collusion among them. The semi-honest model assumes
that all the parties are honest but curious, which means they
strictly follow the protocol we design, but each party will try
to infer the private information of other parties based on the
intermediate results he obtains during the execution of the
protocol. The non-collusion model assumes the parties in
our framework have no collusions, which means they will
not collude with each other outside the protocol. These
assumptions are reasonable in most crowd sensing scenarios,
since 1) the parties want to get correct results and thus
would follow the protocol for their mutual benefits, and 2)

crowd users usually do not know each other, and even they
know each other they are probably not willing to disclose
private information to others.

As previously discussed, the security threats mainly comes
from the parties themselves in practical crowd sensing sys-
tems. Thus, the goal of PPTD is to protect the observation
values of each user from being disclosed to other parties,
and in the meanwhile, the weight of each user should not
be known by any party. Since our framework is built upon
the proposed secure sum protocol, we start with the privacy
analysis of this protocol.

In the secure sum protocol, the data are exchanged only
between cloud server and users, and all the exchanged data
are ciphertexts. Although some users obtain the cipher-
text of summation Epk(

∑K
k=1 vk), they cannot decrypt it

because of the (p, t)-threshold Paillier cryptosystem we used
and there is no collusion among users. Thus, the users will
learn nothing after the execution of the protocol. Similarly,
the ciphertext Epk(vk) cannot be decrypted by the cloud
server, and what the server can know at last is just the sum-
mation

∑K
k=1 vk, based on which it cannot infer the input

value vk of each user. In this way, the privacy of each user’s
input value is guaranteed by this protocol.

Then we can summarize the privacy-preserving goal of our
framework as Theorem 1, followed by the proof.

Theorem 1. Suppose K ≥ 3 and for each object m ∈
M, there are at least two users k1, k2 ∈ K giving different
observation values (i.e., xk1

m 6= xk2
m ). Also assume the parties

are semi-honest and there is no collusion among them. Then
after the execution of PPTD protocol, the observation values
of each user will not be disclosed to others and the weight of
each user will not be known by any party.

Proof. Firstly, we prove the observation values of each
user will not be disclosed to others in our framework. We
can achieve the goal by proving that there is not an attack
algorithm, based on which one party can infer the private
observation values of the users.

For the cloud server, we assume there exists an attack
algorithm based on which the server can infer the obser-
vation values of user k1 ∈ K. The input of the algo-
rithm should be the plaintexts the server knows during
the privacy-preserving truth discovery procedure. These
plaintexts are

∑K
k=1 x

k
m, x̄m,

∑K
k=1 d

k
m, stdm,

∑K
k=1 Distk,∑K

k=1 wk,
∑K

k=1(wk · xk
m) and the estimated ground truth

x∗m for each m ∈ M. Also, the cloud server knows the val-
ues K and M . According to our assumption, the server can
infer the observation value xk1

m (m ∈M) of user k1 based on
these input values. We also assume another user k2 ∈ K has
the observation value xk2

m (6= xk1
m ) for the object m. Now, we

exchange the observation values of k1 and k2, which means
user k1 has the observation value xk2

m and user k2 has the
observation value xk1

m for the object m after the exchange.
Then, we restart the privacy-preserving truth discovery pro-
cedure. However, the plaintexts known by the server will not
be changed based on our framework. That is to say, the in-
put values of the attack algorithm will not be changed. So
based on this algorithm, the cloud server would still infer
the value xk1

m for user k1. However, now the observation
value of user k1 has been changed to xk2

m . Obviously, there
is a contradiction. Therefore, such an attack algorithm does
not exist and the cloud server cannot infer the observation
values of users in our framework.
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For each user, he can know the public values x̄m, stdm,
x∗m for each m ∈ M besides his private observation values
based on our framework. Using the same method above, we
can also prove that this user cannot infer the observation
values of others.

Next, we prove the weight of each user (i.e., wk, k ∈ K)
will not be disclosed to any party in our framework.

Based on the privacy-preserving truth discovery protocol,
the cloud server updates the ciphertexts of the weights (i.e.,
Epk(wk), k ∈ K) instead of the plaintexts of them in each
iteration. Also, the users calculate the weighted data based
on the ciphertexts of weights. Based on the semi-honest
and non-collusion assumptions, all the parties cannot de-
crypt each encrypted weight. The only plaintexts about the
weights are the summations

∑K
k=1 wk and

∑K
k=1 wk · xk

m,

which are known by the cloud server. Since xk
m is only known

by the user, the server cannot infer wk based on the above
summations. So the weight information will not be disclosed
to any party in this framework.

