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ABSTRACT
With the popular usage of mobile devices and smartphones,
crowd sensing becomes pervasive in real life when human
acts as sensors to report their observations about entities.
For the same entity, users may report conflicting informa-
tion, and thus it is important to identify the true informa-
tion and the reliable users. This task, referred to as truth
discovery, has recently attracted much attention. Existing
work typically assumes independence among entities. How-
ever, correlations among entities are commonly observed in
many applications. Such correlation information is crucial
in the truth discovery task. When entities are not observed
by enough reliable users, it is impossible to obtain true in-
formation. In such cases, it is important to propagate trust-
worthy information from correlated entities that have been
observed by reliable users. We formulate the task of truth
discovery on correlated entities as an optimization problem
in which both truths and user reliability are modeled as vari-
ables. The correlation among entities adds to the difficulty
of solving this problem. In light of the challenge, we propose
both sequential and parallel solutions. In the sequential so-
lution, we partition entities into disjoint independent sets
and derive iterative approaches based on block coordinate
descent. In the parallel solution, we adapt the solution to
MapReduce programming model, which can be executed on
Hadoop clusters. Experiments on real-world crowd sensing
applications show the advantages of the proposed method
on discovering truths from conflicting information reported
on correlated entities.
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1. INTRODUCTION
Crowd sensing has emerged as a new way of gathering

information about entities by collecting observations from
humans. With the ubiquitous mobile sensing devices (e.g.,
smartphones), it becomes easier and easier for the popu-
lation to sense and share the information they perceived.
Specifically, users can report certain conditions of their en-
vironment, such as traffic conditions, broken public utilities,
gas prices, weather conditions and air quality, to central
servers. On the central server, user-contributed information
is aggregated to obtain useful information. Much attention
is now contributed to the development of crowd sensing sys-
tems for various application domains [4, 7, 14, 21, 32, 38].

An important task in the crowd sensing system is the ag-
gregation of user-contributed information. Users may pro-
vide conflicting and noisy information on the same entity,
and then how to discover the true information (i.e., the
truth) among these conflicting observations is the key ques-
tion. Especially when most users report false information,
the true information is unable to be discovered by voting
or averaging. Intuitively, we should trust information from
reliable users, i.e., users who often report true information.
However, users’ reliability degrees are not known a priori.
To tackle the challenge of discovering both true information
and user reliability, truth discovery methods [26, 27, 28, 44,
47] have been proposed based on the principle that reliable
users tend to report true information and truth should be
reported by many reliable users.

Although truth discovery techniques can be applied to
crowd sensing applications to extract true information, ex-
isting methods do not take into consideration the correla-
tions among entities in truth discovery. In fact, correlations
exist ubiquitously among entities. For example, nearby seg-
ments of the same road may share similar traffic conditions,
locations in the same area may have similar weather con-
ditions, and a station may have similar gas prices during a
short period. Such correlation information can greatly ben-
efit the truth discovery process—information obtained from
reliable sources can be propagated over all correlated enti-
ties, such that the aggregated information is more trustwor-
thy. Especially, taking correlations into consideration will be
more helpful when the coverage rate is low, i.e., users only
provide observations for a small portion of the entities. In
such cases, many entities may receive observations from un-
reliable users, and thus reliable information borrowed from
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correlated entities is important. In contrast, if we regard
entities as independent ones and ignore their correlations,
the truths on entities that are not observed by reliable users
cannot be discovered.

In this paper, we propose an effective truth discovery
framework for crowd sensing of correlated entities. In the
crowd sensing systems, users make their observations on
some entities among a set of correlated entities, and report
the observations to a central server via smartphones. We
propose an approach that jointly infers user reliability and
truths among correlated entities. We formulate the task
as an optimization problem, in which truths and user re-
liability are unknown variables, and correlations are mod-
eled as regularization terms. The regularization terms make
the optimization difficult to solve due to the correlations
among unknown variables. To tackle this challenge, we pro-
pose to partition the variables into disjoint independent sets,
and conduct block coordinate descent to iteratively update
truths and user reliabilities. To process large-scale data, we
further propose a parallel solution implemented on Hadoop
cluster. Experiments on three crowd sensing applications
show the effectiveness and efficiency of the proposed ap-
proaches.

In summary, we make the following contributions:

• We propose an effective optimization-based framework
to solve the problem of truth discovery for crowd sens-
ing of correlated entities. The proposed objective func-
tion measures the differences between the user-input
observations and the unknown truths, and integrates
users’ reliabilities as unknown weights. The correla-
tion regularization terms punish the deviations in the
truths between correlated entities.

• To tackle the challenge introduced by the regulariza-
tion terms, we propose to partition entities into dis-
joint independent sets, and then develop an iterative
solution based on block coordinate descent with con-
vergence guarantee. We introduce an approach that
partition entities into disjoint independent sets for gen-
eral cases, and propose effective ways to construct dis-
joint independent sets for the crowd sensing task with
spatial and temporal correlations.

• We further propose a MapReduce based solution for
the truth discovery of correlated entities. This is im-
plemented on a Hadoop cluster and we show its ability
of processing large-scale data.

• We conduct experiments on three crowd sensing
datasets, i.e., air quality sensing, gas price inference
and weather condition estimation datasets. Results
demonstrate that the proposed approaches outperform
existing methods in discovering true information for
correlated entities.

The rest of the paper is organized as follows. We describe
the system overview in Section 2. The proposed optimiza-
tion framework and solutions are detailed in Section 3. In
Section 4, we describe the proposed parallel solution based
on MapReduce model. Evaluations are shown in Section 5.
We review the related work in Section 6 and conclude the
paper in Section 7.
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Figure 1: System Framework

2. SYSTEM OVERVIEW
In this section, we introduce the problem setting and the

problem formulation. We start with some definitions.

Definition 1. An entity is a thing or phenomenon which
can be observed by crowd users; a user is a crowd sensing
participant who contributes information about the entities;
and an observation is the information perceived by a partic-
ular user on a particular entity.

For example, the temperature at a particular location and
time is an entity for a weather reporting application. Each
participant is a user, and the temperature observed and re-
ported by a user at a location and time is an observation.

Definition 2. A truth is the true value of an entity. A
user’s weight is the reliability degree of the information pro-
vided by the user.

Note here truths and user weights are unknown, and they
are the expected output. Correlations between entities are
considered: If two entities are correlated, their truths should
be close to each other. Consider the aforementioned exam-
ple. The truth is the real temperature on a particular lo-
cation and time, and a weight is assigned to a user which
indicates how likely the observations reported by him/her
are reliable, i.e., how close they are to the truths. Then the
problem we try to solve is to estimate both truths and user
weights given the observations collected from users.

