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ABSTRACT
Driven by the proliferation of sensor-rich mobile devices,
crowd sensing has emerged as a new paradigm of gather-
ing information about the physical world. In crowd sens-
ing applications, user observations are usually unevenly dis-
tributed across the monitored entities, and this gives rise
to two major challenges – redundancy and sparsity. On
one hand, multiple users may observe the same entity, and
their observations are sometimes conflicting with each other
due to the unreliable nature of human-carried sensors. On
the other hand, crowd sensing data are usually very sparse,
and there may exist considerable number of entities that
never receive any observations from users. Some existing
work studies these two challenges separately. However, we
can gain great benefits by dealing with them jointly. In
this paper, we develop an integrated framework to estimate
the true values of entities from redundant and sparse data
in crowd sensing applications. In this framework, we pro-
pose an effective algorithm to infer the “missing” observa-
tions for each entity, and aggregate both user-contributed
and inferred observations to discover the true values of enti-
ties. We conduct extensive experiments on real-world crowd
sensing systems to demonstrate the advantages of the pro-
posed framework on correctly inferring entity truths from
redundant and sparse data.
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•Information systems → Information systems appli-
cations;
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1. INTRODUCTION
Nowadays, we have witnessed the ubiquitous adoption

of mobile sensing devices (e.g., smartphones, smartglasses,
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smartwatches) with a plethora of integrated or portable sen-
sors (e.g., accelerometer, camera, GPS). These devices make
it easier for the population to sense and share the informa-
tion they perceived. Thanks to these innovations, crowd
sensing has emerged as a new way of collecting information
from the physical world. In crowd sensing applications, hu-
mans work as the sensor carriers or even the sensors, and
report what they learn about the conditions of the sur-
rounding environment, such as weather, traffic, air quality
and etc. The observations are then gathered in a central
server, and aggregated to obtain useful knowledge. Various
crowd sensing systems have been developed in different do-
mains [6, 9, 14, 24, 39, 42]. However, the crowdsourced data
collected in this way usually have two characteristics, redun-
dancy and sparsity, which significantly reduce the effective-
ness of crowd sensing systems. In the following, we will shed
more light on how these two characteristics affect the crowd
sensing system.

Redundancy. In a crowd sensing task, it is likely that mul-
tiple users observe the same entities. For example, in an air
quality sensing system, each user carries a portable device
that can transmit air quality readings to the central sever.
At some popular locations during peak hours, many redun-
dant reports about the air quality at the same location and
the same time may be submitted. Conflicts are inevitable in
the redundant data. So the redundancy challenge is: among
the conflicting observations, what is the true value?

A naive approach is to conduct voting or averaging, i.e.,
take the value that is claimed by the majority of users, or
the average value of the observations. The drawback of this
simple approach is obvious: It treats all the users equally
and fails to capture the variety in their reliability (which
usually refers to the probability of a user providing true
information). Such variety is caused by not only the qual-
ity of hardware but also the ways in which people use the
hardware. For example, the user who carries the air quality
sensor in hand can obviously report more accurate measure-
ments than the user who puts the sensor in pocket. Intu-
itively, if we can identify and put more weight on the re-
liable users, the aggregation accuracy can be significantly
improved. To tackle this challenge, some truth discovery
methods [32, 34, 51] have been proposed to simultaneously
estimate true values and user reliability from crowdsourced
data.

Sparsity. Although redundancy could be alleviated by ex-
isting truth discovery approaches, these approaches may fail
when facing the sparsity issue. In fact, sparsity is also widely
observed in crowdsourced data. In crowd sensing applica-



tions, there are usually a large number of entities that we
wish to observe, and some of the entities may never receive
an observation from any user. So the sparsity challenge is:
how to estimate the true values of these “missing” entities
with no observation data?

To address this challenge, we can exploit the information
about the similarity between entities since similar entities
usually have similar values. Take the air quality sensing
example again. It would be helpful to infer the air qual-
ity of unpopular areas where no users report any sensing
measurements based on the crowdsourced data collected at
neighboring popular areas.

Redundancy and sparsity usually co-exist in many crowd
sensing tasks. In the aforementioned air quality sensing ap-
plication, it is common that some locations receive mul-
tiple users’ sensing measurements while some others get
none. One straightforward approach to tackle both chal-
lenges works as follows. We first run truth discovery ap-
proaches to aggregate multiple users’ observations on the
observed entities, and then conduct interpolation to infer
the true values of the “missing” entities based on the values
of similar entities. The limitation of this simple approach
is that it regards redundancy and sparsity as separate chal-
lenges.

However, we can gain great benefits by dealing with two
challenges jointly: If we can estimate users’ missing observa-
tions, the estimated values can be used to better infer users’
reliability degrees in the truth discovery process. Typically,
data sparsity also implies that some users may only give
a few observations, and thus truth discovery methods may
not be able to correctly estimate the reliability degrees of
such users. Therefore, we propose a novel method that es-
timates users’ missing observations based on the observed
values as well as entity similarity information. After this,
truth discovery methods can be used to aggregate all the
observed and estimated values to fully unleash the power of
crowdsourced information.

To realize the above idea, we develop an integrated
framework, called Redundancy and Sparsity Tackling (RST)
framework, to infer the true values of entities from redun-
dant and sparse data in crowd sensing applications. In this
framework, we design an effective optimization method that
extracts key information from not only user-contributed ob-
servations but also similarities between entities to estimate
the missing observations and recover a complete user-entity
observation matrix. After missing observations are esti-
mated, we conduct truth discovery on the observation ma-
trix to derive the true value of each entity. As the first step
fills in missing observations of users, it directly impacts the
second step of truth discovery to achieve a more accurate
estimation of user reliability, which in turn results in a more
accurate estimation of true values. This integrated frame-
work thus tackles both redundancy and sparsity challenges.

In summary, this paper makes the following contributions:

• This paper recognizes the effect of redundancy and
sparsity on crowd sensing applications. To our best
knowledge, this is the first work that tries to tackle
these two challenges jointly in an integrated frame-
work.

• In order to estimate the missing user observations,
we formulate an optimization problem which captures

both the key patterns of user-contributed data and en-
tity similarity.

• An effective solution is developed to solve the proposed
optimization problem in an iterative way. The conver-
gence property of the proposed solution is proved, and
effective techniques are presented to further reduce the
time complexity.

• Extensive experiments on the task of air quality sens-
ing are conducted in various regions in Beijing, China.
The results demonstrate that the proposed method is
able to recover missing user observations and derive
accurate estimates of air quality measurements in var-
ious scenarios.

The rest of the paper is organized as follows. We describe
the system overview in Section 2. The proposed redundancy
and sparsity tackling framework and solutions are detailed
in Section 3. Evaluations are shown in Section 4. We review
the related work in Section 5 and conclude the paper in
Section 6.

2. SYSTEM OVERVIEW
In this section, we first describe several important con-

cepts followed by the problem definition, and then discuss
the system architecture.