6. DISCUSSIONS
Since the cryptosystem adopted here is defined over an

integer ring, we use parameter L to round the fractional
values to integers. During the rounding process, numerical
errors are inevitably introduced. However, the accuracy of
the final estimated ground truth will not be greatly affected
if we select appropriate L, which is shown in Section 7.

Another issue we are concerned is missing values, which
means not all the objects are observed by all the crowd users.
This can be easily handled in our framework. When different
users observe different subsets of the objects, we can normal-
ize the aggregate deviations of each user by the number of
his observations.

Also, to tackle the issue that some users could not respond
timely after the sensing tasks are released, we can set a
waiting-time threshold on the cloud server. Based on the
(p, t)-threshold Paillier cryptosystem adopted in this paper,
as long as at least t − 1 users could upload their data in
time, the privacy-preserving truth discovery procedure can
be completed.

Additionally, our proposed framework can be easily mod-
ified to the situation where the user weight is known only
to the user himself. In this case, the weight values are up-
dated by users themselves. In particular, during the weight
update procedure, user k ∈ K just needs to submit the en-

crypted summation of the distances Epk(D̃istk). Then the

cloud server calculates
∑K

k=1 D̃istk/L through the secure
sum protocol. Based on this summation, each user can pri-
vately update his weight according to Eqn. (2). In the truth
estimation procedure, user k ∈ K submits the ciphertexts of

weighted data {Epk(w̃k · xk
m)}Mm=1 and the encrypted weight

Epk(w̃k). Then the cloud server can estimate ground truth
for each object via the same method used in PPTD (step
T2).

7. PERFORMANCE EVALUATION
In this section, we evaluate the proposed privacy-

preserving truth discovery (PPTD) framework. Experiment
results on both real world crowd sensing systems and syn-
thetic data set are presented and discussed.

7.1 Experiment Setup
In this paper, we consider two different types of data:

continuous data and categorical data. To evaluate the es-
timation accuracy of PPTD, we use following measures for
the two data types:

• MAE: For continuous data, we use the mean of abso-
lute error (MAE) to measure the mean of absolute dis-
tance between the estimated results and ground truths.

• RMSE: For continuous data, we also use the root of
mean squared error (RMSE) to measure the accuracy.
Compared with MAE, RMSE can penalize more on
the large distance and less on the small distance.

• ErrorRate: For categorical data, we calculate the per-
centage of mismatched values between estimated re-
sults and ground truths as ErrorRate.

The baseline approach we use in this experiment is the
state-of-the-art truth discovery scheme, i.e., CRH [30],
which does not take any actions to protect user privacy dur-
ing the whole procedure.

A (p, b p
2
c)-threshold Paillier cryptosystem is used in our

experiment, and here we fix the key size as 512 (can also be
set as other values according to the practical demand). Our
framework was implemented in Java 1.7.0 using the Paillier
Threshold Encryption Toolbox1. The sensing devices we use
are Nexus 4 Android phones. The “cloud” is emulated by
a cluster of three Intel(R) Core(TM) 3.40GHz PCs running
Ubuntu 14.04, with 8GB RAM. When implementing parallel
privacy-preserving truth discovery framework, we use a Dell
Hadoop cluster with Intel Xeon E5-2403 processor (4x 1.80
GHz, 48 GB RAM) as the “cloud”.

7.2 Experiment on Crowdsourced Indoor
Floorplan Construction System

In this part, we show the experiment results on continu-
ous data collected from a real world crowd sensing system
to demonstrate the advantages of PPTD. The application is
crowdsourced indoor floorplan construction [1, 2, 15], which
has recently drawn much attention since many location-
based services can be facilitated by it. The goal of such
crowd sensing system is to automatically construct indoor
floorplan from sensory data (e.g., the readings of compass,
accelerometer, gyroscope, etc.) collected from smartphone
users. Clearly, these sensor readings encode the private per-
sonal activities of the phone user, and thus the user may not
be willing to share such data without the promise of privacy
protection. For the sake of illustration, here we focus on
just one task of indoor floorplan construction, namely, to
estimate the distance between two particular location points
in the hallway. We develop an Android App which can es-
timate the walking distances of a smartphone user through
multiplying the user’s step size by step count inferred using
the in-phone accelerometer.