With these definitions, we now describe the crowd sensing
system. Figure 1 shows the framework of this system. Users
make observations on entities, and upload their observations
to the cloud server via smartphones. On the server side, the
proposed truth discovery method is conducted to derive both
truths and user weights. In the following, we discuss details
about the processes at the user and server sides respectively.
Client. On the client side, each user provides observations
about entities, and uploads them to the server. The en-
tities can be actively or passively observed, and the users
may make the observations by themselves or report the ob-
servations with the help of sensors. Take WeatherSignal1

as an example. It is a crowd sensing application which can

1http://weathersignal.com
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not only automatically collect temperature, pressure data
via sensors integrated in users’ smartphones, but also allow
users to manually report the weather conditions.
Server. On the server side, once observations are collected
from users, the proposed truth discovery method will be
conducted. The reliability degree of each user is calcu-
lated, together with the estimated truths for entities. As
discussed, correlation information among entities is impor-
tant, and thus it is taken into consideration in the proposed
algorithm which will be detailed in Section 3.

3. TRUTH DISCOVERY ON CORRE-
LATED ENTITIES

In this section, we describe the proposed truth discovery
algorithm on correlated entities. The optimization frame-
work and its solution are discussed. We then propose the
parallel solution based on MapReduce model in Section 4.

3.1 Proposed Framework
We first define the mathematical notations for the prob-

lem. Each entity is indexed with i, and ei denotes the i-th
entity. Each user is indexed with k. An observation is rep-

resented as x
(k)
i which indicates that it is observed by user

k on entity ei. All the observations made by user k is rep-

resented as X (k). The truth for entity ei is denoted as x
(∗)
i ,

and the truths of all the entities are defined as X (∗). The
weight for user k is wk, and the collection of all the user
weights is W. Table 1 summarizes the important notations
used in this paper. With these notations, we can formally
define the problem as follows.
Problem Definition. Suppose there are N entities and
K users. The input are observations {X (1),X (2), · · · ,X (K)}
collected from all the K users and the pairwise correlations
among entities. Let N(i) denote the set of entities which
have correlations with entity ei. The expected output are
the truths X (∗) and the user weights W.

The intuitions behind the proposed method are that
truths should be close to the observations given by the reli-
able users, and correlated entities should have similar true
values. Based on these intuitions, we formulate the following
optimization problem:

min
X (∗),W

f(X (∗),W) =

N∑
i=1

{ K∑
k=1

wk||x(∗)i − x
(k)
i ||

2

+α
∑

i
′∈N(i)

S(i, i
′
)||x(∗)

i
′ − x(∗)i ||

2

}

s.t.

K∑
k=1

exp(−wk) = 1

(1)

Here α is a hyper parameter that balances between the two

terms in the objective function. S(i, i
′
) is a similarity func-

tion which captures the correlation degree of two entities.
Note here the design of this similarity function depends on
the specific application since entity correlations have differ-
ent properties in different applications. For example, one
way of modeling the similarity under spatial correlation is

Gaussian kernel, S(i, i
′
) = exp(−d2(i, i

′
)/σ2). Here d(i, i

′
)

is the Euclidean distance of two entities and σ is a scaling
parameter that controls how fast the similarity decreases as
the distance increases. In general, the Gaussian kernel is a

measure of similarity between entity i and i
′
. It evaluates

to 1 if the two input values are identical, and approaches 0
as they move further apart.

The objective function f(X (∗),W) in Eq(1) captures
the intuitions we have mentioned. The first term∑N
i=1

∑K
k=1 wk||x

(∗)
i − x

(k)
i ||

2 aims at minimizing the dis-
agreement between observations and truths, among which
the disagreement on entities from the users with higher
reliability degrees (i.e. wk) are weighed higher. This
means that higher penalties are given to more reliable
users if their observations deviate from the correspond-
ing truths. The second term in the objective function∑N
i=1

∑
i
′∈N(i) S(i, i

′
)||x(∗)

i
′ −x(∗)i ||

2 models the other princi-

ple, i.e., the truth of an entity should be close to the truths of
the entities it has correlation relationships with. In addition,
the similarity function ensures that more attention should
be paid to the entities with correlation degrees. By this ob-
jective function, we ensure that 1) the truths are picked from
information contributed by reliable users and 2) correlated
entities have similar truths.

The constraint in Eq(1) is used to restrict the range of
weights, otherwise the weight may go to negative infinity.

In sum, with the proposed framework in Eq(1), we search

for the values for two sets of variables, i.e. truths X (∗)

and user weights W, by minimizing the objective function
f(X (∗),W) under the constraint.

For an optimization problem with two sets of variables,
it is natural to use block coordinate descent approach [3]
to solve the problem. The idea is to iteratively update one
set of variables while fixing the other one. However, due to
the existence of the regularization term, it is non-trivial to
solve Eq(1) as variables are correlated. In order to tackle
this challenge, we first construct disjoint independent sets
of entities based on their correlation relationships. Here, an
independent set is a set of entities among which no corre-
lations exist. For example, entities shown in Figure 1 can
form three disjoint independent sets. There are five entities
which are denoted as nodes in the graph, and the links indi-
cate the correlations. As can be seen, e1, e2, e3 are correlated
with each other, and e4, e5 are correlated. The three inde-
pendent sets are thus {e1, e4}, {e2, e5} and {e3}, in which
entities within each set are not correlated. The methods
to construct disjoint independent sets will be discussed in
Section 3.3.

Here, we assume that independent sets are obtained. We
denote j as the index for an independent set. We use
I =

⋃J
j=1 Ij to denote the set containing all the enti-

ties, and Ij denotes the j-th subset. As truths are de-
fined for entities, the collection of truths X (∗) can thus
be divided into subsets based on independent sets, i.e.,

X (∗) = {X (∗)
1 ,X (∗)

2 , · · · ,X (∗)
J }.

Based on the disjoint independent sets, Eq(1) can be re-
written as follows:

min
X (∗),W

f(X (∗),W) =
∑
Ij⊂I

∑
i∈Ij

{ K∑
k=1

wk||x(∗)i − x
(k)
i ||

2

+α
∑

i
′∈N(i)

S(i, i
′
)||x(∗)i − x

(∗)
i
′ ||2

}

s.t.

K∑
k=1

exp(−wk) = 1

(2)
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Table 1: Frequently Used Notations

Symbol Definition

K number of users
k index of users
wk weight of user k
W the set contains all user weights
N number of entities
i index of entities
ei the ith entity
I the set contains all entities
Ij the jth independent set of entities
J number of independent sets

x
(∗)
i the true value of entity i

x
(k)
i observation provided by user k on entity i

X (∗) the set of true values of all entities

X (∗)
j the set of true values of entities from independent

set j
N(i) entities which have correlation with entity i

S(i, i
′
) the similarity degree between two entities

Y the set of all variables

Comparing Eq(1) and Eq(2), the outer-most summation
over entities in Eq(1) is decomposed into the summation
over all independent sets which is further decomposed into
summations over entities within one set. By this means, we
are able to solve the problem with the solution proposed in
the next section.