Definition 1. An entity is a thing or phenomenon which
can be observed by crowd users; a user is a crowd sensing
participant who contributes information about the entities;
and an observation is the information perceived by a partic-
ular user on a particular entity.

Here we take the air quality sensing application as an ex-
ample. Air quality is vital to human health and thus it needs
to be monitored. The measurements include PM2.5 (partic-
ulate matter with diameter less than 2.5 microns), SO2 (sul-
fur dioxide), AQI (air quality index) and etc. In these sens-
ing applications, the air quality measurement (e.g., PM2.5)
at a particular location and time is an entity. Each partic-
ipant is a user, and the value of air quality measurement
that is observed and reported by a user at a given location
and time is an observation.

Definition 2. A truth is the true value of an entity.

Note here the truths of entities are unknown, and they are
the expected output of the proposed framework. Consider
the aforementioned example, the truth is the real air quality
value at a particular location and time.

Definition 3. The similarity between two entities is de-
fined based on the closeness between their true values.

Under this definition, if two entities are similar, their true
values should be close to each other. The entity similarity
information is provided as the input to the proposed frame-
work, which can be derived based on the characteristics of
the specific sensing application. As for air quality sensing,
the entity similarity can be computed based on the closeness
between locations and time.
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Figure 1: System Framework

Problem Definition. Given the redundant and sparse ob-
servation data collected from crowd sensing applications and
the entity similarity information, the objective is to estimate
the truth for each entity.

With the definitions above, we then discuss the designed
crowd sensing system. As shown in Figure 1, users (clients)
make observations on some of the entities and report their
values to the central server. Note that a large number of
entities may not receive any observation from any user. At
the server side, the proposed method is performed and all
the estimated entity truths are returned to the end users.
The detailed procedure is discussed in the following.
Client. With the sensors integrated or connected to their
mobile devices, users can sense the surrounding environment
and report their readings to the central server. This process
can be completed actively or passively, i.e., the sensing ac-
tivity can be started and reported manually by users or ac-
cording to an automatic schedule. For example, in a crowd
sourced weather report application, “WeatherSignal”1, the
weather condition can be reported manually by users (such
as “sunny”, “rainy” and etc.) or it can be performed auto-
matically by uploading the sensoring data collected from the
integrated sensors on temperature, pressure and etc.
Server. Once the observations are collected from the users,
the server performs the proposed method to estimate the
true value of each entity. The output is returned to users to
assist their decision making. For example, in the air quality
sensing application, we convert redundant and sparse crowd
sensing data into air quality measurements at each loca-
tion/time, which are then provided to users as an effective
air quality monitoring tool.

3. REDUNDANCY AND SPARSITY
TACKLING FRAMEWORK

In this section, we present the proposed Redundancy and
Sparsity Tackling (RST) framework. We discuss the formu-
lation of missing observation estimation in Section 3.1, and
its solution in Section 3.2. The truth discovery method used
for aggregation is introduced in Section 3.3. Then we prove
the convergence of the solution in Section 3.4.

1http://weathersignal.com

Table 1: Frequently Used Notations

Symbol Definition

M number of users
i index of users
N number of entities
j index of entities
X observation matrix of size M ×N : X = {xij}
xij the observation on the jth entity by the ith user
X∗ truth vector of size N × 1: X∗ = {x∗j}
x∗j true value of the jth entity

H sparse indicator matrix of size M ×N : H = {hij}
hij hij = 0 if xij is missing, hij = 1 otherwise
A entity similarity matrix of size N ×N : A = {ajj′}
ajj′ similarity between entity j and j′

L
L = D −A where D is a diagonal matrix with
Djj =

∑
j′ ajj′

W
diagonal weight matrix of size K ×K:
W = diag(w1, · · · , wK)

wk weight of virtual user k
K number of virtual users

V ∗
aggregated virtual observation vector of size N × 1 :
V ∗ = {v∗j }

v∗j
aggregated observation of all virtual users on the jth
entity

Q 1×K vector in which each entry equals to 1
U coefficient matrix of size M ×K: U = {uik}
uik mapping coefficient from user i to virtual user k
V virtual user matrix of size N ×K: V = {vjk}
vjk value of the jth entity by the kth virtual user

V·p, U·p the pth column of matrix V and U
Vp·, Up· the pth row of matrix V and U
Se sparsity level on entities
Su sparsity level on users
S overall data sparsity level of the observation matrix

3.1 Problem Formulation
Suppose there are N entities and M users. The observa-

tion matrix is denoted as X ∈ RM×N , where xij represents
an observation on entity j provided by user i. In crowd sens-
ing applications, each user usually provides observations for
a subset of entities. Because of this, the observation matrix
X is not complete, i.e., there are many “missing” entries in
X, which indicates that certain users did not provide obser-
vations on some of the entities. We use an indicator matrix
H to distinguish between missing and non-missing entries.
H has the same size as X, where hij = 0 if xij is missing
and hij = 1 if xij is observed. The final goal of this problem
is to infer a vector X∗ = {x∗1, . . . , x∗j , . . . , x∗N} in which x∗j
represents the true value of entity j.

We achieve this objective via the following two steps:

• Missing Observation Estimation. We estimate the
“missing” entries in the observation matrix X. By fill-
ing in the missing observations, we are able to approx-
imate what users observe about entities so that we
can better capture users’ reliability degrees in the next
step.

• Aggregation. After all the missing entries are filled,
we aggregate along each column (i.e., {x1j , . . . , xMj})
to obtain the true value of each entity x∗j . A naive ap-
proach is to take the average of the values, but this ap-
proach does not take into account the important factor
of user reliability. At this step, we adopt an existing
truth discovery method [32] that estimates users’ reli-



ability degrees and weigh each observation value based
on users’ reliabilities in the aggregation.

In this section, we describe the proposed method of miss-
ing observation estimation in detail and the aggregation
method will be discussed in the following sections.

To fill in the missing entries of X, we propose the following
optimization framework which integrates three important
aspects:

min MF + R1 + R2, (1)

where MF is a matrix factorization term, R1 and R2 are
two regularization terms that capture the constraints on en-
tities and users. These three terms are introduced below.

MF: Matrix factorization. The first term MF adopts
matrix factorization techniques to find two matrices U ∈
RM×K and V ∈ RN×K , such that their product provides a
good approximation to X (i.e., X ≈ UV T ). The intuition
is that: We identify K virtual users (typically K is much
smaller than min(M,N)) whose values towards N entities
are stored in matrix V , and we represent the observations of
the original M users as a linear combination of the virtual
users’ values. Each row in matrix U represents the coeffi-
cients of the linear combination that maps this original user
to the combination of K virtual users. In some sense, the
virtual users capture commonalities among users from K an-
gles, which serve as the basis to recover missing observations
by original users. In other words, virtual users’ observations
V can be regarded as a compression of the original data
which summarizes important characteristics of the original
data.