In our experiment, 10 volunteers are employed as smart-
phone users and we select 27 hallway segments in a building
as the objects. Each party (including the cloud server and
smartphone users) in this experiment holds the public key
and the corresponding private key share which are produced
by the cryptosystem. The ground truths of these hallway
segments are obtained by measuring them manually.
1http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/
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Accuracy. We first compare the accuracy of the final
estimated ground truths between PPTD and the baseline
approach (i.e., CRH). Since the estimation errors of PPTD
are introduced by the rounding parameter L, we vary L
from 100 to 106 and measure the corresponding accuracy. In
the experiment, we randomly initialize the estimated ground
truths, and use a threshold of the change in the estimated
ground truths in two consecutive iterations as the conver-
gence criterion. The experiment is repeated for 20 times,
and we report the averaged results.
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Figure 4: Ground truth estimation errors under dif-
ferent values of the parameter L

Figure 4 shows the ground truth estimation errors of our
proposed framework and CRH under different values of the
parameter L. The estimation error is measured in terms
of MAE and RMSE, respectively. As seen in the figure,
the estimation error of PPTD is almost the same as that of
CRH unless the rounding parameter L is too small (i.e., 100

or 101). This is because during the rounding procedure the
fractional part (i.e., decimal digits) of the original value (e.g.,
L · logDistk) is dropped. In this sense, the smaller the pa-
rameter L, the more decimal digits of the original value will
be lost. To measure the information loss degree, we calculate
the relative estimation errors of PPTD and CRH in both ob-
ject truth and user weight. Here we manually decrypt user
weights for the analysis purpose. In particular, we define the
relative error of user weight as || log wc− log wp||/|| log wc||,
where wc and wp are the weight vectors of all the users
obtained from CRH and PPTD, respectively. Similarly, we
define the relative error of the estimated ground truths as
|| log x∗c − log x∗p||/|| log x∗c ||, where x∗c and x∗p are obtained
from CRH and PPTD respectively. The results are shown
in Fig. 5.

10
1

10
3

10
5

10
7

10
9

10
11

10
13

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

R
e
la

ti
v

e
 e

r
r
o

r

Rounding parameter L

(a) Relative error of weight

10
1

10
3

10
5

10
7

10
9

10
11

10
13

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

R
e
la

ti
v

e
 e

r
r
o

r

Rounding parameter L

(b) Relative error of estimated
truth

Figure 5: Relative errors under different values of L

As shown in Fig. 5(a) and 5(b), the relative errors in both
truth and weight drop as the parameter L increases. That is
to say, we do not need to worry about the estimation errors

produced during the rounding procedure as long as we select
a large enough parameter L.

Additionally, we evaluate the performance of PPTD under
varying number of users. The number of objects is still 27,
while the number of users varies from 3 to 10. We also fix the
parameter L as 1010 and use the same convergence criterion
as before. Then the experiment is repeated 20 times and the
averaged results are reported.
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Figure 6: Ground truth estimation errors under dif-
ferent number of users

Figure 6(a) and 6(b) show that PPTD almost has the
same estimation errors as CRH while the number of users
is varying, which means that our proposed framework is ro-
bust against the change of user numbers. Also, we can see
that, the estimation errors decrease with the increase of the
number of users. This makes sense because it is hard to
improve upon the users’ individual poor observation values
when the number of users that observe the same objects is
small. When the number of users increases, each object is
observed by more and more diversified crowd users, thus it
is more and more likely to cancel out individual users’ biases
and errors so as to reach higher accuracy.

Convergence. Next, we show the convergence of the
privacy-preserving truth discovery procedure. In this exper-
iment, the rounding parameter L is still set as 1010. Figure 7
shows the evolution of the objective value of the truth dis-
covery problem, which is defined as the weighted summation
of the distances between individual observations and the
estimated ground truths (i.e.,

∑K
k=1 wk

∑M
m=1 d(xk

m, x∗m)).
Here we repeat the experiment for 5 times with different
random initialization values. As we can see, all the objec-
tive values, although under different initializations, converge
quickly within just a few iterations.
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Computational Cost. In this part, we take a look at
PPTD’s computational cost, which is composed of the cost
on the smartphone of each user and the cost on the cloud
server. Here, we also fix the rounding parameter as 1010,
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which actually has little effect on the computational time
compared with user numbers and object numbers.

On the smartphone of each user, there are two major pro-
cessing procedures: 1) calculating the encrypted summation
of distances, and 2) calculating the ciphertexts of weighted
observation values. In this experiment, we evaluate the run-
ning time of each procedure as well as the total running time
under different object numbers ranging from 3 to 27. Fig-
ure 9(a) shows the running time per iteration for the two
procedures, respectively. We can see that the second proce-
dure (i.e., calculating the ciphertexts of weighted observa-
tion values) varies more when the object number increases.
Figure 9(b) gives the total time of the two procedures in
each iteration. When the object number reaches 27, the to-
tal running time is only 0.039s, which is sustainable for the
phone users. All the results in Fig. 9 are averaged values
derived from 10 smartphones.
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Figure 9: Running time w.r.t Number of objects for
continuous data on smartphone