3.2 Proposed Solution
In Eq(2), user weights W and truths X (∗)

1 ,X (∗)
2 , · · · , X (∗)

J

should be learned simultaneously to minimize the objective
function. In order to achieve this goal, block coordinate
descent approach [3] is utilized to iteratively update the val-
ues of one set while fixing the values of others until con-
vergence. There are two cases at each iteration: One is to
update user weights W while fixing all the sets of truths

{X (∗)
1 ,X (∗)

2 , · · · ,X (∗)
J }, the other is to update one set of

truths X (∗)
j while fixing user weights and all the other sets

of truths {W,X (∗)
1 , · · · ,X (∗)

j−1,X
(∗)
j+1, · · · ,X

(∗)
J }. We discuss

the details of the two cases as follows.

Update W while fixing {X (∗)
1 ,X (∗)

2 , · · · ,X (∗)
J }: In this

case, all sets of truths are fixed, then user weights W can
be computed based on the difference between the truths and
the observations made by the user:

W ← arg min
W

f(X (∗),W) s.t.

K∑
k=1

exp(−wk) = 1. (3)

We can solve this optimization problem based on Lagrange
multipliers approach. The Lagrangian of Eq(2) is given as:

L({wk}Kk=1, λ) =
∑
Ij⊂I

∑
i∈Ij

{ K∑
k=1

wk||x(∗)i − x
(k)
i ||

2

+α
∑

i
′∈N(i)

S(i, i
′
)||x(∗)

i
′ − x(∗)i ||

2

}
+ λ(

K∑
k=1

exp(−wk)− 1),

where λ is a Lagrange multiplier. Let the partial derivative
of Lagrangian with respect to wk be 0, we get:∑

Ij⊂I

∑
i∈Ij

||x(∗)i − x
(k)
i ||

2 = λ exp(−wk). (4)

From the constraint that
∑K
k=1 exp(−wk) = 1, we can

derive that

Algorithm 1 Truth Discovery on Correlated Entities

Input: Observations from K users: {X (1), . . . ,X (K)}.
Output: Truths X (∗) = {x(∗)

i }
N
i=1, user weights W = {wk}Kk=1.

1: Initialize the truths X (∗);
2: for i← 1 to N do
3: Construct a correlation graph Gcorr in which an edge

denotes the existence of correlation between the two nodes;
4: end for
5: Partition entities into disjoint independent sets {I1, · · · , IJ}

in Gcorr;
6: repeat
7: Update user weights W according to Eq(6) to infer user

reliability degrees based on the estimated truths;
8: for j ← 1 to J do
9: for i ∈ IJ do

10: Update the truth of the ith entity x
(∗)
i from the

set IJ according to Eq(8) based on the current estimates of
user weights;

11: end for
12: end for
13: until Convergence criterion is satisfied;
14: return X (∗) and W.

λ =

K∑
k=1

∑
Ij⊂I

∑
i∈Ij

||x(∗)i − x
(k)
i ||

2. (5)

We can then derive the update rule for each user’s weight
by plugging Eq(5) into Eq(4):

wk = − log

 ∑
Ij⊂I

∑
i∈Ij ||x

(∗)
i − x

(k)
i ||

2∑
Ij⊂I

∑
i∈Ij

∑K
k′=1 ||x

(∗)
i − x

(k′)
i )||2

 , (6)

where k
′

denotes the index of a user. This update rule shows
that a user’s weight is higher when his observations are more
often close to the truths.

Update X (∗)
j while fixing {W,X (∗)

1 , · · · ,X (∗)
j−1,X

(∗)
j+1, · · · ,

X (∗)
J }: In this case, user weightsW are fixed, and the sets of

truths are also fixed except X (∗)
j . We update the truth for

each entity in X (∗)
j by minimizing the objective function:

X (∗)
j ← arg min

X (∗)
j

f(X (∗),W). (7)

Let the derivative of Eq(2) be 0 with respect to x
(∗)
i , then

for each i ∈ Ij , or equivalently for each x
(∗)
i ∈ X

(∗)
j , we have

the following update rule:

x
(∗)
i =

∑K
k=1 wkx

(k)
i + α

∑
i
′∈N(i) S(i, i

′
)x

(∗)
i
′∑K

k=1 wk + α
∑
i
′∈N(i) S(i, i′)

(8)

At this step, we can solve for x
(∗)
i with Eq(8) because the

correlated variables are separated into disjoint independent
sets. Specifically, we only update truths from independent

set X (∗)
j , which means that their correlated entities are not

in this set, but in the other sets. Note that we have already
fixed the truths of the other sets, and thus they are con-

stants. As shown in Eq(8), x
(∗)
i is updated by averaging over

the observed values weighted by user weights
∑K
k=1 wkx

(k)
i

and the values of its correlated entities
∑
i
′∈N(i) x

(∗)
i
′ .

The proposed method is summarized in Algorithm 1. Dis-
joint independent sets {I1, · · · , IJ} are first constructed ac-
cording to the correlation information among entities (to be
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discussed in the following section). Then the algorithm iter-
atively updates user weights and truths based on Eq(6) and
Eq(8) until convergence criterion is satisfied.

3.3 Construction of Disjoint Independent Sets
As discussed in Section 3.1, disjoint independent sets of

entities should first be formed before the iterative solution
can be used to solve Eq(1). Therefore, how to partition
entities into disjoint independent sets is an important step.
In this section, we first discuss how to form disjoint inde-
pendent sets for any general cases in Section 3.3.1. Special
cases of dealing with spatial and temporal correlations are
discussed in Section 3.3.2 and Section 3.3.3 respectively.

3.3.1 General Cases
We can form a correlation graph based on the pairwise

correlations among entities. In the graph, each vertex repre-
sents an entity and two vertices have an edge if they are cor-
related (i.e., two vertices are associated). Then the task of
partitioning entities into disjoint independent sets is equiva-
lent to the vertex coloring problem on the correlation graph.
A vertex coloring is an assignment of colors to each vertex
of a graph such that no edge connects two identically col-
ored vertices. The problem of finding minimum number of
colors for a given graph, i.e. minimum vertex coloring, is an
NP-complete problem. However, some heuristic algorithms
have been proposed, which are efficient and can produce
good solutions in practice. We adopt the well-known Dsatur
algorithm [5] to find disjoint independent sets in our task.