To find a good approximation of X, the values of X and
UV T should be as close as possible on the observed entries.
Thus we should find U and V that minimize the distance
between X and UV T on the entries where hij = 1: ‖H◦(X−
UV T)‖2. Here, ‖·‖ denotes the Frobenious norm and ◦ is the
Hadamard product which satisfies R = P ◦S ⇔ rij = pijsij .
To alleviate overfitting, we restrain the norms of the two
matrices (i.e., ||U ||2 and ||V ||2) to be small. Putting them
together, the first term MF in the minimization problem is:

MF : ‖H ◦ (X − UV T)‖2 + α(‖U‖2 + ‖V ‖2), (2)

where α is a hyperparameter balancing the approximation
error and the overfitting constraint. By minimizing this
term, we obtain U and V whose norms are small and their
product approximates X.

R1: Regularization on entity similarity. If we simply
minimize Eq(2), we may encounter issues on entities that
receive no observations from any user. When there are no
observations on an entity, there are no virtual observations
on this entity from virtual users neither. To infer the ob-
servations of these entities, we propose to incorporate the
similarity information among entities into the optimization
function.

We use a N ×N matrix A to encode known similarity be-
tween entities, in which ajj′ denotes the similarity between
two entities j and j′. The higher ajj′ , the more similar
the two entities are. Take spatial data as an example, sup-
pose each entity captures a particular location, and we can
measure the distance between two locations. One way of
modeling the similarity is to convert from the distance us-
ing Gaussian kernel, i.e., ajj′ = exp(−d2(j, j′)/σ2). Here
d(j, j′) is the distance of two entities and σ is a scaling pa-
rameter that controls how fast the similarity decreases as

the distance increases. In general, the Gaussian kernel is a
measure of similarity between entity j and j′. It evaluates
to 1 if the two input values are identical, and approaches 0
as they move further apart.

In many applications, if two entities are similar then they
are likely to receive similar observations, e.g., two close lo-
cations are likely to get similar air quality readings. By
incorporating such similarity relationships, the observations
of an unobserved entity can be approximated by some com-
binations of the observations on similar entities. To achieve
this, we add a regularization term R1 to the objective func-
tion. The basic idea is that the observations from virtual
users should not differ too much on entities that are similar
to each other. Therefore, when ajj′ is large (similar enti-
ties), ‖Vj· − Vj′·‖2 should be small, while some difference
between Vj· and Vj′· can be tolerated when ajj′ is small.

R1 :

N∑
j=1

N∑
j′=1

ajj′‖Vj· − Vj′·‖2

=

N∑
j=1

N∑
j′=1

[
ajj′

K∑
k=1

(Vjk − Vj′k)2
]

=

K∑
k=1

V T·kLV·k

= tr(V TLV ). (3)

To simplify the representations, we can reduce this term to
the trace of V TLV as shown above. Here, L = D − A and
D is a diagonal matrix with Djj =

∑
j′ ajj′ .

R2: Regularization on virtual users. As we have men-
tioned, virtual users’ observations serve as a compression of
the original data. However, virtual users are not equally im-
portant. Some virtual users may play more important roles
when recovering X. To recognize this difference and rely on
those important virtual users more during this process, we
propose to add the following regularization term R2.

We first introduce another two sets of variables. We use
V ∗ ∈ RN×1 to represent the aggregated observations from
all virtual users. Let W = Diag(w1, w2, . . . , wK) be the im-
portance degrees of K virtual users. If a virtual user is more
important (i.e., wk is high), higher penalty will be received
when this virtual user’s observation is quite different from
the aggregated one (i.e., difference between V·k and V ∗ is
large). On the contrary, the observation made by a less im-
portant virtual user with a low weight wk is allowed to be
different from the aggregated one. This term helps select
virtual users that are more important, and thus is added to
the sum of Eq(2) and Eq(3) to further regularize the matrix
V .

R2 :
N∑

j=1

K∑
k=1

(vjk − v∗j )2wk

= tr
[
(V − V ∗Q)W (V − V ∗Q)T

]
, (4)

where
∑K

k=1 exp(−wk) = 1, Q ∈ R1×K and each entry qk =
1 for k = 1, · · · ,K.



Combining Eq(2) (MF), (3) (R1) and (4) (R2), we obtain
the following optimization problem:

P : min
U,V,V ∗,W

f(U, V, V ∗,W ) = ‖H ◦ (X − UV T)‖2 + α(‖U‖2 + ‖V ‖2)

+ βtr(V TLV ) + γ tr
[
(V − V ∗Q)W (V − V ∗Q)T

]
s.t.

K∑
k=1

exp(−wk) = 1,

where α, β and γ are hyperparameters which give different
emphases on the regularization terms.

The problem P aims to minimize the aggregated error of
three parts: 1) the first part MF describes how well the ma-
trix factorization UV T can recover the observation matrix
X; 2) the second part R1, i.e., the regularization on entity
similarity, represents the divergence among correlated enti-
ties; 3) the third part R2, i.e., the regularization on virtual
users, represents the differences between virtual users’ ob-
servations and the aggregated ones, weighted by the virtual
users’ weights.

3.2 Solution
In this section, we present our solution to the proposed

optimization problem. The solution is developed based on
block coordinate descent [5], which iteratively solves for one
set of variables when fixing the others. The convergence of
the method is discussed in Section 3.4.
Update V while fixing U, V ∗,W . We rewrite the objec-
tive function f in problem P with respect to V :

f = ‖X − UV T‖2 + α‖V ‖2 + βtr(V TLV ) (5)

+γ tr
[
(V − V ∗Q)W (V − V ∗Q)T

]
+ C1

=

M∑
i=1

N∑
j=1

(xij − Ui·V T
j· )2 + tr(V T(αI + βL)V )

+γ

N∑
j=1

K∑
k=1

(vjk − v∗j )2wk + C1,

where C1 is a constant independent of V . The partial deriva-
tive of f with respect to V is

∂f

∂V
= −2XTU+2V UTU+2(αI+βL)V +2γ (V −V ∗Q)W.

(6)
Let the partial derivative of Eq(6) be 0, we can get

V (UTU + γ W ) + (αI + βL)V = XTU + γ V ∗QW. (7)

The above is a Sylvester equation and a classical algo-
rithm for the numerical solution is Bartels–Stewart algo-
rithm [4] which requires O(N3) time complexity. It becomes
intractable when we have a large number of entities, i.e.,
when N is large. An alternative way can be adopted to iter-
atively learn each column of V , i.e., V·k(k = 1, · · · ,K), with
other columns fixed. As will be discussed in Section 3.4, f
is convex with respect to V , and this strategy preserves the
same convergence property.

Let f1 = tr(V T(αI + βL)V ), and f2 =
∑

i

∑
j(xij −

Ui·V T
j· )2 + γ

∑
j

∑
k(vjk − v∗j )2wk. It is obvious that f =

f1 + f2 + C1 and the following partial derivatives can be
obtained:

∂f1
∂V·k

= 2(αI + βL)V·k, (8)

∂f2
∂vjk

= −2
∑
i

(xij −
∑
k

uikvjk)uik + 2γ (vjk − v∗j )wk. (9)

Combining Eq(8) and Eq(9), and let the partial derivative
of f with respect to V·k be 0, we can derive the following
linear equation:

F (k)V·k = e(k), (10)

where F (k) = (α +
∑M

i=1 u
2
ik + γwk)I + βL, and e(k) =

(e
(k)
1 , e

(k)
2 , . . . , e

(k)
N )T with e

(k)
j =

∑M
i=1 uik(xij − Vj·UT

i· +
vjkuik) + γ v∗jwk.

