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The goal of metric learning is to learn a good distance metric that can capture the relationships among in-

stances, and its importance has long been recognized in many fields. An implicit assumption in the traditional

settings of metric learning is that the associated labels of the instances are deterministic. However, in many

real-world applications, the associated labels come naturally with probabilities instead of deterministic val-

ues, which makes it difficult for the existing metric-learning methods to work well in these applications. To

address this challenge, in this article, we study how to effectively learn the distance metric from datasets that

contain probabilistic information, and then propose several novel metric-learning mechanisms for two types

of probabilistic labels, i.e., the instance-wise probabilistic label and the group-wise probabilistic label. Com-

pared with the existing metric-learning methods, our proposed mechanisms are capable of learning distance

metrics directly from the probabilistic labels with high accuracy. We also theoretically analyze the proposed

mechanisms and conduct extensive experiments on real-world datasets to verify the desirable properties of

these mechanisms.
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1 INTRODUCTION

The problem of measuring the distance between the instance pairs is of fundamental importance in

many data mining and machine learning algorithms, and the performance of such algorithms relies
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heavily on the choice of the distance metric. Although some simple metrics, such as Euclidean

distance, can be used to measure the similarity degree between the given instances, they usually

fail to capture the statistical regularities in the data, and thus the performance of the algorithms

is largely degraded [45]. To address this challenge, the task of metric learning, whose goal is to

learn a good distance metric that can well capture the important relationships among instances,

has been widely studied [1, 2, 6, 14, 19, 21, 31, 33, 41, 44, 47, 51, 52], and the importance of distance

metric learning has long been recognized in many fields.

In the traditional settings of distance metric learning, each instance used for training is usually

associated with an attribute set denoting its features and a target attribute called label. In these

settings, an implicit assumption is that the associated labels of the instances are deterministic (see

Figure 1(a)). However, in many real-world applications, the associated labels in a training dataset

come naturally with probabilities due to various reasons, such as uncertainty [24] or privacy issues

[15, 40], and the probabilistic labels usually exist in the following two forms:

Instance-wise probabilistic label. Instead of being associated with a deterministic label (e.g.,

positive or negative in the binary case), each instance in the training dataset may come with a

probabilistic label. As shown in Figure 1(b), this probabilistic label represents the probability that

the instance has a particular deterministic label. Such instance-wise probabilistic label is very com-

mon in many real-world applications. For example, in crowdsourcing applications [25, 38, 54], the

labeling task for each instance is usually outsourced to a large crowd of labelers by a data requester

to obtain reliable labels at a low cost, then the proportion of the labelers who give a particular label

can be treated as the probability that the instance has this particular label. In the medical diagno-

sis applications, since a physician routinely encounters diagnostic uncertainty in practice, she/he

may report a probability that a patient suffers from a disease after the medical examination [24,

35, 36].

Group-wise probabilistic label. In Figure 1(c), we show the dataset associated with group-wise

probabilistic labels. The training dataset here consists of several disjoint groups of instances, and

each group is associated with a probabilistic label, which represents the proportion of the instances

in this group that have a particular deterministic label [15]. In this case, the label information

for each instance is unknown, and the distance metric can only be learned from the group-wise

probabilities. This type of probabilistic label has many interesting applications in real world. For

example, in the application of analyzing the outcomes of political elections [26, 34], it is important

for the observers of politics to analyze the connections among different voters based on the vari-

ables such as age, income, or education. However, the voting result of each voter usually cannot

be revealed to the public because it is confidential. What the observers can know is the proportion

of the votes per party in each electoral district. Another example comes from the application of

epidemic analysis, where it is usually difficult to know whether a resident living in a district suffers

from a disease, but the proportion of the residents who suffer from the disease in this district can

be easily obtained.

Despite the prevalence of the instance-wise and group-wise probabilistic labels in real-world ap-

plications, the existing metric-learning methods cannot well address the learning problems with

such probabilistic information. In order to deal with the instance-wise probabilistic label, the ex-

isting metric-learning methods need to transform the associated probability value of each instance

to a deterministic label based on a predefined threshold. However, since the probabilistic dataset

is usually more informative, many useful information may be lost during the transformation pro-

cess [24]. Additionally, determining an accurate threshold is usually very difficult in practice [25].

As for the group-wise probabilistic label, to the best of our knowledge, there is no existing work

which can deal with such probabilistic information. Note that the basic assumption behind metric
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Fig. 1. The datasets with different label information. (a) Each instance is associated with a deterministic

label. (b) Each instance is associated with a probabilistic label. (c) Each group is associated with a probabilistic

label.

learning is that the distance between similar instances should be smaller than the distance between

dissimilar instances [44, 48, 49, 51]. To achieve the goal, the metric is usually trained under sets of

pairwise or triplet constraints. However, the pairwise or triplet constraints can not be constructed

according to the group-wise probabilistic labels, which makes the learning task more challenging.

To address the above challenges, in this article, we first design a novel instance-level metric

learning mechanism (InML), based on which a single (or global) distance metric can be directly

learned from the instance-wise probabilities. In this mechanism, we first construct distance con-

straints based on the relative comparison relationships that are derived through ranking the

instance-wise probabilities, and then we formulate the metric-learning process as an optimiza-

tion problem according to the large margin framework with the hinge loss. Additionally, consid-

ering that in some cases the global distance metric learned from the given training dataset fails

to capture the local differences of the input feature space [13, 22, 27, 32, 42], we extend InML and

design an effective instance-level local metric learning mechanism (InLoML), which can learn a

set of instance specific distance metrics from the instance-wise probabilities. To learn a distance

metric directly from the group-wise probabilities, we propose a novel group-level metric learning

mechanism (GrML). In this mechanism, the proportion of the similar instance pairs in each group

is first calculated based on the associated group-wise probability, and then we model the latent

unknown pairwise similarity labels with the calculated proportions of the similar instance pairs in

a maximum likelihood estimation framework, based on which the distance metric can be derived.

Furthermore, to well capture the local discriminative information between different groups, we

also extend GrML and design an effective group-level local metric learning mechanism (GrLoML),

which can learn a set of group specific distance metrics from the group-wise probabilities.

In summary, the main contributions of this article are:

—In order to address the metric-learning problems with the instance-wise probabilistic labels,

we propose a novel InML, which can fully utilize the probabilistic information so that the

learned distance metric can be more accurate.

—To well capture the local differences of the input feature space, we extend InML and design

an effective InLoML, based on which we can directly learn a set of instance specific distance

metrics from the instance-wise probabilities.

—For the scenarios where the training datasets are associated with group-wise probabilistic

labels, we propose a GrML, based on which the distance metric can be directly learned from

the group-wise probabilities with high accuracy.

—We also extend GrML and propose an effective GrLoML, which can learn a set of group

specific distance metrics that can well capture the local differences between different dis-

criminative groups.

—Both theoretical analysis and extensive experiments on real-world datasets demonstrate the

advantages of the proposed distance metric learning mechanisms.
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2 PROBLEM SETTING

In this section, we describe the problem setting of our proposed metric-learning mechanisms.

Suppose there is a set of instances X = {xi ∈ Ru }Ni=1, where xi is a u-dimensional feature vector.

The goal of metric learning is to learn the following Mahalanobis distance metric:

d (xi ,x j ) = (xi − x j )
TW (xi − x j ) = (xi − x j )

TMTM (xi − x j ), (1)

which can effectively measure the similarity degree between any two inputs (instances) xi and x j .