The procedure is described as follows. We first define the
saturation degree of a vertex as the number of different inde-
pendent sets that are covered by the associated vertices. The
main idea is to iteratively select the vertex (entity) with the
maximal saturation degree and put the selected entity into
the corresponding independent set. The algorithm starts by
arranging the vertices by a decreasing order of degrees, and
the vertex with the maximal degree is put into independent
set 1. After the initialization, an iterative process is per-
formed to put entities into independent sets. During each
iteration, the entity with the maximal saturation degree is
chosen. In the tie case, we can break the tie by choosing the
entity with the maximal degree. Then the selected entity is
put into the independent set with the smallest index. This
process continues until all the entities are processed.

In sum, given any correlation graph, we are able to con-
struct disjoint independent sets by applying the aforemen-
tioned method. However, this step may still be time consum-
ing especially when there are a large amount of entities. For-
tunately, efficient methods can be applied to certain types
of correlations, such as temporal and spatial correlations. In
the following, we present the proposed approaches of inde-
pendent set construction for these two special cases, which
have only O(1) time complexity.

3.3.2 Temporal Correlations
In many real-world applications, temporal correlations ex-

ist among entities. Examples include weather conditions
(e.g., temperature, humidity) and air quality measures (e.g.,
PM2.5, NOx). Temporal correlation is a local correlation
and it typically exists only within a certain time window,
i.e., the values of entities within a small time window are
similar. This property enables us to develop a more efficient
way to construct disjoint independent sets.

T1 T2 T3 T4

I1 = { }
I2 = { }

Correlation 

Entities 

Figure 2: Separating entities based on temporal cor-
relation when p = 1

I1 = { }
I2 = { }
I3 = { }
I4 = { }

Correlation 

Entities 

Figure 3: Separating entities based on spatial corre-
lation

Let Ti denote the collection of entities in the i-th time
slot, and Ii denote the i-th independent set. Without loss of
generality, we assume that temporal correlations exist within
p + 1 consecutive time slots, i.e., entities correlate with all
those from previous p time slots. We also assume that there
are (p + 1)(Q + 1) time slots in total. Then p + 1 disjoint
independent sets can be formed as follows. In each set, there
are Q+ 1 time slots:{

Ii =

Q⋃
q=0

Ti+(p+1)q

}p+1

i=1

.

Specifically, when p = 1, we only consider the temporal
correlations among two consecutive time slots, i.e., entities
only correlate with those from the previous time slot. In this
case, all entities in odd-numbered time slots I1 and even-
numbered time slots I2 can form two disjoint independent
sets. An example is shown in Figure 2 in which we have four
time slots {T1, T2, T3, T4}. Then two disjoint independent
sets can be formed as I1 = {T1, T3} and I2 = {T2, T4}.

3.3.3 Spatial Correlations
Spatial correlations are another type of correlations that

widely exist in real world. For example, gas prices among gas
stations and weather conditions within certain geographical
areas are usually very similar. Spatial correlation is also a lo-
cal property which allows the design of an efficient method
of disjoint independent set construction. Specifically, en-
tities distributed on a gridded map can be separated into
four disjoint independent sets. Let e(i,j) be the entity on
the i-th row and j-th column of the gridded map, and let
p = {1, 2, · · · , P} and q = {1, 2, · · · , Q} be the indices. Four
independent sets can be constructed as follows:
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I1 =

{
e(2p,2q−1)

}P,Q
p=1,q=1

, I2 =

{
e(2p−1,2q−1)

}P,Q
p=1,q=1

,

I3 =

{
e(2p−1,2q)

}P,Q
p=1,q=1

, I4 =

{
e(2p,2q)

}P,Q
p=1,q=1

.

They are formed in a way that entities in even rows and
odd columns form independent set I1, those in odd rows and
odd columns form I2, those in odd rows and even columns
form I3 and those in even rows and even columns form I4.
Figure 3 illustrate an example of the four disjoint indepen-
dent sets constructed on a gridded map. As can be seen,
entities in each set are not correlated with the others in the
same set.

3.4 Convergence Analysis
Here, we formally prove the convergence of the proposed

iterative approach shown in Algorithm 1 by the following
theorem.

Theorem 1. The iterations shown in Algorithm 1 con-
verge and the solution is a stationary point of the optimiza-
tion problem in Eq(2).

Proof. We can simplify the optimization problem as fol-

lows when variables are represented as Y = {W,X (∗)
1 ,X (∗)

2 ,

· · · ,X (∗)
J }

minimize f(y)

s.t. y ∈ Y
(9)

Suppose for each yi ∈ Yi,
f(y1, · · · , yi−1, ξ, yi+1, · · · , ym)

viewed as a function of ξ, attains a unique minimum ξ̄ over
Yi. Let {yk} be the sequence generated by the following
updating rule

yk+1
i ← arg min

ξ∈Yi

f(yk+1
1 , · · · , yk+1

i−1 , ξ, y
k
i+1, · · · , ykm)

According to the proof for block coordinate descent in [3],
every limit point of {yk} is a stationary point if the above
conditions hold.

In the following, we only need to prove that Algorithm 1
satisfies the conditions. Specifically, we need to prove that
each iteration generates a unique minimum for the updated
variables. This is proved based on the two cases of updates:

Case One: This is to update W while fixing

{X (∗)
1 ,X (∗)

2 , · · · , X (∗)
J }. In order to show the convexity

of Eq(2), we introduce another variable tk, so that tk =
exp(−wk). Then Eq(2) can be expressed in terms of tk as
follows:

min
{tk}Kk=1

f(tk) =
∑
Ij⊂I

∑
i∈Ij

{ K∑
k=1

− log(tk)||x(∗)i − x
(k)
i ||

2

+α
∑

i
′∈N(i)

||x(∗)i − x
(∗)
i
′ ||2

}

s.t.

K∑
k=1

tk = 1

(10)

The objective function of Eq(10) is a linear combination
of negative logarithm functions and constants, and thus it is
convex. In addition, the constraint is linear in tk, which is
affine. Therefore, Eq(2) is convex while fixing all the truths,

such that a unique minimum for wk can be achieved with
the update rule in Eq(6).

Case Two: This is to update X (∗)
i while fixing

{W,X (∗)
1 , · · · , X (∗)

i−1,X
(∗)
i+1, · · · ,X

(∗)
J }. When fixing user

weights W, Eq(2) is a summation of quadratic functions

with respect to x
(∗)
i . It is convex since these quadratic func-

tions are convex and summation operation preserves con-

vexity. As a consequence, a unique minimum for x
(∗)
i can be

achieved with the update rule in Eq(8).
Therefore, this proves the convergence of the proposed

method.

3.5 Time Complexity
We analyze the time complexity of the proposed method

by analyzing each iteration’s running time. Assume there
are K users and N entities. The user weight update step
costs O(KN) time because for each user we calculate the
square error between its observations and truths. In the
truth update step, for each entity we calculate the weighted
sum of observations from K users, the sum of correlated
values and the sum of K users’ weights. Totally it also needs
O(KN) time. Therefore, the time complexity is linear with
respect to the number of observations.