On the cloud server, there are also two major processing
procedures in each iteration: 1) updating weights, and 2) es-
timating ground truths. Here we evaluate the running time
of each procedure, and the total running time under different
object numbers as well as user numbers, respectively. From
Fig. 10(a) and Fig. 11(a), we can see that most of the time
is spent in updating truth for each object. That is also the
reason why we need to parallelize the truth updating proce-
dure with MapReduce framework when dealing with massive
data. On the other hand, Fig. 10(b) and Fig. 11(b) demon-
strate that the total running time is approximately linear
with respect to both object number and the user number.
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Figure 10: Running time w.r.t Number of objects
for continuous data on the cloud server

Communication and Energy Overhead. To evaluate
the communication overhead in the privacy-preserving truth
discovery procedure, we measure the number of packets ex-
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Figure 11: Running time w.r.t Number of users for
continuous data on the cloud server

changed between the cloud server and all the crowd users. In
this experiment, we use the change of the aforementioned ob-
jective value in two consecutive iterations as the convergence
criterion and the threshold is set as 0.001. Figure 8 shows
the numbers of exchanged packets over all users during the
whole PPTD procedure, under different user numbers (i.e.,
K) from 3 to 10. As seen, the overall communication over-
head is roughly O(K). Actually, for each user, the average
number of messages needed to be exchanged with the cloud
server can be roughly calculated by 6(i + 1), where i is the
number of iterations during the PPTD procedure. Consid-
ering that here we set a very conservative threshold which
leads to average 6 iterations (much larger than the usual
2 or 3 iterations as shown in Fig. 7), the communication
overhead is well within the realm of practicality.

The energy overhead on the smartphone of each user is
mainly caused by the cipher related operations and data
transmissions. For the purpose of evaluating the energy
overhead, we measure the average energy consumption per-
centage (i.e., the energy consumed by PPTD divided by the
total energy of the smartphone while it is fully charged)
under different object numbers. Figure 12 shows the av-
erage energy consumption percentage in one iteration for
each user. When the object number reaches 27, the energy
consumption percentage is only 0.000198% for each smart-
phone, which is acceptable for the phone users. The results
in Fig. 12 are averaged values derived from 10 smartphones
in WiFi network environment.
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Figure 12: Energy con-
sumption percentage on
smartphone
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7.3 Experiment on Crowd Wisdom System
In this part, we evaluate the performance of PPTD on

categorical data provided by humans as the sensors. The
experiment is conducted on a crowd wisdom system which
can integrate the crowd answers and opinions towards a set
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of questions. We design and implement an Android App
through which we can send questions and corresponding
candidate answers to the crowd users. Each user who re-
ceives the questions can upload his answers to the cloud
server. The cloud server can then infer the true answer for
each question through aggregating the answers from differ-
ent users. In order to address the concern of some users that
their private personal information could be inferred from
their answers, we employ PPTD upon this crowd wisdom
system, encrypting user answers before they are uploaded
to the cloud server. Totally, 113 volunteers are employed as
smartphone users and 54 questions are sent to them with
candidate answers. We use Error Rate as the evaluation
metric and for the sake of evaluation, we have got the ground
truth answer for each question.

Accuracy and Convergence. Since in this experiment,
each object (i.e., question) is not observed (i.e., answered)
by all the users, we use the average number of users observ-
ing each object (i.e., the ratio between the number of total
answers over the number of total questions) as the tuning
variable when evaluating the accuracy of PPTD. The er-
ror rates of PPTD and CRH are shown in Fig. 14(a), from
which we can see that PPTD produces the same error rates
as CRH at all time. Moreover, we did not show the error
rates with respect to the rounding parameter L, since we
find that the final aggregated results are not affected by L.
This is because in this case, the negligible numerical errors
introduced by L to the intermediate values are simply not
large enough to change the final answers, which are cate-
gorical numbers. To evaluate the estimation error of user
weights, we manually decrypt each user’s weight derived by
PPTD. Here we still use the relative error defined in sec-
tion 7.2 to measure the errors introduced by L. The results
are reported in Fig. 14(b), which show that the estimation
errors can be ignored if parameter L is large enough. Ad-
ditionally, we also use the threshold of the change in the
estimated ground truths in two consecutive iterations as the
convergence criterion, and we find both PPTD and CRH
converge within two iterations.
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Figure 14: Accuracy of PPTD for categorical data

Computational Cost. Next, we evaluate PPTD’s com-
putational cost for categorical data. Similar to the experi-
ment on continuous data, the rounding parameter L is also
fixed as 1010 in this case. Here, we also evaluate the com-
putational cost on user smartphone and the cloud server,
respectively.