Here, d (xi ,x j ) is parameterized by a positive semidefinite matrixW , which can be decomposed as

W = MTM , andW (or M ∈ Ru×u ) is the parameter that needs to be learned from the given train-

ing instances X. If the deterministic label of each instance, which belongs to one of two possible

categories (e.g., positive or negative), is provided, the metric can be easily learned in a supervised

manner according to the existing metric learning methods. However, in many real-world appli-

cations, the associated labels in the training dataset usually come with probabilities instead of

deterministic values. In this article, we consider the following two different probabilistic cases:

• For the case where the associated probabilistic labels are instance-wise, we assume that

each instance xi ∈ X is associated with a probabilistic label ci ∈ [0, 1], which represents the

probability that xi belongs to the positive category.

• For the case where the associated probabilistic labels are group-wise, we assume that the

dataset X consists of K disjoint subsets (groups), i.e., X = ∪{Xk }Kk=1
, and each group Xk is

associated with a probability πk ∈ [0, 1], which represents the proportion of instances that

belong to the positive category in this group.

Our goal in this article is to learn the optimal distance function d (xi ,x j ) which is parameterized

byW = MTM from the probabilistic labels provided in the above two cases, respectively.

3 METRIC LEARNING FROM INSTANCE-WISE PROBABILISTIC LABELS

In this section, we first present the proposed InML in Section 3.1, and provide the theoretical

analysis for InML in Section 3.2. In Section 3.3, we extend InML and describe the details of the

proposed InLoML.

3.1 Learning Framework of InML

In the case where each instance xi ∈ X is associated with a probabilistic label (i.e., ci ) instead of a

deterministic label, a straightforward way to learn the distance metric is to assign each instance a

deterministic label based on a predefined threshold over the probabilities and then conduct the ex-

isting metric-learning methods. However, since the dataset associated with the probabilistic labels

is usually more informative, some useful information may be lost during the transformation from

probabilistic labels to deterministic labels, and this will degrade the performance of the learned

distance metrics. Additionally, it is usually difficult to determine an accurate threshold in reality.

To address the above challenges, we propose to learn the distance metric directly from the in-

stance set X = {xi }Ni=1 and its associated probabilistic labels (i.e., {ci }Ni=1). In order to achieve this

goal, we first construct the distance constraints based on the relative comparison relationships

that are derived through ranking the instance-wise probabilities (i.e., {ci }Ni=1), and then we design

an optimization function based on the large margin framework to enforce the relative comparison

of the constructed constraints.

Distance Constraint Construction. In this article, we assume without loss of generality

that the associated probabilities {c1, c2, . . . , cN } are sorted in decreasing order, i.e., c1 > c2 > · · · >
cN−1 > cN . We first construct the following partially ordered triplet set:

R = {(xi ,x j ,xk ), 1 ≤ i � j � k ≤ N , j < k }. (2)
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It is obvious that for each triplet (xi ,x j ,xk ) ∈ R, we have c j > ck due to j < k . Considering the re-

lationships among ci , c j , and ck , we can divide this partially ordered triplet set R into the following

four subsets (R = R1 ∪ R2 ∪ R3 ∪ R4):

• R1 = {(xi ,x j ,xk ), 1 ≤ i < j < k ≤ N }. For each triplet (xi ,x j ,xk ) ∈ R1, the associated prob-

abilities satisfy ci > c j > ck due to i < j < k . That is to say xi is more similar to x j than

to xk . Then we can know the distance between xi and xk should not be smaller than that

between xi and x j (i.e., d (xi ,x j ) ≤ d (xi ,xk )).
• R2 = {(xi ,x j ,xk ), 1 ≤ j < k < i ≤ N }. For each triplet (xi ,x j ,xk ) in this subset (i.e., R2), the

associated probabilities satisfy that c j > ck > ci . Then the distance betweenxi andxk should

not be larger than that between xi and x j (i.e., d (xi ,xk ) ≤ d (xi ,x j )).
• R3 = {(xi ,x j ,xk ), 1 ≤ j < i < k ≤ N , c j > ci > (c j + ck )/2}. For each triplet (xi ,x j ,xk ) in

this subset (i.e., R3), the distance between xi and xk should not be smaller than that be-

tween xi and x j (i.e., d (xi ,x j ) ≤ d (xi ,xk )).
• R4 = {(xi ,x j ,xk ), 1 ≤ j < i < k ≤ N , (c j + ck )/2 > ci > ck }. For each triplet (xi ,x j ,xk ) in

this subset (i.e., R4), the distance between xi and xk should not be larger than that between

xi and x j (i.e., d (xi ,xk ) ≤ d (xi ,x j )).

As we can see, for each triplet in the above subsets (i.e., R1, R2, R3, and R4), there is a distance

constraint that is constructed according to the relative comparison relationships among the associ-

ated probabilities. When conducting metric learning from the instance set X = {xi }Ni=1, we should

make sure that these constructed distance constraints are satisfied. In the following, we discuss

how to learn the distance metric based on these constructed constraints.

Optimization Formulation. In our proposed mechanism, we formulate the metric-learning

process as an optimization problem based on the large margin framework with the hinge loss. For

each triplet (xi ,x j ,xk ) ∈ R, we first reformulate the above constructed distance constraints as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d (xi ,x j ) + д ≤ d (xi ,xk ) if (xi ,x j ,xk ) ∈ R1

d (xi ,xk ) + д ≤ d (xi ,x j ) if (xi ,x j ,xk ) ∈ R2,

d (xi ,x j ) + д ≤ d (xi ,xk ) if (xi ,x j ,xk ) ∈ R3

d (xi ,xk ) + д ≤ d (xi ,x j ) if (xi ,x j ,xk ) ∈ R4,

(3)

where d (xi ,x j ) = (xi − x j )
TW (xi − x j ), and д is a parameter used to regularize the gap (or margin)

between d (xi ,x j ) and d (xi ,xk ). In this article, we use the unit margin (i.e., д = 1). To monitor the

constructed inequality constraints in Equation (3), we then propose to minimize the following loss

function:

min
W

∑
(xi ,x j ,xk )∈R1

max{0,d (xi ,x j ) − d (xi ,xk ) + д}

+
∑

(xi ,x j ,xk )∈R2

max{0,d (xi ,xk ) − d (xi ,x j ) + д}

+
∑

(xi ,x j ,xk )∈R3

max{0,d (xi ,x j ) − d (xi ,xk ) + д}

+
∑

(xi ,x j ,xk )∈R4

max{0,d (xi ,xk ) − d (xi ,x j ) + д}, (4)
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where W is a positive semidefinite matrix. The operator max{0, ·} in Equation (4) denotes the

hinge loss function, which is used to penalize the triplets that violate the constructed inequality

constrains in Equation (3). Note that if the inequality does hold, then its hinge loss has a nega-

tive argument and makes no contribution to the overall loss function. Given that there exist some

triplets violating the above constructed inequality constraints, we relax these constrains by incor-

porating nonnegative slack variables to monitor these margin violations. Suppose R′1 = R1 ∪ R3

and R′2 = R2 ∪ R4. Then we proceed to formulate the metric learning process as the following

optimization problem:

min
W , {ξ 1

i jk
}, {ξ 2

i jk
}

∑
(xi ,x j ,xk )∈R′1

1

|R′1 |
ξ 1

i jk +
∑

(xi ,x j ,xk )∈R′2

1

|R′2 |
ξ 2

i jk + α ‖W ‖∗ (5)

s.t. ∀(xi ,x j ,xk ) ∈ R′1 : max{0,d (xi ,x j ) − d (xi ,xk ) + д} ≤ ξ 1
i jk ,

∀(xi ,x j ,xk ) ∈ R′2 : max{0,d (xi ,xk ) − d (xi ,x j ) + д} ≤ ξ 2
i jk ,

∀(xi ,x j ,xk ) ∈ R′1 : ξ 1
i jk ≥ 0,

∀(xi ,x j ,xk ) ∈ R′2 : ξ 2
i jk ≥ 0,

where ‖W ‖∗ represents the nuclear norm to promote low-rankness, and α is the regularization

parameter. In the above optimization problem, ξ 1
i jk

’s and ξ 2
i jk

’s are the introduced slack variables

that allow the large margin inequality in Equation (3) to violate the margin. The above optimization

problem is solved based on the sub-gradient descent method, and then we can derive the distance

function d (xi ,x j ) = (xi − x j )
TW (xi − x j ).