One simple solution involves computing the inversion of an
N×N matrix F (k), and it still requires O(N3) computation.
The steepest descent method [33,45] can reduce it to linear
time complexity and the corresponding update rule is:

r(t) = e(k) − F (k)V·k(t),

δ(t) =
r(t)Tr(t)

r(t)TF (k)r(t)
, (11)

V·k(t+ 1) = V·k(t) + δ(t)r(t),

where (t) denotes the tth iteration.
Update U while fixing V, V ∗,W . The objective function
f in problem P can be rewritten with respect to U :

f = ‖X − UV T‖2 + α‖U‖2 + C2

= tr(−2XV UT + UV TV UT + αUUT) + C3,

where C2 and C3 are constants independent of U .
Let the derivative of f with respect to U be 0, we can

derive the following:

U(V TV + αI) = XV. (12)

Then the solution of U can be derived as: U = (V TV +
αI)−1XV . Equivalently, we can update Ui·, i.e., each row
of U , iteratively. Let the derivative of f with respect to Ui·
be 0, we derive the following updating rule:

Ui· = (

N∑
j=1

xijVj·)(
N∑

j=1

V T
j·Vj· + αI)−1. (13)

Since the size of the matrix involved in inversion is K×K
and K is typically a small number, the computation com-
plexity is acceptable.
Update W while fixing U, V, V ∗. We derive the La-
grangian of the problem P with respect to W as follows:

L({wk}Kk=1, λ) = γ

N∑
j=1

K∑
k=1

(vjk − v∗j )2wk

+ λ(

K∑
k=1

exp(−wk)− 1) + C4, (14)

where C4 is a constant independent of W . Let the partial
derivative with respect to wk be 0, we get:

γ

N∑
j=1

(vjk − v∗j )2 = λ exp(−wk). (15)



Algorithm 1 RST Framework

Input: Sparse observation matrix X, entity similarity matrix
A, and the number of virtual users K.
Output: Entity truths X∗.

1: Initialize missing data of X as 0;
2: Initialize wk = − log(1/K), k = 1, · · · ,K;
3: Initialize v∗j = mean(X·j), if entries in X·j are not all

missing; or v∗j = mean(H ◦X) for all non-missing values in

X;
4: Initialize uik = uniform(0, 1), i = 1, · · · ,M , and

k = 1, · · · ,K;

5: X̂ ← X;
6: repeat
7: Update V according to Eq(11);
8: Update U according to Eq(13);
9: Update W according to Eq(17);

10: Update V ∗ according to Eq(18);

11: X̂ ← UV T;

12: X̂ ← (1−H) ◦ X̂ +H ◦X;
13: until Convergence criterion is satisfied;
14: X ← (1−H) ◦ (U ∗ V T) +H ◦X;
15: Aggregate X to derive the entity truths X∗ via a truth

discovery method [32];
16: return X∗.

From the constraint that
∑K

k=1 exp(−wk) = 1, we can derive
that:

λ = γ

K∑
k=1

N∑
j=1

(vjk − v∗j )2. (16)

We can then derive the update rule for each weight by plug-
ging Eq(16) into Eq(15):

wk = − log

( ∑N
j=1(vjk − v∗j )2∑K

k=1

∑N
j=1(vjk − v∗j )2

)
. (17)

Update V ∗ while fixing U, V,W . The objective function
of problem P with respect to V ∗ can be rewritten as

f = γ

N∑
j=1

K∑
k=1

(vjk − v∗j )2wk + C5,

where C5 is a constant independent of V ∗. Let the partial
derivative with respect to v∗j be 0, we can derive the solution

v∗j =

∑K
k=1 vjkwk∑K

k=1 wk

. (18)

The procedure to solve the problem P is summarized in
Lines 1 to 14 in Algorithm 1. The input includes observed
entries in X (i.e., entries whose hij = 1), similarity matrix
A and the number of virtual users K. After initializing all
the variables (W , V ∗ and U), we iteratively update each
set of variables using Eq(11), Eq(13), Eq(17) and Eq(18)
respectively until convergence criterion is satisfied.

3.3 Aggregation on X

After filling in all the missing observations in X, we need
to aggregate along each column to obtain the true value for
each entity x∗j . In order to achieve this, we adopt a state-of-
the-art truth discovery method [32] which aims to find out
the true information from noisy user observations. It formu-
lates the problem as an optimization problem to minimize
the overall weighted deviation between the identified truths

and the input observations. Please refer to [32] for more
details of this method. This step is included in Algorithm 1
(Line 15).

3.4 Convergence
In this section, we first present the convexity property of

the objective function with respect to each set of variables,
then prove the convergence of the problem P.

Lemma 1. f is convex with respect to V .

Proof. As we have discussed in Section 3.2, let f1 =
tr(V T(αI + βL)V ), and f2 =

∑
i

∑
j(xij − Ui·V T

j· )2 +

γ
∑

j

∑
k(vjk − v∗j )2wk. It is obvious that f = f1 + f2 + C1

where C1 is a constant independent of V .
We can rewrite f1 =

∑K
k=1 V·k(αI + βL)V T·k . The Hes-

sian of f1 with respect to V is a block-diagonal matrix, i.e.,
∂2f1

∂V ∂V T = diag(B1, B2, . . . , BK) where Bk = ∂2f1
∂V·k∂V T·k

=

2(αI + βL). In addition, for any K × 1 vector r 6= 0,
we have rTLr =

∑
j

∑
j′ ajj′(rj − rj′)

2 ≥ 0, i.e., the ma-
trix L is positive semidefinite. Then we can conclude that

det( ∂2f1
∂V ∂V T ) > 0, and thus f1 is convex with respect to V .

As for f2, it can be rewritten as f2 =
∑

i

∑
j(x

2
ij −

2xijUi·V T
j· + Vj·UT

i·Ui·V T
j· ) + γ

∑
j

∑
k(vjk − v∗j )2wk. The

Hessian of f2 with respect to V is also a block-diagonal

matrix, i.e., ∂2f2
∂V ∂V T = diag(G1, G2, . . . , GN ) where Gn =∑

i U
T
i·Ui· + γW . Since for any N × 1 vector b 6= 0,

bT (
∑

i U
T
i·Ui·)b =

∑
i(Ui·b)2 ≥ 0 and for k = 1, . . .K, wk ≥

0 (because of Eq(17)), we can derive that det( ∂2f2
∂V ∂V T ) ≥ 0,

and thus f2 is convex with respect to V .
In conclusion, f is convex with respect to V .

Lemma 2. f is convex with respect to U .