In particular, we evaluate the two major procedures on
user’s smartphone, and then give the total running time. In
this experiment, the number of the objects observed by each
user varies from 1 to 14. The results are shown in Fig. 15,
from which we can see the second procedure (i.e., calculat-

ing weighted data) costs more time than the first procedure
(Fig. 15(a)). This is because most of the operations in the
second procedure are conducted on ciphertexts while the
first procedure is mainly composed of plaintext based oper-
ations. Additionally, Fig. 15(b) shows that the largest total
running time of the two procedures on user smartphone is
no more than 0.45s in each iteration, which verifies the prac-
ticality of our proposed framework.

2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
 Calculation of Weighted Data

 Calculation of Distances Sum 

R
u

n
n

in
g

 t
im

e
 (

s)

Number of objects

(a) Running time of each pro-
cedure

2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
u

n
n

in
g

 t
im

e
 (

s)

Number of objects

(b) Total running time

Figure 15: Running time w.r.t Number of objects
for categorical data on smartphone

To evaluate the computational cost on the cloud server, we
vary the number of users from 13 to 113 (the correspond-
ing number of objects varies from 20 to 54, because each
question is only answered by part of the users). Figure 16
reports the running time of each procedure and the total
running time in each iteration. From Fig. 16(a) we can
see that the computational time of updating truths is far
greater than the time of updating weights for all the scenar-
ios, which is similar to that in the experiment for continuous
data. The evaluation of total running time in each iteration
can be seen in Fig. 16(b). We can see the total running time
is 25.74s when the number of users is 113. This total time
is reasonable, considering the number of crowd users in this
experiment is ten times larger than that in the experiment
for continuous data.
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Figure 16: Running time w.r.t Number of users for
categorical data on the cloud server

7.4 Experiment of Parallel PPTD
From above experimental results, we can see most of the

computational time on the cloud server is consumed in up-
dating the ground truths, so we improve PPTD by adapt-
ing this procedure to MapReduce framework. In this part,
the efficiency of parallel PPTD is verified. Here we use a
Hadoop cluster as the cloud server. The crowd sensing sys-
tem is simulated with 1000 users and 1000 objects, and the
observation values are generated through adding Gaussian
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noise of different intensities to the ground truths. For com-
parison purpose, we also deploy the basic PPTD framework
on the same server.
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Figure 17: Running time
w.r.t Number of objects
for parallel PPTD
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parallel PPTD

When evaluating running time under different user num-
bers and object numbers, we adopt 10 Reducer nodes for
parallel PPTD. Firstly, we fix the user number as 500 and
change the object number from 100 to 1000. The running
time of parallel PPTD and the basic PPTD in each iteration
are shown in Fig. 17. From this figure we can see the paral-
lel PPTD is increasingly more efficient than the basic PPTD
as the number of objects goes up. When the object number
reaches 1000, it takes parallel PPTD only 176.48s to com-
plete the two procedures while the basic PPTD would have
to spend 709.25s to finish the same computations. Then, we
fix the object number as 500 and change the user number
from 100 to 1000. Figure 18 reports the results in this case.
Similar patterns can be seen. When user number reaches
1000, the parallel PPTD only spends 170.78s to finish the
job, much less than the 655.38s consumed by PPTD. All the
above results confirm the efficiency of parallel PPTD.

Moreover, it is important to study the effect of the node
number in the Hadoop system on the performance of the
proposed mechanism. In this experiment, we fix both user
number and object number as 500. Figure 13 shows the
running time under different number of Reducer nodes (re-
sults will be similar for the Mapper nodes). As we can see,
with the increase of Reducer numbers, the running time de-
creases rapidly at first, and gets flattened very soon. This
is because including more Reducer nodes, though improving
the parallelism, will introduce more overhead (e.g., commu-
nication). Therefore, it is not true that more Reducer nodes
would always lead to better performance.

8. RELATED WORK
As an effective technique to extract reliable information

from crowd sensing systems, truth discovery has drawn
more and more attention [29–32, 34, 35, 44, 47–50] in recent
years. Representative truth discovery schemes include Ac-
cuSim [31], CRH [30], TruthFinder [50], etc. Compared with
the naive averaging or voting approaches, these schemes can
provide more reliable aggregated results by estimating and
incorporating user reliability into the aggregation process.
However, none of these schemes take actions to protect user
privacy, which is a key concern in many crowd sensing sys-
tems [14].

The importance of privacy protection has long been rec-
ognized in many fields [7, 22,36]. The representative strate-
gies to tackle various privacy concerns include 1) anonymiza-
tion [7,38,46], which removes identification information from

all the interactions between the participant and other en-
tities, 2) data perturbation [26, 27], which achieves pri-
vacy protection by adding artificial noise to the data before
sharing them with others, and 3) the approaches based on
cryptography or secure multi-party computation [17, 24], in
which the sensitive data are encrypted and in many cases
the parties need to cooperate with each other to decrypt the
final results.