4. MAPREDUCE IMPLEMENTATION
Crowd sensing applications usually have a large amount

of participants who may generate a large amount of obser-
vations. To conduct truth discovery on this “big data”, we
hope to take advantage of cloud computing techniques to
process large-scale data in parallel. Among parallel pro-
gramming models, MapReduce [11] is widely adopted for
many data mining tasks on large-scale data. In this section,
we describe our design of a MapReduce model based parallel
algorithm on Hadoop platform.

A typical MapReduce model contains two phases: 1) the
map phase reads the input data, and converts it into key-
value pairs; 2) the reduce phase takes the key-value pairs
generated from the map phase as input, and performs the
needed operations on them. For the proposed truth discov-
ery task, the objective is to adapt Algorithm 1 to a parallel
version. However, this is a non-trivial task. The challenge
is that truths are updated according to Eq(8) with respect
to each independent set. This requires us to fix all the other
variables while updating those within one independent set.
Obviously, this prevents us from deriving an efficient parallel
process to compute truths all at once.

In order to solve this problem, we design a MapReduce al-
gorithm based on asynchronous parallel coordinate descent.
The proposed method iteratively calculates user weights
and truths. During each iteration, the input data include
observations from all K users {X (k)}Kk=1, truths and user
weights estimated from the last iteration (at iteration t)—

X (t)(∗) = {x(t)(∗)i }Ni=1 and W(t) = {w(t)
k }

K
k=1. The outputs

are truths and user weights calculated in the current itera-
tion (at iteration t + 1). The proposed method is shown in
Algorithm 2. In the following, we will describe the details
of the functions used in the proposed MapReduce truth dis-
covery algorithm.
Input Data Format. The input data is formatted as tuples
of three elements: the ID of an entity (denote as i), the ID
of a user (denote as k) and the observation by the k-th user
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Algorithm 2 MapReduce Implementation

Input: Data from K users: {X (1), . . . ,X (K)}.
Truths at iteration t: X (t)(∗) = {x(t)(∗)

i }Ni=1

User weights at iteration t: W(t) = {w(t)
k }

K
k=1

Output: Truths at iteration t + 1: X (t+1)(∗)

User weights at iteration t + 1: W(t+1)

1: function MAP(Key id, Value v)

2: (i, x
(k)
i , k)← v;

3: observ error ← (x
(k)
i − x

(t)(∗)
i )2;

4: EMIT(−k, observ error);

5: EMIT(i, (x
(k)
i , k));

6: end function

7: function COMBINE(Key id, Value[] v)
8: if id > 0 then
9: combined value = null;

10: for vi ∈ v do
11: Append vi to combined value;
12: end for
13: end if
14: if id < 0 then
15: combined value = 0;
16: for vi ∈ v do
17: combined value = combined value + vi;
18: end for
19: end if
20: EMIT(id, combined value);
21: end function

22: function REDUCE(Key id, Value[] v)
23: if id > 0 then

24: [x
(k)
i , k]← v;

25: Calculate x
(t+1)(∗)
id according to Eq(8);

26: EMIT(id, x
(∗)(t+1)
id );

27: end if
28: if id < 0 then
29: id← −id;

30: Calculate nominator of w
(t+1)
id according to Eq(6);

31: EMIT(−id, w
(t+1)
id );

32: end if
33: end function

34: Calculate w
(t+1)
id according to Eq(6);

35: return X (t+1)(∗) = {x(t+1)(∗)
i }Ni=1 and

W(t+1) = {w(t+1)
k }Kk=1.

for the i-th entity (denote as x
(k)
i ). In this way, the input is

represented in the form of (i, x
(k)
i , k).

Map Function. The input to the Map function is a collec-
tion of tuples. The Map function pre-processes input tuples
and outputs key-value pairs to be used in the Reduce func-
tion. In order for Reduce function to calculate truths, one
output key-value pair includes entity id i (i.e., the key) and

(x
(k)
i , k) (i.e., the observed value together with its user id).

Also, in order for Reduce function to calculate user weights,
the Map function pre-calculates the squared observation er-

ror based on the observation x
(k)
i and the truth estimated

from the last iteration x
(t)(∗)
i . Then another key-value pair

is emitted, which is user id k (i.e., the key) and the observa-
tion error (i.e., the value). Here we use a positive index as
the emitted entity id, and a negative one as the emitted user

id. This helps the Reduce function to distinguish between
these two types.

Reduce Function. The Reduce function takes the key-
value pairs emitted from the Map function as input. Truths
and user weights are calculated and emitted as outputs.
Upon receiving key-value pairs with positive keys, the Re-
duce function calculates the truths according to Eq(8). Each
output tuple includes entity id and the calculated truth for
this entity. If the Reduce function receives key-value pairs
with negative keys, the nominator in the user weight calcu-
lation (Eq(6)) is calculated and emitted. Final user weights
will be derived in the wrapper function.

Combine Function. Since the number of entities and users
can be quite large, the overhead from the communication
and sorting operations may dominate the running time. In
order to reduce this kind of overhead, a Combine function
is designed. It works in a similar way with the Reduce func-
tion. For key-value pairs with positive keys, the combiner
will return local summation over the observation errors with
the key. As for key-value pairs with negative keys, the com-
biner will just append the value and output the key-value
pair.

Wrapper Function. A wrapper function is designed to
control the iterative procedure. This function first initial-
izes the truths as the mean of the observations provided by
different users, and initializes user weights as 1

K
. Then the

initial values and input data are fed to the Map function.
Truths can be directly collected from the output of the Re-
duce function and user weights can be derived according to
Eq(6) with the returned values from the Reduce function.
We repeat the whole process until the estimated truths con-
verge or after a certain number of iterations.

5. EVALUATIONS
In this section, we report the experimental results on

datasets from three real-world crowd sensing applications,
i.e., air quality sensing, gas price inference and weather con-
dition estimation datasets. The results demonstrate that
the proposed method outperforms state-of-the-art truth dis-
covery methods because it incorporates correlations among
entities into the model. The experiment setup is discussed
in Section 5.1. Results are discussed in Section 5.2, Sec-
tions 5.3 and 5.4. Running time of the proposed method on
Hadoop cluster is presented in Section 5.5.

5.1 Experiment setup
In this section, we present the performance measures and

discuss the baseline methods which are compared in the ex-
periments.

5.1.1 Performance Measures
In the experiments, the inputs for all methods are obser-

vations about entities given by different users. The outputs
are the estimated truths and user weights. For each dataset,
we have the ground truths, i.e., the actual true values of en-
tities. However, they are not used by the proposed approach
or the baselines, but are only used for evaluation. Note that
all datasets contain continuous data, and thus we adopt the
following measures to evaluate the performance.