Proof. As shown in Eq(12), the Hessian of f with

respect to U is a block-diagonal matrix, i.e., ∂2f
∂U∂UT =

diag(BU , BU , . . . , BU ), and BU =
∑

j V
T
j·Vj· + αI. Similar

to the proof of Lemma 1, we can derive that det( ∂2f
∂U∂UT ) > 0,

and it is convex with respect to U .

Lemma 3. f is convex with respect to W .

Proof. In order to show the convexity in this case, we
introduce another variable tk, so that tk = exp(−wk). Then
the problem can be rewritten as follows,

min
{tk}Kk=1

f(tk) =

N∑
j=1

K∑
k=1

− log(tk)(vjk − v∗j )2 + C

s.t.

K∑
k=1

tk = 1,

(19)

where C is a constant independent ofW . The objective func-
tion in Eq(19) is a linear combination of negative logarithm
functions and constants, and thus is convex. In addition,
the constraint is linear in tk, which is affine. Therefore, f is
convex with respect to W .

Lemma 4. f is convex with respect to V ∗.

Proof. In this case, the objective function in the prob-
lem P is a summation of convex functions with respect to
V ∗. It is convex since these functions are convex and sum-
mation operation preserves convexity.



(a) Air Quality Sensing Devices (b) Areas at Tsinghua University (c) Locations at Tsinghua University

Figure 2: Air quality sensing devices and locations at Tsinghua University. (a) shows the different versions of mini-AQM, its
smartphone App and the Thermo. The mini-AQM is portable and carried by participants. The three versions are different in
design and technology. Thermo is the device for collecting ground truths. (b) shows the four areas designated for air quality
sensing at Tsinghua University. (c) shows the locations designated for sensing in each area.

Theorem 5. The iterative process shown in Algorithm 1
converges to a stationary point of the optimization problem
P.

Proof. According to the property of the block coordi-
nate descent [5], every limit point of the objective function
in problem P is a stationary point under the condition that
the objective function can attain a unique minimum during
each iteration. According to the above lemmas, the objec-
tive function is convex with respect to each set of variables
in each iteration, and thus a unique minimum is attained
at each iteration. As the condition holds, this theorem
holds.

3.5 Computational Complexity
Assume there areM users, N entities, andK virtual users.

It is also safe to assume that K � M � N for most of the
crowd sensing applications. Then, updating matrix V costs
O(KN) time for solving Eq(11) with the steepest descent
method [45], plus O(MNK2) time for the matrix multiplica-
tion; updating matrix U costs O(MNK) time for the matrix
multiplication and O(K3) time for the inversion; updating
W costs O(NK) time according to Eq(17); and updating V ∗

also requires O(NK) time according to Eq(18). In total, the
time complexity is O(MNK2). Since K is usually a small
number and thus can be regarded as a constant, the compu-
tational complexity of the proposed method is well within
the feasible realm.

4. EVALUATIONS
In this section, we present the evaluation of the RST

framework compared with several baseline methods. The
experiment is conducted on real-world air quality sensing
applications as well as simulation. The experiments on air
quality sensing are conducted at Tsinghua University and
the Haidian District in Beijing, China. The baselines and
evaluation metrics are discussed in Section 4.1 and Section
4.2. Results are shown and discussed in Section 4.3, Section
4.4 and Section 4.5.

4.1 Baselines
As discussed in Section 3, the proposed Redundancy and

Sparsity Tackling (RST) method first performs Matrix Fac-

torization (MF) with regularization terms on entity SIMilar-
ity (sim) and virtual user importance to fill in users’ “miss-
ing” observations, then infer entity truths by aggregating
observations with Truth Discovery (TD). As the proposed
method captures both entity similarity and virtual users’
importance, it gives good estimates on the “missing” obser-
vations, and thus the aggregation on the observation matrix
can derive better estimates of entity truths. In this section,
we justify the advantage of the proposed method empirically
by comparing it with the following three baselines:

• MF sim+TD (Matrix Factorization only with entity
similarity regularization + Truth Discovery). Com-
pared with RST, the difference is that this method
does not consider the importance of different virtual
users. In other words, this method does not incorpo-
rate the regularization term R2 discussed in Section
3. The comparison with this alternative of the pro-
posed method shows the benefits of adding R2 into
the optimization problem.

• TD+ITP (Truth Discovery + InTerPolation). As dis-
cussed in the introduction, one possible baseline is to
tackle redundancy and sparsity challenges separately
as follows: First, truth discovery is used to aggre-
gate observations of non-missing entities to estimate
their true values. Second, interpolation is conducted
on missing entities to infer their values. Specifically,
via interpolation, a missing entity’s value is computed
as the weighted average of its correlated observed en-
tities. As truth discovery and interpolation are not
integrated, they may not perform well compared with
RST. Especially when the data is extremely sparse, the
interpolation is likely to fail.

• Mean+ITP (Mean + InTerPolation). With this
method, mean (or average) is performed first on ob-
servations of non-missing entities to estimate their true
values, then an interpolation is conducted on missing
entities to infer their values. This is the simplest ap-
proach to tackle redundancy and sparsity issues, but
it ignores the characteristics of crowd sensing applica-
tions and thus is not as good as RST.



Table 2: Performance over All Entities on Tsinghua Data with Varying Sparsity

All Entities
MAE RMSE

Se Su S RST MF sim+TD TD+ITP Mean+ITP RST MF sim+TD TD+ITP Mean+ITP

0.6
0.3 0.72 16.764 30.059 20.749 21.430 28.432 55.969 36.525 36.603
0.6 0.84 16.981 36.842 21.298 22.628 28.581 70.692 36.370 37.780
0.9 0.96 19.271 59.421 24.632 23.851 32.540 107.274 40.992 39.523

0.7
0.3 0.79 17.719 31.053 22.683 23.289 29.827 57.632 39.331 39.091
0.6 0.88 17.921 39.848 22.736 22.232 30.008 74.779 39.020 36.233
0.9 0.97 21.429 62.156 23.940 22.668 36.958 112.728 38.672 35.576

0.8
0.3 0.86 16.587 30.991 21.000 21.648 28.164 57.167 36.923 36.836
0.6 0.88 17.547 38.636 22.173 22.409 29.347 71.168 37.572 37.108
0.9 0.98 21.142 67.214 26.060 25.841 42.281 121.999 42.948 41.847

Table 3: Performance over Non-missing Entities on Tsinghua Data with Varying Sparsity

Non-missing Entities
MAE RMSE

Se Su S RST MF sim+TD TD Mean RST MF sim+TD TD Mean

0.6
0.3 0.72 15.780 27.097 20.232 21.120 27.204 51.174 35.246 35.409
0.6 0.84 15.507 30.117 20.724 22.193 26.622 60.859 35.493 37.187
0.9 0.96 17.635 51.044 26.015 24.730 30.251 98.369 42.447 40.562

0.7
0.3 0.79 15.652 29.987 21.854 22.751 27.969 56.119 38.431 38.336
0.6 0.88 18.131 43.363 23.290 23.151 29.858 78.140 39.427 37.074
0.9 0.97 18.751 56.584 22.814 21.473 33.400 105.294 37.933 34.961

0.8
0.3 0.86 16.831 32.925 22.951 23.800 28.573 59.214 38.573 38.439
0.6 0.88 19.594 44.072 25.484 25.782 31.543 76.154 41.343 40.939
0.9 0.98 22.364 63.201 26.350 25.558 39.894 115.851 43.300 42.255

4.2 Evaluation Metrics
For the proposed method and the baseline methods, the

input includes observations about entities given by different
users as well as the entity similarity. The output is the esti-
mated entity truths. In each sensing scenario, we have the
ground truths, i.e., the actual true values of entities. How-
ever, they are not used by the proposed approach or the
baselines, but are only used for evaluation. In the experi-
mented sensing applications, the sensor data are continuous,
and thus we adopt the following measures to evaluate the
performance.