Recently, privacy-preserving problem is also studied with
respect to crowd sensing applications. For example, [23, 42,
43] present anonymization based schemes to protect user’s
private information from being disclosed. Although these
schemes can guarantee the users’ privacy in some cases, they
are not suitable for truth discovery scenarios, where instead
of the anonymity of each user, what we need to preserve is
the confidentiality of his observation values from which sen-
sitive personal information (including user identity) may be
inferred. Moreover, some perturbation based methods are
also proposed [13,37,51]. However, it is difficult to integrate
these schemes with truth discovery approaches, because the
artificial noise added to each user’s data would make it diffi-
cult to accurately estimate his reliability. Thus, cryptogra-
phy based schemes are good choices, as they can guarantee
the confidentiality of the observation values without intro-
ducing additional noise. Since some computations need to be
conducted on encrypted data in truth discovery procedure,
such schemes should have homomorphic properties [11]. Re-
cently, the fully homomorphic encryption scheme [16] has
drawn much attention due to the ability of taking arbi-
trary computations on encrypted data, but the prohibitively
high computation cost makes it impractical to be used in
crowd sensing applications. Although our proposed scheme
is based on the traditional Paillier cryptosystem which can-
not conduct arbitrary computations over encrypted data,
we use it in a novel manner that well captures the specific
algebra operations in truth discovery procedure without sig-
nificant overhead. Additionally, paper [25] proposes a homo-
morphic encryption based approach to protect user privacy
in crowdsourcing applications. However, it addresses a dif-
ferent scenario in which users can know their own reliability
information. Also, paper [25] mainly focuses on categori-
cal data. In contrast, our scheme can deal with not only
categorical data but also other data types.

9. CONCLUSIONS
In this paper, we design a cloud-enabled privacy-

preserving truth discovery (PPTD) framework to tackle the
issue of privacy protection in crowd sensing systems. The
key idea of PPTD is to perform weighted aggregation on the
encrypted data of users using homomorphic cryptosystem,
and iteratively conduct two phases (i.e., secure weight up-
date and secure truth estimation) until convergence. During
this procedure, both user’s observation values and his reli-
ability score are protected. In order to process large-scale
data efficiently, a parallelized extension of PPTD is also pro-
posed based on the MapReduce framework.

10. ACKNOWLEDGMENTS
We thank our shepherd Archan Misra and the anonymous

reviewers for their valuable comments and suggestions. This
work was sponsored in part by US National Science Foun-
dation under grant IIS-1319973 and CNS-1262277.

194



11. REFERENCES
[1] S. Chen, M. Li, K. Ren, X. Fu, and C. Qiao. Rise of

the indoor crowd: Reconstruction of building interior
view via mobile crowdsourcing. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor
Systems (Sensys’15), 2015.

[2] S. Chen, M. Li, K. Ren, and C. Qiao. Crowd map:
Accurate reconstruction of indoor floor plans from
crowdsourced sensor-rich videos. In Proceedings of the
35th IEEE International Conference on Distributed
Computing Systems (ICDCS’15), 2015.

[3] Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and
X. Jiang. Aircloud: a cloud-based air-quality
monitoring system for everyone. In Proceedings of the
12th ACM Conference on Embedded Network Sensor
Systems (Sensys’14), 2014.

[4] Y. Chon, Y. Kim, and H. Cha. Autonomous place
naming system using opportunistic crowdsensing and
knowledge from crowdsourcing. In Proceedings of the
12th ACM/IEEE International Conference on
Information Processing in Sensor Networks
(IPSN’13), 2013.

[5] Y. Chon, N. D. Lane, Y. Kim, F. Zhao, and H. Cha.
Understanding the coverage and scalability of
place-centric crowdsensing. In Proceedings of the 2013
ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp’13), 2013.

[6] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao.
Automatically characterizing places with
opportunistic crowdsensing using smartphones. In
Proceedings of the 2012 ACM Conference on
Ubiquitous Computing (UbiComp’12), 2012.

[7] C.-Y. Chow, M. F. Mokbel, and T. He. A
privacy-preserving location monitoring system for
wireless sensor networks. IEEE Transactions on
Mobile Computing, (1):94–107, 2010.

[8] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty
computation from threshold homomorphic encryption.
Springer, 2001.

[9] I. Damg̊ard and M. Jurik. A generalisation, a simpli.
cation and some applications of paillier’s probabilistic
public-key system. In Public Key Cryptography.
Springer, 2001.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[11] C. Fontaine and F. Galand. A survey of homomorphic
encryption for nonspecialists. EURASIP Journal on
Information Security, 2007:15, 2007.