Discussion. In the proposed instance-level mechanism, the distance constraint for each triplet

(xi ,x j ,xk ) is constructed by comparing d (xi ,x j ) with d (xi ,xk ). In fact, the constraints can also

be derived from the comparison relationship between d (xk ,x j ) and d (xk ,xi ). Additionally, for

the case where the associated probabilities of some instances are close (or equal) to each other,

we can incorporate the binning method into the proposed mechanism and divide the instance

sequence (i.e., x1,x2, . . . ,xN ) into multiple nonoverlapping bins according to their probabilistic

labels. Then, only the constrains for the constructed triplets whose instances are in different bins

are enforced. Then we can reformulate the original proposed optimization problem (i.e., Equation

(5)). In this way, the constraint complexity of the original optimization problem can be reduced

and the proposed mechanism will be robust to noise inherent in the probabilities.

3.2 Theoretical Analysis for InML

In this section, we provide theoretical analysis for the error bound generated by the proposed

InML. Suppose X is the input instance space and C is the probability set. Let Z = X ×C and

zi = (xi , ci ) ∈ Z mean that xi ∈ X and ci ∈ C . We use R (W ) to denote the unbiased estimator of

the true risk that is derived by taking expectation with respect to all possible values, i.e., R (W ) =
Ezi ,zj ,zk∼μ�(d, zi , zj , zk ), where μ is the unknown probability distribution over Z and d denotes

the distance metric function. �(d, zi , zj , zk ) is the defined loss function with respect to the triplet

v = (zi , zj , zk ). Specifically, �(d, zi , zj , zk ) = max{0,yi jk (d (xi ,x j ) − d (xi ,xk )) + д}, where yi jk = 1

if ci > c j > ck or c j > ci > (c j + ck )/2, otherwise yi jk = −1. Let W ∗ denote the true risk mini-

mizer that is estimated from R (W ) (i.e.,W ∗ = argminW R (W )), and Ŵ denote the distance metric

learned based on the optimization problem described in Equation (5). Then we have the following

theorem.
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Theorem 3.1. Let N denote the number of the instances in the training dataset (i.e., |X|) and r
denote the rank of Ŵ . Assume that ‖XXT ‖ = O (N /u) and maxi (xT

i Ŵ xi ) = O (r logN ). Then, with

the probability at least 1 − δ , where δ ∈ (0, 1), we have the following error bound:

R (Ŵ ) − R (W ∗) = O
���
�

√
ru (logu + log2 N log(2/δ ))

N 3 − 3N 2 + 2N

	


�
, (6)

where u is the dimension of the feature vector.

Proof. The proof is derived based on Rademacher analysis [28]. Firstly, based on the bounded

difference inequality, with probability 1 − δ , we can derive the following:

R (Ŵ ) − R (W ∗) = R (Ŵ ) − R̂ (Ŵ ) + R̂ (Ŵ ) − R̂ (W ∗) + R̂ (W ∗) − R (W ∗)

≤ 2 sup |R̂ (W ) − R (W ) |.

The observation that R (Ŵ ) − R (W ∗) ≤ 2 sup |R̂ (W ) − R (W ) | allows us to go from working with

R (Ŵ ) − R (W ∗) to sup |R̂ (W ) − R (W ) |. Based on that the loss function � is Lipschitz and the cor-

responding Lipschtiz constant of � is equal to 1, we can derive that Φ = sup |�(d, zi , zj , zk ) −
�(d, zi′, zj′, zk ′ ) | ≤ maxi (xT

i Ŵ xi ) = O (r logN ). Then, applying McDiamid’s inequality [20] to the

above term 2 sup |R̂ (W ) − R (W ) |, we can derive:

R (Ŵ ) − R (W ∗) ≤ 2 sup |R̂ (W ) − R (W ) |

≤ 2E[sup |R̂ (W ) − R (W ) |] +

√
2Φ2 log(2/δ )

|R | .

where |R | = |R′1 ∪ R
′
2 | = N (N − 1) (N − 2)/2. By using the standard symmetrization and contrac-

tion lemmas, we can introduce the independent identically distributed Rademacher random vari-

ables for all v ∈ R so that:

2E[sup |R̂ (W ) − R (W ) |]

≤ E
⎡⎢⎢⎢⎢⎣

2

|R | sup

������
∑
v ∈R

ϵv

(
xix

T
k + xkx

T
i − xix

T
j − x jx

T
i + x jx

T
j − xkx

T
k

)������ · ‖W ‖∗
⎤⎥⎥⎥⎥⎦

≤ 2E
⎡⎢⎢⎢⎢⎣

2Ψ

|R | sup

������
∑
v ∈R

ϵv

(
xix

T
k + xkx

T
i − xix

T
j − x jx

T
i + x jx

T
j − xkx

T
k

)������
⎤⎥⎥⎥⎥⎦
,

where v = (zi , zj , zk ), and {ϵv } |R |v=1 denote the introduced independent identically distributed

Rademacher random variables [28]. For each Rademacher random variable ϵv , it has a 50% chance

of being +1 and a 50% chance of being −1. The second inequality is derived based on that

‖W ‖∗ ≤ Ψ = u
√
r . By using the matrix Bernstein bound, Theorem 6.6.1 in [39], we can obtain

E[sup |R̂ (W ) − R (W ) |] ≤ 2Ψ

|R |

⎡⎢⎢⎢⎢⎣

√
140
‖XXT ‖

N
|R | logu + 2 logu

⎤⎥⎥⎥⎥⎦
,
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where ‖XXT ‖ = O (N /u). Thus, by combining the above results, we can derive

R (Ŵ ) − R (W ∗) ≤ 2 sup |R̂ (W ) − R (W ) |

≤ 2E[sup |R̂ (W ) − R (W ) |] +

√
2Φ2 log(2/δ )

|R | .

≤ 4Ψ

|R |

⎡⎢⎢⎢⎢⎣

√
140
‖XXT ‖

N
|R | logu + 2 logu

⎤⎥⎥⎥⎥⎦
+

√
2Φ2 log(2/δ )

|R |

= O
���
�

√
ru (logu + log2 N log(2/δ ))

N 3 − 3N 2 + 2N

	


�
.

So far, we finish the proof. �

According to this theorem, we can easily verify that the error bound generated by the proposed

mechanism is O (
√

log2 N /(N 3 − 3N 2 + 2N )), where N > 3. Cosidering that log2 N < (N 2 − 3N +

2) when N > 3, we can get that the above generated error bound is tighter than the existing best-

known bound O (
√

1/N ) that is derived from the datasets with binary class labels [4]. That is to

say our mechanism can learn a good metric with a smaller number of instances than the existing

metric-learning methods.

3.3 Local Metric Learning from Instance-wise Probabilistic Labels

The proposed InML aims to learn a single (or global) Mahalanobis distance metric from the

instance-level probabilities, which keeps all of the instances in the same class close together and

ensures that those from different classes remain separated. However, in many real-world applica-

tions, learning a global distance metric usually suffers a limitation: it only makes use of a single

linear metric to compute the distances among all the instance pairs, and fails to take into account

the local differences of the input feature space [13, 22, 27, 32, 42]. Thus, learning a global distance

metric may not fit well with the distance over the data manifold. To address this problem, in this

section, we extend InML and propose an effective InLoML, based on which we can learn a local

distance metric for each instance from the probabilistic labels. The proposed InLoML can increase

the expressive power of the standard global metric learning by learning a number of local metrics

and well capture the local differences of the input feature space. In the following, we provide the

details of the proposed InML. We first construct a set of local distance constraints, and then design

an optimization function to enforce the relative comparison of the constructed local constraints.