• Mean Absolute Error (MAE) measures the overall ab-
solute error between each method’s outputs and the
ground truths, which is computed by averaging the
absolute difference over all the entities.

• Root Mean Square Error (RMSE) is computed by tak-
ing the root of the mean squared differences between
each method’s outputs and the ground truths.

MAE and RMSE both measure the differences between
outputs and ground truths. The lower the measure, the
closer the method’s outputs to the ground truths, and the
better it performs. RMSE emphasizes on larger errors com-
pared with MAE. We perform all the experiments 40 times
and report the average results.

4.3 Air Quality Sensing at Tsinghua
University

Air quality has become a great concern around the world,
especially for developing countries such as China and India
where people are suffering from the deteriorated air quality.

Although official monitoring stations with high-quality sen-
sors are deployed throughout the country, the number is very
limited since they are very expensive. Take Beijing (the cap-
ital of China) as an example, it only has 22 stations covering
a 50 km×50 km land, and this means each station covers an
area as large as 113 km2 [54]. With such a limited number
of monitoring stations, we may obtain the overall air qual-
ity condition of the whole city, but we are unable to obtain
fine-grained air quality measurements. Fortunately, crowd
sensing becomes a promising solution for the fine-grained air
quality monitoring task.

In this section, we discuss the experiment on sensing
the particulate matter with diameter less than 2.5 micron
(PM2.5) with mini-AQM [9]. Mini-AQM is a portable air
quality device for personal use. It is designed and manufac-
tured by the Coilabs Co. Ltd [1]. The device is shown in Fig-
ure 2(a). Mini-AQM can automatically sense its surround-
ing environment’s PM2.5 value, and upload the data to the
server. The value can also be viewed via a smartphone App.
We recruited 18 participants and let them conduct sensing
tasks with mini-AQM in four designated areas at Tsinghua
University, Beijing, China. There are around seven locations
within each area, and the PM2.5 value at each location is
regarded as an entity. The entities are considered to be sim-
ilar to each other if the geographical distances among them
are close. In particular, the similarities among entities are
set to be 1 if they reside within the same area, and 0 if they
are from different areas. The ground truths are collected
with Thermo [2] which is an accurate but expensive sensing
device. Several experiments are performed, and the results
are discussed in the following. Please note that, the pro-
posed method aims to tackle the redundancy and sparsity



(a) Air Atlas DT Pro (b) Deployment in Haidian District (c) Real Deployments

Figure 3: Air Atlas DT Pro and the deployment locations in Haidian district. (a) shows the Air Atlas DT Pro device. (b)
shows the locations for deployment in Haidian District. (c) shows several examples in real deployment.

Table 4: Performance on Haidian Data with Varying Num-
ber of Entities

Sparsity #Entities
MAE

RST MF sim+TD TD+ITP Mean+ITP

Se = 0.8
Su = 0.5
S = 0.9

20 10.664 11.783 12.703 13.211
40 8.098 8.423 11.978 12.580
60 7.690 7.759 11.436 12.572
80 7.836 7.909 10.462 11.295
98 7.706 7.762 10.320 11.151

Se = 0.8
Su = 0.8
S = 0.96

20 10.876 13.940 19.719 18.690
40 8.997 9.674 19.080 18.497
60 8.678 8.936 19.108 18.899
80 8.624 8.889 17.876 17.724
98 8.445 8.677 16.845 17.266

problems for general crowd sensing applications including
not only the air quality monitoring but also many others
such as road congestion detection, gas price estimation, etc.
Thus, we do not take any application-specific factors into
consideration, such as wind speed and weather condition.

Performance comparison when varying the sparsity
levels. In different crowd sensing applications, we may en-
counter various data sparsity levels, and thus we test how
the performance varies with respect to sparsity levels. We
denote the overall sparsity of the data as S, and it consists
of two parts – the sparsity with respect to entities (Se) and
the sparsity with respect to users (Su). Specifically, Se de-
scribes the percentage of “missing” entities, i.e., the entities
that receive no observations. For those “non-missing” enti-
ties, it is probable that they are only observed by some of the
users. Then the sparsity with respect to users Su indicates
the percentage of users who do not report information for
these entities. It is easy to derive that S = Se+(1−Se)×Su.
In this experiment, we vary Se among (0.6, 0.7, 0.8) and vary
Su among (0.3, 0.6, 0.9). The corresponding overall sparsity
S and the evaluation results are shown in Tables 2 and 3.
Table 2 shows the performance over all the entities, and Ta-
ble 3 shows the performance over non-missing entities (i.e.,
the entities that receive user observations).

There are 29 entities and 18 users in this experiment. As
shown in Table 2, we can see that RST performs better than
the other baselines under most of the sparsity settings be-
cause the corresponding MAE and RMSE are the lowest.
This result demonstrates the advantages of RST. The pro-

posed method solves redundancy and sparsity challenges by
tightly integrating the missing observation estimation and
the truth discovery, and the matrix factorization and regu-
larization terms in the missing observation estimation enable
a better estimation of the observation matrix, which is used
to derive the entity truths. Therefore, the proposed RST
method is able to outperform the baselines. We can also see
that all the methods’ performance deteriorates as the spar-
sity level increases. This is because more information would
be missing when the sparsity level is higher, and it makes
the estimation of true values harder. However, the proposed
method still outperforms others in most situations. From
Table 3, it can be seen that RST performs better on non-
missing entities. The reason is that the proposed method
can capture users’ behavior better when the users provide
some observations.

4.4 Air Quality Sensing in Haidian District
As we have discussed, air quality monitoring stations are

expensive to build and thus are very limited in number. In
order to provide a fine-grained air quality monitoring service,
Coilabs also designed another air quality sensing device, “Air
Atlas DT Pro” (Figure 3), that can be deployed in outdoor
environment. Over one hundred such devices are deployed
across the Haidian District in Beijing, and the PM2.5 values
are monitored continuously to provide a timely and fine-
grained report. We acquired all the sensed data at 03:00
on March 20, 2015, and regard them as the ground truth
values at those locations. The PM2.5 value at each location
is treated as an entity, and there are totally 98 entities after
removing outliers. The similarity between any two entities is
calculated with Gaussian kernel based on their geographical
distance. The observations of users with different reliabil-
ity levels are generated by adding Gaussian noise upon the
ground truths. In this experiment, we have six groups of
users and the users in the same group have the same noise
level selected from (-50%, -30%, -10%, 10%, 30% and 50%).
The noise level measures to what extent their observations
deviate from the ground truth. In total we have 30 users,
and thus there are 5 users in each group. Experimental
results are summarized in Table 4, and discussions can be
found in the following.