[12] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and
T. F. Abdelzaher. Greengps: a participatory sensing
fuel-efficient maps application. In Proceedings of the
8th ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys’10), 2010.

[13] R. K. Ganti, N. Pham, Y.-E. Tsai, and T. F.
Abdelzaher. Poolview: stream privacy for grassroots
participatory sensing. In Proceedings of the 6th ACM
conference on Embedded network sensor systems
(Sensys’08), 2008.

[14] R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing:
current state and future challenges. IEEE
Communications Magazine, 49(11):32–39, 2011.

[15] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian,
T. Wang, and X. Li. Jigsaw: Indoor floor plan
reconstruction via mobile crowdsensing. In Proceedings
of the 20th ACM Annual International Conference on
Mobile Computing and Networking (MobiCom’14),
2014.

[16] C. Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009.

[17] O. Goldreich. Secure multi-party computation.
Manuscript. Preliminary version, 1998.

[18] S. Hu, H. Liu, L. Su, H. Wang, T. F. Abdelzaher,
P. Hui, W. Zheng, Z. Xie, J. Stankovic, et al. Towards
automatic phone-to-phone communication for
vehicular networking applications. In Proceedings of
the 33th Annual IEEE International Conference on
Computer Communications (INFOCOM’14), 2014.

[19] S. Hu, L. Su, S. Li, S. Wang, C. Pan, S. Gu, T. Amin,
H. Liu, S. Nath, R. R. Choudhury, et al. Experiences
with enav: A low-power vehicular navigation system.
In Proceedings of the 2015 ACM Conference on
Ubiquitous Computing (UbiComp’15), 2015.

[20] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher.
Smartroad: a crowd-sourced traffic regulator detection
and identification system. In Proceedings of the 12th
ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN’13), 2013.

[21] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher.
Smartroad: Smartphone-based crowd sensing for
traffic regulator detection and identification. ACM
Transactions on Sensor Networks (TOSN), 11(4):55,
2015.

[22] K. L. Huang, S. S. Kanhere, and W. Hu. Towards
privacy-sensitive participatory sensing. In Proceedings
of the 7th IEEE International Conference on
Pervasive Computing and Communications (PerCom
2009), 2009.

[23] K. L. Huang, S. S. Kanhere, and W. Hu. A
privacy-preserving reputation system for participatory
sensing. In LCN, 2012.

[24] T. Jung, X. Mao, X.-Y. Li, S.-J. Tang, W. Gong, and
L. Zhang. Privacy-preserving data aggregation
without secure channel: Multivariate polynomial
evaluation. In Proceedings of the 32st Annual IEEE
International Conference on Computer
Communications (INFOCOM’13), 2013.

[25] H. Kajino, H. Arai, and H. Kashima. Preserving
worker privacy in crowdsourcing. Data Mining and
Knowledge Discovery, 28(5-6):1314–1335, 2014.

[26] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar.
On the privacy preserving properties of random data
perturbation techniques. In Proceedings of the third
IEEE International Conference on Data Mining
(ICDM’03), 2003.

[27] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar.
Random-data perturbation techniques and
privacy-preserving data mining. Knowledge and
Information Systems, 7(4):387–414, 2005.

[28] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li,
D. Kim, G. Ding, F. Zhao, and H. Cha. Piggyback
crowdsensing (pcs): energy efficient crowdsourcing of
mobile sensor data by exploiting smartphone app
opportunities. In Proceedings of the 11th ACM

195



Conference on Embedded Networked Sensor Systems
(Sensys’13), 2013.

[29] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas,
W. Fan, and J. Han. A confidence-aware approach for
truth discovery on long-tail data. Proceedings of the
VLDB Endowment, 8(4):425–436, 2014.

[30] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han.
Resolving conflicts in heterogeneous data by truth
discovery and source reliability estimation. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data (SIGMOD’14),
2014.

[31] X. Li, X. L. Dong, K. Lyons, W. Meng, and
D. Srivastava. Truth finding on the deep web: is the
problem solved? Proceedings of the VLDB
Endowment, 6(2):97–108, 2012.

[32] Y. Li, Q. Li, J. Gao, L. Su, B. Zhao, W. Fan, and
J. Han. On the discovery of evolving truth. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(SIGKDD’15), 2015.

[33] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Proceedings of the 20th Annual
International Cryptology Conference (CRYPTO’00),
2000.

[34] F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su,
B. Zhao, H. Ji, and J. Han. Faitcrowd: Fine grained
truth discovery for crowdsourced data aggregation. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining(SIGKDD’15), 2015.

[35] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and
Y. Cheng. Truth discovery on crowd sensing of
correlated entities. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems
(Sensys’15), 2015.