Local Constraint Construction. Suppose Wi is the local distance metric that needs to be

learned for instance xi . Then, the distance between xi and x j can be defined as:

dWi
(xi ,x j ) = (xi − x j )

TWi (xi − x j ). (7)

Here we use the notationdWi
(xi ,x j ) to highlight the parameterization of the Mahalanobis distance

byWi . Note that the local distance metricWi of the i-th instance xi is usually different from that

of the j-th instance x j . Similar to the constraint construction in InML, we can divide the partially

ordered triplet set R = {(xi ,x j ,xk ), 1 ≤ i � j � k ≤ N , j < k } into the following four subsets:

• R1 = {(xi ,x j ,xk ), 1 ≤ j < i < k ≤ N , c j > ci > (c j + ck )/2}. For each triplet (xi ,x j ,xk ) in

this subset, the distance between xi and x j should not be larger than that between xi and

xk (i.e., dWi
(xi ,x j ) ≤ dWi

(xi ,xk )).
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• R2 = {(xi ,x j ,xk ), 1 ≤ j < k < i ≤ N }. In this subset, the associated probabilities for each

triplet (xi ,x j ,xk ) satisfy c j > ck > ci . Then the distance between xi and xk should not be

larger than that between xi and x j (i.e., dWi
(xi ,xk ) ≤ dWi

(xi ,x j )).
• R3 = {(xi ,x j ,xk ), 1 ≤ i < j < k ≤ N }. For each triplet (xi ,x j ,xk ) in R3, since i < j < k , the

associated probabilities satisfy ci > c j > ck . That is to say xi is more similar to x j than to xk .

Then we can know the distance between xi and x j should not be larger than that between

xi and xk (i.e., dWi
(xi ,x j ) ≤ dWi

(xi ,xk )).
• R4 = {(xi ,x j ,xk ), 1 ≤ j < i < k ≤ N , (c j + ck )/2 > ci > ck }. For each triplet (xi ,x j ,xk ) in

this subset, the distance between xi and xk should not be larger than that between xi and

x j (i.e., dWi
(xi ,xk ) ≤ dWi

(xi ,x j )).

The above distance constraints should be satisfied when we conduct metric learning to learn the

local distance metricWi . Next, we discuss how to learnWi based on these constraints.

Optimization Formulation. The metric-learning process of InLoML is also formulated as an

optimization problem based on the large margin framework with the hinge loss. For each con-

structed triplet (xi ,x j ,xk ) ∈ R, we reformulate the above constructed distance constraints as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dWi
(xi ,x j ) + д ≤ dWi

(xi ,xk ) if (xi ,x j ,xk ) ∈ R1

dWi
(xi ,xk ) + д ≤ dWi

(xi ,x j ) if (xi ,x j ,xk ) ∈ R2,

dWi
(xi ,x j ) + д ≤ dWi

(xi ,xk ) if (xi ,x j ,xk ) ∈ R3,

dWi
(xi ,xk ) + д ≤ dWi

(xi ,x j ) if (xi ,x j ,xk ) ∈ R4,

(8)

where д is used to regularize the gap (or margin) between dWi
(xi ,x j ) and dWi

(xi ,xk ). Here we

still choose a unit margin. Then, we propose to minimize the following loss function based on the

hinge loss framework:

min
{Wi }Ni=1

∑
(xi ,x j ,xk )∈R1

max{0,dWi
(xi ,x j ) − dWi

(xi ,xk ) + д}

+
∑

(xi ,x j ,xk )∈R2

max{0,dWi
(xi ,xk ) − dWi

(xi ,x j ) + д} (9)

+
∑

(xi ,x j ,xk )∈R3

max{0,dWi
(xi ,x j ) − dWi

(xi ,xk ) + д}

+
∑

(xi ,x j ,xk )∈R4

max{0,dWi
(xi ,xk ) − dWi

(xi ,x j ) + д}.

The hinge loss function max{0, ·} is used to penalize the triplets that violate the inequality con-

strains in Equation (8). If the inequality does hold, its hinge loss makes no contribution to the

overall loss function. In the above optimization problem, we need to derive the local distance met-

ric for each instance. Thus, the number of parameters that need to be optimized has a complexity

of O (Nu2), where N denotes the number of samples and u denotes the feature dimension. How-

ever, learning on the order of O (Nu2) parameters is computationally expensive. To address this

challenge, we propose the following mechanism to learn the local metrics by adopting the premise

that positive semi-definite matrices have non-negative eigenvalues and orthogonal eigenvectors.

Decomposition. Note that the local distance metricWi for the i-th instance xi is positive semi-

definite. We assume that the matrix is of rank S . Then, based on the rank-one decomposition

theorem for positive semidefinite matrices, there exist S square matrices U1,U2, . . . ,US , and each

of them is of size u and rank one such that:

Wi = λi
1U1 + λ

i
2U2 + · · · + λi

sUs + · · · + λi
SUS , (10)
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where λi
s ≥ 0, S is a constant in the optimization procedure, and Us is a rank-one matrix of size

u × u. Us is computed as Us = Λs ΛT
s , where Λs ∈ Ru is a u-dimensional vector. This is called a

rank-one decomposition ofWi of length S . Then, we can rewrite Equation (10) as follows:

Wi =

S∑
s=1

λi
s Λs (Λs )T , (11)

where (Λs )T denotes the transpose of Λs , and the basis elements {Λs ∈ Ru }Ss=1 can be generated

by using the Fisher discriminant analysis technique. To further reduce the number of parameters

that need to be learned, for the i-th instance xi in the training set X, we proceed to rewrite its

local distance metric Wi (a positive semidefinite matrix of size u × u) defined in Equation (11) as

follows:

Wi =

S∑
s=1

(
σT

s xi + es

)2
Λs (Λs )T , (12)

where es ∈ R, xi ∈ Ru′ is an embedding of xi ∈ Ru , and σs ∈ Ru′ is a column vector. Here, xi is

derived by using the radius basis function (RBF) kernel principal component analysis (PCA), and

the corresponding bandwidth is set to the median of the Euclidean distances of the instance pairs

in the training dataset. For each instance pair, its Euclidean distance is calculated as the square

root of the sum of squared differences between corresponding features of the two instances. And

u ′ is treated as a constant in the optimization process. The two sets of parameters {σs ∈ Ru′ }Ss=1

and {es ∈ R}Ss=1 are the parameters we need to optimize. Thus, for each instance xi ∈ X, its local

distance function defined in Equation (7) can be rewritten as:

dWi
(xi ,x j ) = (xi − x j )

T
S∑

s=1

(
σT

s xi + es

)2
Λs (Λs )T (xi − x j ). (13)

Based on Equations (9) and (13), we can further derive the following objective function:

min
{σs }Ss=1, {es }Ss=1

∑
(xi ,xj ,xk )∈R1

max
⎧⎪⎨⎪⎩

0, (xi − x j )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − x j )

−(xi − xk )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − xk ) + д
⎫⎪⎬⎪⎭

+
∑

(xi ,xj ,xk )∈R2

max
⎧⎪⎨⎪⎩

0, (xi − xk )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − xk )

−(xi − x j )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − x j ) + д
⎫⎪⎬⎪⎭

(14)

+
∑

(xi ,xj ,xk )∈R3

max
⎧⎪⎨⎪⎩

0, (xi − x j )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − x j )

−(xi − xk )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − xk ) + д
⎫⎪⎬⎪⎭

+
∑

(xi ,xj ,xk )∈R4

max
⎧⎪⎨⎪⎩

0, (xi − xk )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − xk )

−(xi − x j )T
S∑

s=1

(
σ T

s xi + es

)2
Λs ΛT

s (xi − x j ) + д
⎫⎪⎬⎪⎭

+ ϒ ‖
(
σ

e

)
‖2,1,
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where ϒ is the regularization parameter, and σ = [σ1,σ2, . . . ,σS ] is a matrix of size u ′ × S . {σs ∈
Ru′ }Ss=1 and {es ∈ R}Ss=1 are the parameters we need to optimize. We can efficiently solve this op-

timization problem by using stochastic composite optimization [7, 46]. From the above objective

function (i.e., Equation (14)), we can see that for the training instances {xi ∈ Ru }Ni=1, their local

distance metrics can be learned simultaneously, which makes them comparable and help to al-

leviate the overfitting problem. In this optimization problem (i.e., Equation (14)), the number of

parameters needed to be learned grows at the order of S (u ′ + 1). If we change either the value

of S or the value of u ′, the computation cost of the proposed instance-level local mechanism will

be affected. Additionally, the number of parameters needed to be learned is independent of both

the feature dimension u and the training set size N , which means that the proposed instance-level

local metric-learning mechanism can be very efficient in real-world applications.