Performance comparison when varying the sparsity
levels. In Table 4, we show the performance on two sparsity



Table 5: Performance over All Entities on Simulation with Varying Sparsity

All Entities
MAE RMSE

Se Su S RST MF sim+TD TD+ITP Mean+ITP RST MF sim+TD TD+ITP Mean+ITP

0.6
0.3 0.72 5.158 5.394 5.789 5.958 8.105 8.166 8.325 8.415
0.6 0.84 5.157 6.111 6.274 6.576 8.135 8.655 8.618 8.869
0.9 0.96 6.037 13.311 9.361 9.753 8.285 17.240 12.157 12.665

0.7
0.3 0.79 6.180 6.409 6.641 6.776 9.120 9.252 9.225 9.301
0.6 0.88 6.340 7.166 7.392 7.665 9.292 9.831 9.952 10.217
0.9 0.97 6.789 17.046 10.043 10.266 9.245 22.268 13.035 13.259

0.8
0.3 0.86 7.197 7.586 7.502 7.613 10.129 10.525 10.202 10.272
0.6 0.92 7.210 8.013 8.162 8.390 10.023 10.408 10.717 10.931
0.9 0.98 9.504 24.892 10.530 10.604 12.707 31.561 13.543 13.695

Table 6: Performance over Non-missing Entities on Simulation with Varying Sparsity

Non-missing Entities
MAE RMSE

Se Su S RST MF sim+TD TD Mean RST MF sim+TD TD Mean

0.6
0.3 0.72 0.187 0.670 1.651 2.034 0.239 0.853 2.167 2.675
0.6 0.84 0.317 2.275 2.955 3.570 0.409 2.983 3.998 4.795
0.9 0.96 2.626 11.156 8.869 9.489 3.446 14.492 11.969 12.738

0.7
0.3 0.79 0.198 0.681 1.620 1.988 0.257 0.873 2.141 2.627
0.6 0.88 0.351 2.361 3.092 3.688 0.447 3.058 4.077 4.851
0.9 0.97 2.763 13.858 9.281 9.708 3.770 18.216 12.509 12.958

0.8
0.3 0.86 0.218 0.715 1.575 1.928 0.285 0.908 2.079 2.527
0.6 0.92 0.358 3.416 3.149 3.690 0.466 4.470 4.117 4.777
0.9 0.98 4.306 19.832 9.058 9.292 5.969 25.615 12.210 12.473

levels, i.e., 90% and 96%. Compared with the experiment
performed on the Tsinghua data, similar patterns can be
observed when varying the sparsity levels. RST outperforms
the baselines, especially when the sparsity level is higher.
This demonstrates the effectiveness of the proposed inte-
grated framework that combines missing observation esti-
mation and truth discovery to derive entity truths.

Performance comparison when varying the number
of entities. To check the performance on the scenarios with
different number of entities, we uniformly sample the entities
and conduct the experiments. As can be observed in Table
4, the performance of RST is consistently better than other
baselines under any setting. In addition, as shown in Table
4, the performance improvement of RST is more significant
when the information density is low which is caused by less
entities. When we have more entities whose values are dis-
tributed over an interval, the simple interpolation method
can give a fair estimation of entity truths. On the contrary,
when there are only a few entities having similar values, the
interpolation method fails. But the proposed method which
makes better use of entity similarity and selects important
virtual users, outperforms the other methods. Moreover,
when we fix the number of users, less entities means less
observations collected from users. This demonstrates that
RST can better estimate users’ observations, even when we
have very limited information.

4.5 Simulation Results
In order to further examine the performance of RST on

dealing with redundant and sparse data, we conduct simu-
lation studies. The benefit of simulation is that we have the
full control over the data, i.e., we can alter the sparsity, the

Table 7: Performance on Simulation with Varying Number
of Entities

Sparsity #Entities
MAE

RST MF sim+TD TD+ITP Mean+ITP

Se = 0.8
Su = 0.5
S = 0.9

40 6.247 6.728 7.319 7.499
60 6.847 7.386 7.689 7.891
80 7.066 7.590 7.853 8.048
100 7.206 7.685 7.832 7.989

Se = 0.8
Su = 0.8
S = 0.96

40 6.113 14.114 9.143 9.308
60 6.593 12.963 8.946 9.154
80 7.132 12.888 9.271 9.529
100 7.449 12.087 9.079 9.275

number of entities and the number of users, such that the
performance under all conditions can be exposed.

In this experiment, we simulate a crowd sensing scenario
with 10 areas, each of which contains several entities. We as-
sume that the entities within the same area are similar with
each other, i.e., the similarity degree between any two is 1.
First, we generate the ground truths for each area and each
entity. The true values for these areas are 40, 50, · · · , 130,
and the true values for the entities within each area are gen-
erated by adding a relatively small Gaussian noise into the
area truths (the noise is set as 10 in our experiment). Then
we generate 6 groups of users, and assign certain amount
of users to each group. The users in one group have the
same noise level selected from (-50%, -30%, -10%, 10%, 30%
and 50%). Finally, the users’ observations are generated
by adding their corresponding Gaussian noise to the ground
truths of entities.

Performance comparison when varying sparsity lev-
els and number of entities. Firstly, we vary the sparsity
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Figure 4: Performance Comparison on Simulation

Table 8: Performance on Simulation with Varying Number of Users

Sparsity #Users
MAE RMSE

RST MF sim+TD TD+ITP Mean+ITP RST MF sim+TD TD+ITP Mean+ITP

Se = 0.8
Su = 0.5
S = 0.9

30 6.790 7.612 8.288 8.610 9.794 10.328 10.883 11.196
60 6.788 7.297 7.706 7.897 9.924 10.290 10.402 10.564
120 6.876 7.202 7.500 7.630 9.890 10.029 10.117 10.206
180 6.909 7.221 7.413 7.491 9.899 10.031 10.158 10.198

Se = 0.8
Su = 0.8
S = 0.96

30 6.835 17.758 11.372 11.714 9.404 22.347 14.718 15.205
60 6.859 14.050 9.468 9.658 9.809 18.394 12.265 12.500
120 6.238 11.418 7.707 7.803 9.082 15.135 10.145 10.215
180 6.196 12.129 7.230 7.315 9.130 15.956 9.629 9.688

levels with 60 users (10 users per group) and 100 entities (10
entities per area). The results are summarized in Tables 5
and 6 measured by MAE and RMSE. To inspect the results
visually, we also show the results in Figure 4 on three spar-
sity levels. We find that RST outperforms other baselines
on all the sparsity levels, and the performance improvement
is better when the sparsity level is higher. In addition, the
estimation error is low on the non-missing entities as shown
in Table 6 and Figure 4. In another experiment, we vary the
number of entities per group as 4, 6, 8, 10 while fixing the
number of users to be 60 (10 users per group) and the spar-
sity levels as 90% and 96%. The results are shown in Table
7. Similar trends can be found as in the previous experiment
in Haidian District. We also observe the clear advantage of
the proposed method when the entity density becomes low.