• Mean Absolute Distance (MAD) measures the overall
absolute distance between each method’s outputs and
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(a) Air Quality Sensing Devices (b) Areas for Sensing (c) Locations for Sensing

Figure 4: Air quality sensing devices and locations. (a) shows the mini-AQM, its smartphone App and the
thermo. The mini-AQM is portable and carried by participants. Thermo is the device for collecting ground
truths. (b) shows the four areas designated for air quality sensing at Tsinghua University. (c) shows the
locations designated for sensing in each area.

the ground truths, which is computed by averaging the
absolute difference over all the entities.

• Root Mean Square Error (RMSE) is computed by tak-
ing the root of the mean squared differences between
each method’s outputs and the ground truths.

MAD and RMSE both measure the differences between
outputs compared with ground truths. The lower the mea-
sure, the closer the method’s outputs to the ground truths,
and the better it performs. RMSE emphasizes on larger
errors compared with MAD.

5.1.2 Baseline Methods
In the experiment, the proposed Truth Discovery method

on correlated entities is denoted as TD-corr. We compare it
with the following state-of-the-art truth discovery methods
which are designed to work on continuous data:

Gaussian Truth Model (GTM) is a Bayesian model that
solves the problem of truth discovery on continuous data.
Conflict Resolution on Heterogeneous data (CRH) is a frame-
work that infers the truths from multiple sources with dif-
ferent data types, such as continuous and categorical data.
Confidence-Aware Truth Discovery (CATD) is proposed to
detect truths from multi-source data with long-tail phe-
nomenon. Besides these truth discovery approaches, sim-
ple averaging methods, such as Mean and Median, are also
compared.

We implement all the baselines and set the parameters as
suggested in the corresponding papers. All the experiments
are conducted on a Windows machine with 8G RAM, Intel
Core i7 processor.

5.2 Experiments on Air Quality Sensing Sys-
tem

Air quality monitoring has drawn great attention these
days, since people are suffering from deteriorated air quality
over the past years, especially for cities in developing coun-
tries such as Beijing and New Delhi. In this experiment,
we target the sensing of particulate matter with diameter
less than 2.5 micron (PM2.5) with mini-AQM – a portable
air quality sensing device designed for personal use [1, 7],
as shown in Figure 4(a). The readings of mini-AQM are

uploaded automatically into the server and can be checked
on users’ smartphone App as well. We have 14 participants
equipped with mini-AQMs and let them conduct sensing
tasks in 4 areas at Tsinghua University (Figure 4(b)). These
areas are selected to represent different types of environ-
ments. Within each area, there are 6 or 7 locations (Figure
4(c)). The participants perform air quality sensing on all
locations of each area within one hour. The PM2.5 values
of the locations within one area are correlated, since the ar-
eas are limited in scale and the time window is short. The
collected data have 25 entities and each entity represents
the PM2.5 value of one location. The ground truths are
collected with Thermo [2] (Figure 4(a)), an accurate but
expensive sensing device.

5.2.1 Experimental Results

Performance w.r.t users’ coverage rate. The results
on this air quality sensing dataset are summarized in Table
2 measured by MAD and RMSE. To inspect the results vi-
sually, we also show the results in Figure 5. As users may
not have observations for all the entities in many real-world
applications, we conduct experiments on different coverage
rates of users. The rate is defined as the percentage of enti-
ties that are observed by the user. For example, the coverage
rate of 1.0 means that the user provides observations for all
entities, and the coverage rate of 0.2 means that the user
only provides observations for 20% of entities. We compare
the performance of all the approaches when the coverage
rate varies from 0.1 to 1.0.

As shown in Table 2 and Figure 5, TD-corr outperforms
all the baselines under any coverage rate, as the MAD and
RMSE of TD-corr are the lowest. These results demonstrate
the advantage of the proposed approach which incorporates
important correlation information in truth discovery. Note
here CATD performs worse compared with other truth dis-
covery methods. The reason is that CATD is designed for
data with long tail effect and is not suitable for this data.

Another observation from Table 2 and Figure 5 is that
the improvement over the baselines increases when the cov-
erage rate decreases. For example, when the coverage rate
is 0.8, TD-corr performs 25% better than the best baseline,
and when the coverage rates are 0.4 and 0.2, TD-corr per-
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Table 2: Performance Comparison on Air Quality Sensing System w.r.t Varying Coverage Rate

Coverage Rate

0.2 0.4 0.6 0.8 1.0

Method MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE

TD-corr 6.2442 7.5426 5.5579 6.7327 4.3506 4.9962 3.8850 4.3650 3.5830 3.9234
CRH 20.8943 43.2959 11.2952 18.3067 6.7254 8.9643 5.1653 6.5588 3.6809 4.6713

CATD 26.6218 46.4943 23.4346 30.6744 26.1897 31.2542 29.3994 33.7851 31.6699 35.6129
GTM 21.2988 42.2436 14.3768 25.7079 7.0405 10.5310 5.6053 7.5208 4.1867 5.2125
Mean 25.2916 48.0523 23.3865 39.2801 18.6068 29.5817 17.6935 27.0485 17.3739 25.0735

Median 21.6812 43.7129 14.2530 27.8183 7.2927 10.0167 6.1827 7.5137 5.6931 6.7028
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Figure 5: Performance Comparison on Air Quality
Sensing System w.r.t Varying Coverage Rate

forms 51% and 70% better than the best baseline respec-
tively. The reason is that when the coverage rate is lower,
the number of entities observed by reliable users also de-
creases. Thus, there will be more entities receiving obser-
vations mostly from unreliable users, or even worse, receiv-
ing all the observations from unreliable users. The baseline
methods purely infer truths by integrating over those unre-
liable observations, and thus their estimates are biased. In
contrast, the proposed method is able to discover the truths
because it takes correlated entities into consideration. Then
information observed by reliable users can be propagated to
entities that are not observed by reliable users and helps
infer the truths of those entities.

5.3 Experiments on Gas Price Inference
An interesting crowd sensing application is to solicit gas

price reports from crowd users and aggregate their answers
to get correct gas prices. In this application, each user re-
ports the observed gas prices for some gas stations to the
server—some may report true values but some of the re-
ported information may be wrong. The server then conducts
truth discovery to identify the true price for each station.

To conduct this experiment, we first collect gas prices of
2175 gas stations from the GasBuddy website2, which are
treated as the ground truths. The data are collected from
48 cities across the whole US continent for one day. Corre-
lations exist among gas stations within the same city. The
observations of users with different reliability degrees are
generated by adding different levels of Gaussian noise upon
the ground truths. There are 2175 entities in the dataset.
We conduct each experiment for 10 times and report the
average results.