Discussion. In the proposed instance-level local metric-learning mechanism, we decompose

each local distance metric based on the rank-one decomposition theorem. This method also allows

us to reduce the computational cost of InML proposed in the previous section. To achieve the goal,

we first rewrite the global distance function defined in Equation (1) as:

d (xi ,x j ) = (xi − x j )
TW (xi − x j )

= (xi − x j )
TV · diag(δ ) ·VT (xi − x j ), (15)

where V ∈ Ru×S , δ = [δ1,δ2, . . . ,δS ] andW = V · diag(δ ) ·VT . Let the s-th column of the matrix

V be vs ∈ Ru , which means that V = [v1,v2, . . . ,vS ]. Then, the global distance metric W can be

rewritten asW =
∑S

s=1 δsvs (vs )T . Based on this, we can rewrite the optimization problem of InML

defined in Equation (4) as follows:

min
{δs }Ss=1

∑
(xi ,x j ,xk )∈R1

max
⎧⎪⎨⎪⎩

0, (xi − x j )
T

S∑
s=1

δsvsv
T
s (xi − x j )

−(xi − xk )T
S∑

s=1

δsvsv
T
s (xi − xk ) + д

⎫⎪⎬⎪⎭
+

∑
(xi ,x j ,xk )∈R2

max
⎧⎪⎨⎪⎩

0, (xi − xk )T
S∑

s=1

δsvsv
T
s (xi − xk )

−(xi − x j )
T

S∑
s=1

δsvsv
T
s (xi − x j ) + д

⎫⎪⎬⎪⎭
+

∑
(xi ,x j ,xk )∈R3

max
⎧⎪⎨⎪⎩

0, (xi − x j )
T

S∑
s=1

δsvsv
T
s (xi − x j )

−(xi − xk )T
S∑

s=1

δsvsv
T
s (xi − xk ) + д

⎫⎪⎬⎪⎭
+

∑
(xi ,x j ,xk )∈R4

max
⎧⎪⎨⎪⎩

0, (xi − xk )T
S∑

s=1

δsvsv
T
s (xi − xk )

−(xi − x j )
T

S∑
s=1

δsvsv
T
s (xi − x j ) + д

⎫⎪⎬⎪⎭
, (16)
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where {δs ≥ 0}Ss=1 are the parameters we need to learn. In this way, the number of parameters

needed to be learned is S , and we also do not need to perform projections onto the positive semi-

definite cone. The optimization problem defined in Equation (16) can be solved by using the Reg-

ularized Dual Averaging method [46], which offers fast convergence and levels of sparsity in the

solution.

4 METRIC LEARNING FROM GROUP-WISE PROBABILISTIC LABELS

In this section, we present how to effectively learn the Mahalanobis distance metrics from the

group-wise probabilities (i.e., {πk ∈ [0, 1]}K
k=1

). We first formulate the learning framework of the

proposed GrML as an optimization problem and discuss how to effectively solve this problem in

Sections 4.1 and 4.2, respectively. Then, we conduct theoretical analysis for GrML in Section 4.3.

The local metric learning mechanism from group-wise probabilities (i.e., GrLoML) is discussed in

Section 4.4.

4.1 Learning Framework of GrML

In the case where the probabilistic label is group-wise, we have no information about the instance-

wise labels, and we only have access to the group-wise probabilities (i.e., {πk ∈ [0, 1]}K
k=1

). This

makes it more difficult to learn an accurate distance metric. To address this challenge, we propose

a novel and effective learning mechanism (i.e., GrML) which can learn the distance metric directly

from the group-wise probabilities.

Suppose the training instance set X consists of K disjoint groups, i.e., X = ∪{Xk }Kk=1
, where

Xk = {xk
i ∈ Ru } |Xk |

i=1 is the k-th group and xk
i represents the i-th instance in group Xk . For each

instance pair (xk
i ,x

k
j ) in thek-th groupXk , we assume that there is a labelyk

i j ∈ {1,−1} that denotes

whether the two instances are similar (i.e., have the same class label) or not. If xk
i and xk

j are similar,

yk
i j is equal to 1, otherwise it is equal to −1. We also associate each disjoint group Xk with another

probability π̂k , which represents the proportion of the instance pairs whose similarity labels (i.e.,

yk
i j ) are equal to 1 in the k-th group Xk . Then π̂k can be derived as:

π̂k =

∑
i<j 1[yk

i j ]

|Xk |( |Xk | − 1)/2

=
|Xk |( |Xk | − 1)/2 − |Xk |πk |Xk |(1 − πk )

|Xk |( |Xk | − 1)/2

= 1 − 2|Xk |πk (1 − πk )

|Xk | − 1
, (17)

where 1[yk
i j ] is the indicator function that outputs 1 if yk

i j > 0 and 0 otherwise. |Xk |( |Xk | − 1)/2

is the number of all possible instance pairs in the k-th group Xk , and |Xk |πk |Xk |(1 − πk ) denotes

the number of the dissimilar instance pairs whose similarity labels are equal to −1 in Xk . During

the training process of the proposed group-level metric-learning mechanism, π̂k can be treated as

a constant because πk is a known probability value for the k-th group Xk .

Our goal in this section is to learn the distance metricd (xi ,x j ) = (xi − x j )
TMTM (xi − x j ), which

is parameterized by M . Here, we seek an alternative approach by decomposing the positive semi-

definite matrixW as MTM [10, 52]. Note that the matrix M ∈ Ru×u is not required to be positive

semidefinite. In this way, projections onto the positive semidefinite cone are not needed, and we

can also reduce the number of parameters we need to learn by imposing a low-rank constraint on
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the matrix M . In order to learn the distance metric, we propose to adopt maximum likelihood esti-

mation. Specifically, we choose the parameter M that makes the likelihood of having the obtained

instance pairs maximum, and the likelihood function with respect to the unknown parameter M
is defined as the product of the similarity probabilities of all possible instance pairs. For each

instance pair (xk
i ,x

k
j ), its similarity probability with respect to the parameter M is modeled as

follows:

Pr
(
yk

i j
���xk

i ,x
k
j ;M,b

)
=

1

1 + exp
(
− yk

i j

(
d
(
xk

i ,x
k
j

)
− b

)) , (18)

where d (xk
i ,x

k
j ) = (xk

i − xk
j )TMTM (xk

i − xk
j ) and b is the bias that works as a threshold. The two

instances xk
i and xk

j are treated as similar (i.e.,yk
i j = 1) only when d (xk

i ,x
k
j ) is greater than or equal

to b, otherwise they are treated as dissimilar (i.e., yk
i j = −1). In this article, we set b as 1. Since the

log function is a monotonic increasing function, maximizing the likelihood function is equivalent

to maximizing the log likelihood, and also to minimizing the negative log likelihood. Then we can

formulate the following optimization problem.

min
I,M

K∑
k=1

∑
i<j

2 log(1 + exp(−yk
i j ((xk

i − xk
j )TMTM (xk

i − xk
j ) − b)))

|Xk |( |Xk | − 1)
+
‖M ‖2F

2
,

s.t.
∑
i<j

y1
i j

|X1 |( |X1 | − 1)
+

1

2
= π̂1,

∑
i<j

y2
i j

|X2 |( |X2 | − 1)
+

1

2
= π̂2, (19)

...