[36] S. Oh, T. Vu, M. Gruteser, and S. Banerjee. Phantom:
Physical layer cooperation for location privacy
protection. In Proceedings of the 31st Annual IEEE
International Conference on Computer
Communications (INFOCOM’12), 2012.

[37] N. Pham, R. K. Ganti, Y. S. Uddin, S. Nath, and
T. Abdelzaher. Privacy-preserving reconstruction of
multidimensional data maps in vehicular participatory
sensing. In Wireless Sensor Networks. Springer, 2010.

[38] L. Pournajaf, L. Xiong, D. A. Garcia-Ulloa, and
V. Sunderam. A survey on privacy in mobile crowd
sensing task management. Technical report, Technical
Report TR-2014-002, Department of Mathe-matics
and Computer Science, Emory University, 2014.

[39] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan.
Medusa: A programming framework for crowd-sensing
applications. In Proceedings of the 10th ACM
International Conference on Mobile systems,
applications, and services (MobiSys’12), 2012.

[40] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J.
Rentfrow. Sociablesense: exploring the trade-offs of
adaptive sampling and computation offloading for
social sensing. In Proceedings of the 17th Annual ACM
International Conference on Mobile Computing and
Networking (MobiCom’11), 2011.

[41] F. Saremi, O. Fatemieh, H. Ahmadi, H. Wang,
T. Abdelzaher, R. Ganti, H. Liu, S. Hu, S. Li, and
L. Su. Experiences with greengps–fuel-efficient
navigation using participatory sensing. IEEE
Transactions on Mobile Computing (TMC), PP(99):1,
2015.

[42] K. Shilton. Four billion little brothers?: Privacy,
mobile phones, and ubiquitous data collection.
Communications of the ACM, 52(11):48–53, 2009.

[43] M. Shin, C. Cornelius, D. Peebles, A. Kapadia,
D. Kotz, and N. Triandopoulos. Anonysense: A
system for anonymous opportunistic sensing.
Pervasive and Mobile Computing, 7(1):16–30, 2011.

[44] L. Su, Q. Li, S. Hu, S. Wang, J. Gao, H. Liu, T. F.
Abdelzaher, J. Han, X. Liu, Y. Gao, et al. Generalized
decision aggregation in distributed sensing systems. In
Proceedings of the 35th IEEE International Conference
on Real-Time Systems Symposium (RTSS’14), 2014.

[45] V. Subbaraju, A. Kumar, V. Nandakumar, S. Batra,
S. Kanhere, P. De, V. Naik, D. Chakraborty, and
A. MISRA. Conferencesense: A case study of sensing
public gatherings using participatory smartphones. In
Proceedings of the International Workshop on
Pervasive Urban Crowdsensing Architecture and
Applications (PUCAA’13), 2013.

[46] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[47] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher. On
truth discovery in social sensing: A maximum
likelihood estimation approach. In Proceedings of the
11th ACM International Conference on Information
Processing in Sensor Networks (IPSN’12), 2012.

[48] S. Wang, L. Su, S. Li, S. Hu, T. Amin, H. Wang,
S. Yao, L. Kaplan, and T. Abdelzaher. Scalable social
sensing of interdependent phenomena. In Proceedings
of the 14th ACM International Conference on
Information Processing in Sensor Networks
(IPSN’15), 2015.

[49] S. Wang, D. Wang, L. Su, L. Kaplan, and T. F.
Abdelzaher. Towards cyber-physical systems in social
spaces: The data reliability challenge. In Proceedings
of the 35th IEEE International Conference on
Real-Time Systems Symposium (RTSS’14), 2014.

[50] X. Yin, J. Han, and P. S. Yu. Truth discovery with
multiple conflicting information providers on the web.
IEEE Transactions on Knowledge and Data
Engineering, 20(6):796–808, 2008.

[51] F. Zhang, L. He, W. He, and X. Liu. Data
perturbation with state-dependent noise for
participatory sensing. In Proceedings of the 31st
Annual IEEE International Conference on Computer
Communications (INFOCOM’12), 2012.

196


	Introduction
	Problem Definition
	Preliminary
	Truth Discovery
	Cryptographic Tools
	Homomorphic Cryptographic Scheme
	Threshold Paillier Cryptosystem


	Privacy-Preserving Truth Discovery
	PPTD Overview
	PPTD Mechanism
	Secure Sum Protocol
	Secure Weight Update
	Secure Truth Estimation

	Parallel PPTD

	Privacy Analysis
	Discussions
	Performance Evaluation
	Experiment Setup
	Experiment on Crowdsourced Indoor Floorplan Construction System
	Experiment on Crowd Wisdom System
	Experiment of Parallel PPTD

	Related Work
	Conclusions
	Acknowledgments
	References