2http://www.gasbuddy.com

5.3.1 Experimental Results

Performance w.r.t users’ coverage rate. The results
with 30 users are summarized in Table 3 and Figure 6 mea-
sured by MAD and RMSE. Compared with the experiments
on the air quality dataset, similar results can be observed.
The proposed method outperforms the baselines especially
when the coverage rate is low.

Performance w.r.t number of users. Figure 7 demon-
strates the performance when varying the number of users
from 10 to 100. The results show the following: 1) TD-
corr performs better than the baselines on the data with
any number of users. The incorporation of correlation in-
formation leads to a better estimation of truths. 2) The
improvement is more significant when there are fewer users.
The reason is when the number of users is smaller, there
are more entities receiving observations mainly from less re-
liable users, and the estimated truths would be biased to-
wards unreliable reports. The proposed method’s advantage
in propagating reliable information over correlated entities
is thus clearly shown.

Correlation accuracy. Here we show that the proposed
approach indeed takes correlation among entities in the esti-
mation of truths. We define the measure of correlation accu-
racy as follows. We measure the similarity between entities
based on the estimated truths, and regard two entities as
correlated ones if their distance passes a threshold. We then
compare the correlations derived from the estimated truths
and the ground-truth correlations. Then the correlation ac-
curacy is defined as the percentage of correlations that are
the same as the ground truths. Figure 8 shows the corre-
lation accuracy under different thresholds (0.01, 0.03, 0.05,
0.07, 0.09, 0.1, 0.2, 0.3). Figure 8(a) and Figure 8(b) show
the results when coverage rates are 20% and 80% respec-
tively. It can be seen that TD-corr captures the correlation
information better than the baselines under any setting, and
its correlation accuracy can reach a high value even when the
threshold is low, such as 0.05 or 0.07.

5.4 Experiments on Weather Condition Esti-
mation

Another interesting crowd sensing application is to col-
lect and aggregate weather conditions reported by users.
User can report weather information, such as temperature,
pressure, humidity. Data can be acquired with integrated
sensors in smartphones or manually input by users. The
truth discovery approach can then be conducted on the col-
lected noisy data to identify the true weather conditions. In
order to emulate this application, we collect weather fore-
cast data from three weather forecast platforms (Wunder-
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Table 3: Performance Comparison on Gas Price Inference w.r.t Varying Coverage Rate

Coverage Rate

0.2 0.4 0.6 0.8 1.0

Method MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE

TD-corr 0.0727 0.0963 0.0725 0.0941 0.0713 0.0917 0.0713 0.0912 0.0685 0.0867
CRH 0.2881 0.3714 0.1959 0.2475 0.1563 0.1968 0.1370 0.1720 0.1191 0.1488

CATD 0.2766 0.3574 0.1854 0.2344 0.1469 0.1850 0.1280 0.1610 0.1120 0.1400
GTM 0.2770 0.3582 0.1856 0.2348 0.1471 0.1852 0.1281 0.1610 0.1120 0.1400
Mean 0.2994 0.3851 0.2051 0.2590 0.1645 0.2071 0.1442 0.1810 0.1256 0.1570

Median 0.3272 0.4204 0.2299 0.2912 0.1853 0.2337 0.1640 0.2064 0.1415 0.1772
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Figure 6: Performance Comparison on Gas Price
Inference w.r.t Varying Coverage Rate
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Figure 7: Performance w.r.t Varying Number of
Users

ground3, HAM weather4, and World Weather Online5) for
147 locations within New York City Area. From each plat-
form, we collect temperature forecasts of two different days
as two different users, thus 6 users are formed in total. We
also crawl the ground truths of hourly temperature for each
location. An entity here is defined as the temperature of
one location at one time. The spatial correlation is mod-
eled using Euclidean distance with Gaussian kernel, and the
temporal correlation exists among entities from the same
location in consecutive time slots. The whole process of col-
lection lasts over a month and there are 145459 entities in
the dataset.

5.4.1 Experimental Results
Table 4 and Figure 9 summarize the performance of

TD-corr and baselines on the weather condition estimation
dataset. Similar results can be observed, compared with the
experiments on the previous two datasets.

3http://www.wunderground.com
4http://www.hamweather.com
5http://www.worldweatheronline.com
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Figure 8: Correlation Accuracy w.r.t Varying
Threshold

To demonstrate the proposed approach’s ability of distin-
guishing reliable users from unreliable ones, we compare the
reliability degrees estimated by each truth discovery method.
The reliability degree of a user is defined as the overall sim-
ilarity between its observations and truths. The ground-
truth reliability degree is calculated and compared as well.
In the compared methods, different functions are adopted to
calculate the reliability degree of users. For the sake of com-
parison, we normalize the reliability output into the range
of [0,1]. Figure 10 and Figure 11 show the comparison re-
sults when coverage rates are 0.2 and 0.8 respectively. To
make it clear, we demonstrate the user reliability degrees in
two plots, and each of them shows the comparison between
the ground truths and some of the approaches. TD-corr
and ground truths are compared in Figures 10(a) and 11(a).
Other baseline methods are compared in Figures 10(b) and
11(b).

We can observe that the user reliability estimated by TD-
corr is very close to the user reliability derived from the
ground truth. With the consideration of correlation infor-
mation, the proposed TD-corr approach can better estimate
the truths. Due to the intertwined process of truth and
user reliability estimation, such an improved truth estima-
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Table 4: Performance Comparison on Weather Condition Estimation w.r.t Varying Coverage Rate

Coverage Rate

0.2 0.4 0.6 0.8 1.0

Method MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE

TD-corr 2.5081 3.2734 2.3700 3.0434 2.2984 2.9327 2.2691 2.8919 2.2420 2.8520
CRH 4.0757 6.2663 3.4305 5.1666 2.8943 4.1617 2.5022 3.3352 2.2708 2.8955

CATD 4.0093 6.2208 3.3308 5.0819 2.7883 4.0444 2.4211 3.2127 2.2638 2.8598
GTM 4.7015 7.3111 3.6016 5.3953 3.0506 4.3992 2.5939 3.4938 2.2641 2.8600
Mean 4.3614 6.5426 3.9766 5.7515 3.6624 5.0880 3.4089 4.5359 3.2419 4.1882

Median 4.3418 6.5432 3.8614 5.7051 3.4252 4.9632 3.0016 4.2171 2.6409 3.4795
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Figure 9: Performance Comparison on Weather
Condition Estimation w.r.t Varying Coverage Rate

tion leads to an improved estimation of user reliability. In
contrast, due to the fact that the baselines do not consider
the important correlation information, their truth and user
reliability estimation may not be accurate, so we can observe
the deviation of their estimated user reliability from that of
the ground truth.