∑
i<j

yK
i j

|XK |( |XK | − 1)
+

1

2
= π̂K ,

where I = {yk
i j |i < j,k = 1, . . . ,K }. The objective function in this optimization problem contains

the following two terms: the first term denotes the complete data log-likelihood and it is derived

from the negative log likelihood of the instance pairs. The second term denotes the Frobenius-

norm regularization. The constraints in the above optimization problem are used to enforce that

for each group, the estimated proportion of the similar instance pairs (i.e.,
∑

i<j

yk
i j

|Xk |( |Xk |−1) +
1
2 ) is

equal to the pre-defined similarity proportion π̂k .

Since the elements (i.e.,yk
i j ’s) in set I are not known a priori, we also need to estimate them during

the optimization process, and the estimated yk
i j ’s should satisfy the constraint in Equation (19).

However, it is difficult to solve this optimization problem due to the categorical property of yk
i j .

To address this challenge, we relax each yk
i j to a continuous probability-like variable pk

i j ∈ [0, 1].

This idea is inspired from the Deterministic Annealing technique [5] and the variable pk
i j can be

interpreted as probability that yk
i j is equal to 1. Obviously, the probability that yk

i j = −1 is 1 − pk
i j .
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Then the optimization problem in Equation (19) can be rewritten as:

min
P,M

K∑
k=1

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
log

(
1 + exp

(
−

((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))

+

K∑
k=1

∑
i<j

2(1 − pk
i j )

|Xk |( |Xk | − 1)
log

(
1 + exp

(((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))
+

1

2
‖M ‖2F ,

s.t.
∑
i<j

2p1
i j

|X1 |( |X1 | − 1)
= π̂1, (20)

∑
i<j

2p2
i j

|X2 |( |X2 | − 1)
= π̂2,

...

∑
i<j

2pK
i j

|XK |( |XK | − 1)
= π̂K ,

where P = {pk
i j |i < j,k = 1, 2, . . . ,K }. To mitigate local minima, an entropy term [5] for the dis-

tributions defined by pk
i j is also added to the above objective function. Finally, the following opti-

mization problem is formulated to learn the distance metric.

min
P,M
L (P ,M ) =

K∑
k=1

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
log

(
1 + exp

(
−
((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))

+

K∑
k=1

∑
i<j

2(1 − pk
i j )

|Xk |( |Xk | − 1)
log

(
1 + exp

(((
xk

i − xk
j

)T
MTM (xk

i − xk
j

)
− b

)))

+

K∑
k=1

2T

|Xk |( |Xk | − 1)

∑
i<j

(
pk

i j logpk
i j +

(
1 − pk

i j

)
log

(
1 − pk

i j

))
+

1

2
‖M ‖2F ,

s.t.
∑
i<j

2p1
i j

|X1 |( |X1 | − 1)
= π̂1, (21)

∑
i<j

2p2
i j

|X2 |( |X2 | − 1)
= π̂2,

...

∑
i<j

2pK
i j

|XK |( |XK | − 1)
= π̂K ,

where T is a penalty parameter.

4.2 Optimization for GrML

In this section, we discuss how to solve the optimization problem described in Equation (21). The

solution we adopted here is a two step iterative procedure.
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Step 1: We first fix P , which is estimated in the previous iteration. If it is the first iteration, the

elements in P are randomly initialized. Then we solve the following optimization problem:

min
M
L1 (M ) =

K∑
k=1

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
log

(
1 + exp

(
−
((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))

+

K∑
k=1

∑
i<j

2(1 − pk
i j ) log(1 + exp(((xk

i − xk
j )TMTM (xk

i − xk
j ) − b)))

|Xk |( |Xk | − 1)
+
‖M ‖2F

2
. (22)

Here we adopt gradient descent method to update M . Specifically, in the t-th iteration, we update

the parameter M as follows:

Mt = Mt−1 − θ ∂L1

∂M
(23)

where ∂L1

∂M
denotes the derivative of L1 (M ) with respect to M ∈ Ru×u , and θ denotes the learning

rate. The derivative ∂L1

∂M
is calculated as:

∂L1

∂M
=

K∑
k=1

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)

2(−M ) (xk
i − xk

j )T (xk
i − xk

j )

1 + exp((xk
i − xk

j )TMTM (xk
i − xk

j ) − b)

+

K∑
k=1

∑
i<j

2(1 − pk
i j )

|Xk |( |Xk | − 1)

2M (xk
i − xk

j )T (xk
i − xk

j )

1 + exp(−((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))
+M, (24)

where M ∈ Ru×u , xk
i ∈ Ru , pk

i j ∈ [0, 1], and |Xk | is the number of instances in the k-th group Xk .

Step 2: In this step, we fix M ∈ Ru that is estimated in Step 1, and then update P . Through

introducing the Lagrange multipliers {λk }Kk=1
, we can get the Lagrange form of the optimization

problem for P :

L2 (P ) = L (P ,M ) −
K∑

k=1

λk
��
�

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
− π̂k

	

�

=

K∑
k=1

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
log

(
1 + exp

(
−

((
xk

i − xk
j

)T
MTM (xk

i − xk
j

)
− b

)))

+

K∑
k=1

∑
i<j

2(1 − pk
i j )

|Xk |( |Xk | − 1)
log

(
1 + exp

(((
xk

i − xk
j

)T
MTM (xk

i − xk
j

)
− b

)))
(25)

+

K∑
k=1

2T

|Xk |( |Xk | − 1)

∑
i<j

(
pk

i j logpk
i j +

(
1 − pk

i j

)
log

(
1 − pk

i j

))
+

1

2
‖M ‖2F

−
K∑

k=1

λk
��
�

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
− π̂k

	

�
.
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The partial derivative of L2 (P ) with respect to the variable pk
i j is computed as follows:

∂L2

∂pk
i j

=
2

|Xk |( |Xk | − 1)
log

(
1 + exp

(
−

((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))

+
−2

|Xk |( |Xk | − 1)
log

(
1 + exp

(((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))

+
2T

|Xk |( |Xk | − 1)

(
logpk

i j − log
(
1 − pk

i j

))

− 2λk

|Xk |( |Xk | − 1)
, (26)

where |Xk | denotes the number of instances in the k-th group. Let the partial derivative of L2 (P )

with respect to pk
i j be zero (i.e., ∂L2

∂pk
i j

= 0), and we can derive the following:

log
(
1 + exp

(
−

((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))
− log

(
1 + exp

(((
xk

i − xk
j

)T
MTM

(
xk

i − xk
j

)
− b

)))
− λk = T

(
log

(
1 − pk

i j

)
− logpk

i j

)
,

⇒ 1

T
log

1 + exp(−((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))

1 + exp(((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))
− λk

T
= log �

�
1 − pk

i j

pk
i j

	
�
,

⇒ exp �
�

1

T
log

1 + exp(−((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))

1 + exp(((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))
− λk

T
	
�
=

1 − pk
i j

pk
i j

,

⇒ 1 + exp �
�

1

T
log

1 + exp(−((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))

1 + exp(((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))
− λk

T
	
�
=

1

pk
i j

.