Performance comparison when varying number of
users. In this experiment, we compare the performance by
changing the number of users from 30 to 180, while the num-
ber of entities is fixed as 50 and the sparsity is set to be 90%
and 96%. The results are summarized in Table 8. As can be
seen, the performance of RST is the best among all methods.
Especially when there are less number of users, the proposed

method performs even better compared with other baselines.
When we fix the number of entities, less number of users in-
dicates less observations that we can collect from users. The
proposed method performs better in such cases because it
can better capture user behavior compared with baselines.
Since RST can distinguish the importance of virtual users
and make a better use of the entity similarity information,
it has good performance even when the number of users is
small.

5. RELATED WORK
There are three research fields that are related to this

work, and we summarize them in this section.
Crowd Sensing. The research of crowd sensing [17,27,30]
has attracted significant attention thanks to the prolifera-
tion of smart devices. With the aid of integrated or portable
sensors, such as accelerometer, gyroscope, GPS, and micro-
phone, now individuals can sense, record and share the in-
formation of their surrounding environment whenever they
want. Thus far, a large variety of crowd sensing systems
have been developed, and their crowd-contributed informa-
tion has brought significant benefits to the society. For ex-



ample, some systems are built to improve our travel expe-
rience by providing various services such as travel time es-
timation [6, 49], fuel-efficient navigation [16, 43] and traffic
regulators detection [23]. Systems for better cycling experi-
ence are also developed [14] and make it easier to document
and share the routes, ride statistics, weather conditions and
etc. Huang et al. [24] implemented a system for the search
and rescue of people in emergent situations in wilderness ar-
eas. Chen et al. [8] proposed a method for the reconstruction
of building interior. Chon et al. [10, 11] examined the char-
acteristics of place-centric crowd sensing systems. In [13,25],
the data trustworthiness of crowd sensing systems was in-
vestigated. In addition, the energy efficiency of the crowd
sensing systems is also a hot topic and some work [21,22,29]
were conducted towards this end. These aforementioned pa-
pers focus on the design and implementation of the sensing
systems, and none of them handles the redundant and sparse
data in crowd sensing systems.

There are some existing crowdsourced air quality moni-
toring systems. In [19, 26], portable devices are designed
and implemented to detect gasses like CO2 and O3. Un-
fortunately, these works either do not consider data redun-
dancy problem or use simple averaging method to solve it,
and more importantly, none of them can address the chal-
lenge of data sparsity. Some other air quality monitoring
systems [9, 20] are developed to address the data sparsity
problem. However, they all require significant context infor-
mation, such as land-use, humidity, temperature, POI and
etc. In contrast, our goal is to design a general redundancy
and sparsity tackling framework that can benefit a wide
spectrum of crowd sensing applications. For this reason,
our proposed framework does not require any application-
specific information.
Matrix Factorization. Matrix factorization method [3,
7, 18, 28, 33, 37] factorizes a target matrix into the product
of multiple matrices. Such a method can be used in ma-
trix completion to estimate the missing values. The first
step of the proposed RST method is based on matrix fac-
torization method, but we achieve more: By incorporating
the entity similarity regularization, we can handle the situ-
ations when a whole column of the matrix is missing; With
the virtual user regularization, we select virtual users with
high importance, such that it can further improve the es-
timation accuracy on the observation matrix. In addition,
context-aware tensor decomposition is adopted in [44,49,55]
to estimate entity values such as the noise levels and vehicle
travel time in big cities. However, these methods only tackle
the data sparsity problem without taking into consideration
the redundancy problem.
Truth Discovery. In many real-world applications, differ-
ent sources may provide conflicting information on the same
entity, and thus how to discover the true information (i.e.,
the truth) among these conflicting observations becomes a
key question. Truth discovery methods [34] try to solve this
problem by inferring both the source reliability and entity
truths. These methods can be roughly divided into three
categories [34]: iterative methods [12, 15, 40, 51], probabilis-
tic model based methods [41,47,48,52,53], and optimization-
based methods [31, 32, 35, 46]. Although they differ in the
specific formulations, these methods share a common prin-
ciple: A source which provides many pieces of true informa-
tion is likely to be reliable, and a piece of information stated
by many reliable sources is likely to be true. The truth dis-

covery problem is formulated based on this principle, and it
typically leads to an iterative solution which iteratively up-
dates source reliability and entity truths. Recently, Miao et
al. [38] proposed a cloud-enabled truth discovery framework
which provides privacy guarantees in crowdsourced data ag-
gregation. Meng et al. [36] incorporated the entity corre-
lation information to further improve the performance of
truth discovery. These truth discovery methods can aggre-
gate crowd-contributed data to resolve the redundancy chal-
lenge. However, they cannot tackle the sparsity challenge.
Wen et al. [50] propose a framework to estimate the accu-
racy of sensor measurements. In this framework, the Gaus-
sian process is applied first to interpolate the sensor data
over time and space, then state and accuracy estimations
are performed on the sensor data. However, this framework
is not suitable for the problem studied in this paper, be-
cause the Gaussian process cannot make good use of the
prior knowledge of entity correlations, and may not be able
to deal with highly sparse and large scale data due to high
computational complexity.

6. CONCLUSIONS
Redundancy and Sparsity are two major challenges daunt-

ing the crowd sensing applications. The data are redundant
because multiple users may provide conflicting observations
on the same entity, and they are sparse since the users are
oftentimes outnumbered by the entities to be sensed. In this
paper, we propose an integrated framework to infer the true
values of entities from redundant and sparse data in crowd
sensing applications. We design an effective optimization
method that estimates users’ missing observations, which
consists of matrix factorization and regularization terms.
Via matrix factorization, we can represent the observations
of the original users as a linear combination of the virtual
users’ values. Then a regularization term on entity similar-
ity is added to the objective function to enable the estima-
tion on entities with no observations. Another regulariza-
tion term on virtual users is also incorporated, such that we
can distinguish those virtual users that play more important
roles when recovering the observation matrix. After miss-
ing observations are estimated, a truth discovery process
is conducted to finally infer the true value for each entity.
Estimating user observations helps the estimation of user
reliability degrees in truth discovery, and thus the redun-
dancy and sparsity challenges are tackled jointly in the pro-
posed framework. We conduct experiments on the task of air
quality sensing at Tsinghua University and Haidian District,
together with a thorough simulation. Results demonstrate
the ability of the proposed method in estimating true entity
values in various sensing scenarios, and show its advantage
compared with baseline methods.
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