Practical convergence property of the proposed
method. The proposed method converges as discussed in
Section 3.4. In order to show the convergence in practice,
we conduct experiments on the weather dataset and record
objective function value at each iteration. As can be ob-
served from Figure 12, the objective value decreases quickly
in the first 10 iterations, then gradually reaches to a steady
value. This demonstrates the convergence of the proposed
method.

5.5 Efficiency Evaluation on Hadoop Cluster
Running time on hadoop cluster. As discussed in Sec-
tion 4, the proposed method can be implemented based on
the MapReduce model. We conduct experiments to demon-
strate the running time of this parallel algorithm. Datasets
are generated with different numbers of observations, vary-
ing from 104 to 108. The experiments are conducted on a
4-node Dell Hadoop cluster with Intel Xeon E5-2403 pro-
cessor (4x 1.80 GHz, 48 GB RAM). Results are summarized
in Table 5, which show that the running time is linear with
respect to the number of observations. We calculate the
Pearson product-moment correlation coefficient to further
justify this. The Pearson product-moment correlation co-
efficient is a measure of the linear correlation between two
variables. It gives a value between +1 and −1, where +1
indicates positive correlation, 0 indicates no correlation and
−1 indicates negative correlation. The Pearson’s correla-
tion coefficient in Table 5 shows a strong linear correlation
between the number of observations and the running time.
This means that the proposed method is scalable and can
be applied to large-scale data.
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Figure 10: Comparison of User Reliability Degrees
with Ground Truths (Coverage = 0.2)
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Figure 11: Comparison of User Reliability Degrees
with Ground Truths (Coverage = 0.8)

6. RELATED WORK
We review related work based on the following two cate-

gories.
Crowd Sensing. The research of crowd sensing [4, 6, 8, 9,
10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 35, 36,
37, 38, 40, 42] has received more and more attention with
the rapid development of pervasive sensors, smartphones,
and network technologies. Thanks to the rich set of sen-
sors (e.g., accelerometer, gyroscope, GPS, microphone, and
camera) integrated in the mobile devices, and the pervasive
WiFi and cellular networks, now people can record and share
the information they perceive wherever they are and when-
ever they want. Recently, a variety of sensing systems have
been designed for a wide spectrum of applications. Huang
et al. [21] implemented a system for the search and rescue
of people in emergency situations in wilderness areas. In
their system, RF-based sensors, storage and processing de-
vices are used. Eisenman et al. [14] designed a system for
the cyclists to collect and share data with each other about
their performance and the surrounding environment. Reddy
et al. [38] designed a smartphone based platform for the cy-
clists to document and share routes, ride statistics, experi-
ence and etc. Mun et al. [32] proposed an application which
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Table 5: Running Time on Hadoop Cluster

# Observations Time(s)

1× 104 77
1× 105 83
1× 106 136
1× 107 254
1× 108 413

Pearson Correlation 0.9088

utilizes users’ trajectory data to infer environmental impact
and exposure. EasyTracker [4] is designed with functions
that determine routes and local stops, and infer schedules
with collected trajectory data. These papers focused on the
design of the crowd sensing system, which is different from
the task of truth discovery studied in this paper.
Truth Discovery. Truth discovery was first proposed by
Yin et al. [47] as a Bayesian based approach in which the
confidence of each observation is calculated as the product
of the reliability of the sources that provide the observation.
Later, the topic attracts much attention and methods are
developed to infer both source reliabilities and true facts.
Pasternack et al. [33, 34] proposed methods to incorporate
prior knowledge into truth discovery. In these methods, a
source“invests” its reliability on the observations it provides,
and credits are collected by the confidence on its invested
observations. Galland et al. [15] modeled the difficulty of
getting the truths while computing source weights. Yin et
al. [48] proposed a semi-supervised method which can prop-
agate the information trustworthiness obtained from the ob-
served ground truths. Probabilistic graphical models were
adopted in [49, 50] and source selection problem was stud-
ied in [12, 39]. A maximum likelihood estimation approach
was proposed by Wang et al. in [44] which adopted expec-
tation maximization method, and it was designed for cate-
gorical data. Recently, approaches have been proposed to
handle heterogeneous data types [27, 26, 41], such as cate-
gorical data and continuous data. Ma et al. [30] proposed
a fine grained truth discovery model to handle users with
various expertise levels on different topics. In [31], Miao et
al. proposed a cloud-enabled privacy-preserving truth dis-
covery framework for crowd sensing systems. Note that the
approaches discussed in this paragraph tackle some other
challenges in truth discovery but do not consider correla-
tions among entities.

In [43], the authors considered physical correlations
among entities which are modeled with the joint proba-
bility of correlated variables, and derived an expectation
maximization based algorithm to infer both entities’ states
and sources’ reliabilities. In [46], they proposed a method

to capture the temporal correlations among entities, and
a joint probability of any given sequence of observed val-
ues are calculated from historical data to model the tem-
poral correlation. In [45], the authors proposed a scalable
algorithm which modeled the structure of correlations as a
Bayesian network. The proposed algorithm is efficient be-
cause the conditional independence property in the network
is exploited. However, these approaches work on binary data
and correlations, and cannot be generalized to other data
types, such as continuous data. In contrast, the proposed
method in this paper works on continuous data and corre-
lations, and thus the problem setting is quite different. Li
et al. [29] proposed an incremental truth discovery frame-
work that can dynamically update object truths and source
weights when the information comes sequentially. However,
they only consider the temporal relations for dynamically
generated data, and the proposed framework in this paper
can handle any types of correlations.

7. CONCLUSIONS
In this paper, we investigate the truth discovery problem

on correlated entities in crowd sensing applications. In a
crowd sensing system, crowd users contribute their infor-
mation about entities to the server. Since users’ reliability
degrees are unknown a priori, the observations they provide
should not be trusted equally. Then how to discover the true
information among the conflicting observations is a crucial
task. Although some approaches have been developed to de-
tect truths from conflicting sources, these approaches do not
take the valuable information about entity correlations into
account and thus cannot detect truths accurately when the
coverage is low. In fact, correlations among entities widely
exist and can greatly benefit the truth discovery process. In
this paper, we formulate the task of truth discovery on cor-
related entities as an optimization problem, which models
both the distance between truths and observations and the
distance among truths of correlated entities. User weights
are plugged into the optimization function to capture the
unknown user reliability. We tackle the difficulty caused by
the regularization terms added upon correlated variables. In
order to solve this problem, we propose methods to partition
variables into disjoint independent sets, and conduct block
coordinate descent to update truths and weights iteratively.
The convergence of the approach is proved. To further speed
up the process, we propose a MapReduce version of the al-
gorithm that is implemented on Hadoop cluster. We con-
duct experiments on three crowd sensing datasets, i.e., air
quality sensing, gas price inference and weather condition
estimation datasets. Results demonstrate the advantages
of the proposed method in discovering true information for
correlated entities over existing truth discovery approaches.
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