Based on the above, we can further get:

pk
i j =

1

1 + exp �
�

1

T
log

1 + exp(−((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))

1 + exp(((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))
− λk

T
	
�

. (27)

Combining Equation (27) with the constraint in Equation (21), we can get:∑
i<j

2

|Xk |( |Xk | − 1) �
�
1 + exp �

�
1
T

log
1 + exp(−((xk

i − xk
j )TMTM (xk

i − xk
j ) − b))

1 + exp(((xk
i − xk

j )TMTM (xk
i − xk

j ) − b))
− λk

T
	
�
	
�

= π̂k ,

(28)

where λk denotes the Lagrange multiplier, and can be calculated by solving the root finding prob-

lem. Finally, the calculated λk is plugged into Equation (27) such that pk
i j can be updated.

The above two steps will be iteratively conducted until the convergence criterion is satisfied. In

this article, we calculate the KL-divergence of P in two consecutive iterations and set a threshold
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Fig. 2. π̂k w.r.t. πk and |Xk |.

ALGORITHM 1: Group-level metric learning

Input: Instance groups {Xk }Kk=1
and group-wise probabilities {πk }Kk=1

.

Output: The parameter M .

1 Calculate π̂k according to Equation (17);

2 Initialize P = {pk
i j |i < j,k = 1, 2, . . . ,K };

3 repeat

4 Update M according to step 1 in Section 4.2;

5 Update P according to step 2 in Section 4.2;

6 until The convergence criterion is satisfied;

7 return The parameter M .

(e.g., 10−6) of the KL-divergence as the convergence criterion [5]. The optimization procedure for

the proposed GrML is summarized in Algorithm 1.

4.3 Theoretical Analysis for GrML

Since the associated probabilities {πk }Kk=1
are the only available label information, they play an

important role during the learning process. In this section, we first provide an intuitive under-

standing about what kinds of πk ’s can generate the most informative groups, and then give the

sample complexity analysis.

Recall that we introduce π̂k , i.e., the proportion of the instance pairs whose similarity labels

are equal to 1 in group Xk , as the supervision information during the learning process. For each

group Xk , the larger (or less) the value of π̂k , the more informative the group. When π̂k equals to

0 or 1, group Xk is the most informative for metric learning because we can know the similarity

labels (i.e.,{yk
i j }’s) of all the instance pairs in this group. In order to analyze the effect of πk on π̂k ,

we plot the graph of Equation (17) in Figure 2, which shows that π̂k reaches its minimum values

(around 0.5) when πk = 0.5, and π̂k approaches its maximum values (i.e., 1) when πk approximates

0 or 1. This means that if πk approaches 0 or 1, Xk will be an informative group and provide

more information for the metric-learning process. Next, we provide the following theorem to show

the upper bound of the size of the training dataset that is used for generating an informative

group.

Theorem 4.1. Suppose that the instance set X is randomly split into K groups with equal group

sizem, and Γ ∈ [0, 1] denotes the proportion of the positive instances inX. Let η (η � Γ and η � 1 − Γ)
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be a positive constant that is close to 0. For the k-th group, the probability that min{1 − πk ,πk } ≤ η
isO (e−βm ). Thus the number of the instances in set X is at mostO (meβm ), where β is a constant that

depends on Γ and η.

Proof. For random sampling, we assume that the probability that the number of positive in-

stances in Xk is less than mη or more than m(1 − η) is denoted as P = Pr(
∑m

i=1 q
k
i ≤ mη or ≥

m(1 − η)), where qk
i ∈ {0, 1} is a random variable which indicates whether xk

i is a positive instance

and takes 1 with probability Γ. Based on Bernstein inequality, we have:

Pr �
�

m∑
i=1

qk
i ≥ m(1 − η)	

�
≤ exp

(
− 3m(1 − η − Γ)2

2Γ(1 − Γ) + 2(1 − η − Γ)

)
= e−β1m ,

Pr �
�

m∑
i=1

qk
i ≤ mη	

�
≤ exp

(
− 3m(Γ − η)2

2Γ(1 − Γ) + 2(Γ − η)

)
= e−β2m ,

where β1 = 3(1 − η − Γ)2/(2Γ(1 − Γ) + 2(1 − η − Γ)) and β2 = 3(Γ − η)2/(2Γ(1 − Γ) + 2(Γ − η)).
Then, there exists a constant β satisfying P = e−βm . Therefore, in order to satisfy min{1 −
πk ,πk } ≤ η, the total number of instances in set X is N =m/P , i.e. N = O (meβm ). �

From the above theorem, we can see that once the size of set X (i.e., N ) is fixed, the increase of

the group size m will lead to the decrease of the probability that min{1 − πk ,πk } ≤ η. That is to

say, for a fixed dataset X, when it is divided into subsets with larger group size, the proportion of

informative groups becomes smaller, and then the performance of the proposed mechanism GrML

is degraded due to the less-informative training data. Additionally, Theorem 4.1 is derived based

on the assumption that all groups are of the same sizem = N /K . When we increase the number of

groupsK , the value ofm decreases and the proportion of informative groups become larger. On the

other hand, for a fixed η that is infinitely close to 0, as we increase the value of Γ, the probability

that the number of positive instances in Xk is no larger than mη decreases, while the probability

that the number of positive instances in Xk is no less thanm(1 − η) increases.

4.4 Local Metric Learning from Group-wise Probabilistic Labels

The proposed mechanism GrML aims to learn a global distance metric that can be used to measure

the distance between all the instance pairs. However, in some cases, GrML cannot well capture the

local differences of the input feature space because this mechanism does not take into account the

group localities. Thus, instead of learning a global distance metric for targeted tasks, it is more

appropriate for each group to claim its own group specific distance metric so that the instances’

distances can be measured from its own perspective. To achieve the goal, in this section, we extend

GrML and propose a novel GrLoML, which allows us to learn a local distance metric for each

disjoint group from the group-wise probabilistic labels (i.e., {πk ∈ [0, 1]}K
k=1

).

Instead of measuring instances’ distances from the global view, the proposed mechanism Gr-

LoML calculates the distance between xk
i ∈ Xk and xk

j ∈ Xk as:

d
(
xk

i ,x
k
j

)
=

(
xk

i − xk
j

)T
(Mk )TMk

(
xk

i − xk
j

)
, (29)

where Mk ∈ Ru×u is the local matrix for the k-th groupXk . In many real-world applications, these

group specific local distance metrics {(Mk )TMk }K
k=1

can give us more flexibility. Based on the above

definition for the group specific distance metric, we can rewrite the optimization problem of GrML
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defined in Equation (21) as:

min
P, {Mk }K

k=1

L3

(
P , {Mk }Kk=1

)
=

K∑
k=1

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
log

(
1 + exp

(
−

(
xT

i jk (Mk )TMkxi jk − b
)))

+

K∑
k=1

∑
i<j

2(1 − pk
i j )

|Xk |( |Xk | − 1)
log

(
1 + exp

((
xT

i jk (Mk )TMkxi jk − b
)))

+

K∑
k=1

2T

|Xk |( |Xk | − 1)

∑
i<j

(
pk

i j logpk
i j +

(
1 − pk

i j

)
log

(
1 − pk

i j

))
+

1

2

K∑
k=1

‖Mk ‖2F ,

s.t.
∑
i<j

2p1
i j

|X1 |( |X1 | − 1)
= π̂1, (30)

∑
i<j

2p2
i j

|X2 |( |X2 | − 1)
= π̂2,

...

∑
i<j

2pK
i j

|XK |( |XK | − 1)
= π̂K ,

where xi jk = (xk
i − xk

j ), and (Mk )TMk denotes the local distance metric for the k-th group Xk .

In the above optimization problem, we have two sets of parameters that need to be learned, i.e.,

P = {pk
i j |i < j,k = 1, 2, . . . ,K } and {Mk ∈ Ru×u }K

k=1
. The two sets of parameters in this optimiza-

tion problem can be learned together by optimizing the developed objective function (i.e., Equation

(30)) through a joint procedure. Specifically, we iteratively update the values of the parameters in

one set to minimize the objective function while fixing the values of the parameters in another

set until convergence. This two-step iterative procedure, referred to as block coordinate descent

approach [3], will keep reducing the value of the objective function. To minimize the objective

function in Equation (30), we iteratively conduct the following two steps:

Step 1. With an initial estimate of the similarity probabilities P = {pk
i j |i < j,k = 1, 2, . . . ,K }, we

first update the local matrix Mk for the group Xk by minimizing the following objective function:

min
Mk ∈Ru×u

L4 (Mk ) =
K∑

k=1

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
log

(
1 + exp

(
−

(
xT

i jk (Mk )TMkxi jk − b
)))

+

K∑
k=1

∑
i<j

2(1 − pk
i j ) log(1 + exp((xT

i jk
(Mk )TMkxi jk − b)))

|Xk |( |Xk | − 1)
+
‖Mk ‖2F

2
, (31)

where xi jk = (xk
i − xk

j ). By deriving the local matrix using the above equation for each group, we

can obtain the collection of local matrices {Mk ∈ Ru×u }K
k=1

which minimize L3 (P , {Mk }K
k=1

) with

fixed P = {pk
i j |i < j,k = 1, 2, . . . ,K }.
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Step 2. In this step, the local matrix of each group is fixed, and we update the similarity proba-

bilities P = {pk
i j |i < j,k = 1, 2, . . . ,K } by solving the following optimization problem:

min
P
L5 (P ) = L3

(
P , {Mk }Kk=1

)
−

K∑
k=1

Δk
��
�

∑
i<j

2pk
i j

|Xk |( |Xk | − 1)
− π̂k

	

�
, (32)

where {Δk }Kk=1
are the introduced Lagrange multipliers. In this step, we fix the local matrices

{Mk }K
k=1

for the groups, and compute the similarity probabilities that jointly minimize the objec-

tive function subject to the regularization constraints. Note that we start with an initial estimate of

the similarity probabilities and then iteratively conduct the local matrix update step and the sim-

ilarity probability update step until convergence. The convergence of the proposed optimization

solution for GrLoML can be guaranteed according to the proposition on the convergence of block

coordinate descent [3].

5 EXPERIMENTS

We conduct experiments on real-world datasets to evaluate the performance of the proposed mech-

anisms. The experimental setup is first described in Section 5.1. Then we show the experimental

results for InML and InLoML in Section 5.2 and Section 5.3, respectively. The experimental results

for GrML are shown in Section 5.4.

5.1 Experimental Setup

In this section, we first describe the adopted real-world datasets for the proposed mechanisms.

Then we introduce the baselines which are compared with the proposed mechanisms.

Datasets for the proposed instance-level mechanisms. In order to evaluate the perfor-

mance of the proposed instance-level mechanisms (i.e., InML and InLoML), we adopt the following

real-world datasets which are grouped into three categories:

• Regression Datasets. We adopt five UCI datasets1 (i.e., Concrete, Housing, Energy, Airfoil

Self-Noise, and Yacht Hydrodynamics) that are used in the regression task. Specifically, the

Concrete, Housing, and Energy datasets are used to evaluate the performance of InML, and

the Airfoil Self-Noise and Yacht Hydrodynamics datasets are used to evaluate the perfor-

mance of InLoML. For each instance in these datasets, we normalize its real-valued output

to [0, 1] and take the normalized value as the probability (i.e., ci ) that this instance belongs to

the positive category. In order to adapt these datasets to the baseline methods, we also define

a threshold based on these probabilities to distinguish the positive and negative categories.

For example, in the housing dataset, the real-valued outputs represent the attractiveness of

houses to the customers. After normalizing the real-valued outputs, we sort the instances

(i.e., houses) by the probability (i.e., ci ) in a descending order. Then we label the top 30% of

the instances with positive category (high attractiveness) and the remaining instances with

negative category (low attractiveness).

• Ordinal Classification Datasets. We also adopt three other real-world datasets2 (i.e., Can-

cer, Stock, and Machine) which come with multiple classes and full-order relations among

classes. For each dataset, we generate the associated probabilities (i.e., {ci }Ni=1) by utilizing

the min–max normalization strategy on the ordinal class labels. Additionally, we also de-

fine a binary threshold for each dataset according to the meaning of ordinal classes. For

1https://archive.ics.uci.edu/ml/datasets.html.
2http://www.gagolewski.com/resources/data/ordinal-regression/.
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Table 1. The Statistics of the Adopted Datasets

Dataset #Samples #Dimensions Dataset #Samples #Dimensions

Concrete 1,030 8 Machine 199 6

Housing 506 13 Movie 5,000 1,199

Energy 768 8 Music 700 123

Airfoil Self-Noise 1,503 6 Ionosphere 351 34

Yacht

Hydrodynamics

308 7 Heart 303 23

Cancer 194 32 Diabetes 768 9

Stock 950 9 - - -

example, the Cancer dataset contains six ordinal classes {1, 2, 3, 4, 5, 6}. The class labels are

transformed to the probabilities {0, 0.2, 0.4, 0.6, 0.8, 1.0} after the normalization. Since {1, 2}
represent benignancy and {3, 4, 5, 6} represent the different stages of malignancy, we can

set the threshold as 0.3 for the binary label.

• Crowdsourced Datasets. Finally, two crowdsourced datasets, i.e., the movie review dataset

and the music genre dataset [25], are adopted. For the movie review dataset, the task of the

workers is to judge whether the review of a movie is positive or negative and it contains

5,000 movies. In the music genre dataset, the workers need to judge whether a piece of

music is rock (positive) or non-rock (negative) and there are 700 pieces of music. For each

instance (a movie or a piece of music), the associated probability (i.e., ci ) is defined as the

fraction of the workers who provide positive labels for this instance. Additionally, we set

a threshold (0.5 in this article) over the probabilities to generate the binary label for each

instance.

Datasets for the group-level mechanisms. As for the proposed global-level mechanisms (i.e.,

GrML and GrLoML), we evaluate their performance on three popular datasets: the Ionosphere

dataset, the Heart dataset, and the Diabetes dataset [50], which are widely used in the settings

with group probabilities. The details of the adopted datasets are described in Table 1.

Baseline Methods. In this article, we compare the proposed mechanisms with the following

state-of-the-art metric-learning methods. Geometric Mean Metric Learning (GMML) [51] addresses

the task of learning a symmetric positive definite matrix by formulating it as a smooth, strictly

convex optimization problem. The formulation can be viewed as an optimization problem on the

Riemannian manifold of symmetric positive definite matrices. Information Theoretic Metric Learn-

ing (ITML) [6] is an information-theoretic approach that aims to learn a Mahalanobis distance

function, and the authors formulate the problem as minimizing the differential relative entropy

between two multivariate Gaussians under the constraints on the distance function. Large Margin

Nearest Neighbor (LMNN) [44] aims to learn a Mahanalobis distance metric for k-nearest neigh-

bor classification by semidefinite programming. The distance metric is trained with the goal that

the k-nearest neighbors always belong to the same class while instances from different classes are

separated by a large margin. LowRank [52] is a similarity algorithm based on pairwise constraints,

which aims to deal with the data with noise and redundancy. This algorithm is implemented by en-

coding a low-rank structure to the distance metric-learning process. R2LML [14] is a local distance

metric-learning method based on a conical combination Mahalanobis metric and pairwise similar-

ities between the data. Its formulation allows for controlling the rank of the involved mappings.

Additionally, Cosine and Euclidean are also taken as baselines, which adopt cosine similarity and

l2-norm distance to measure the similarity between two instances.
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Table 2. The Accuracy of InML Under Different Training Dataset Sizes

Regression datasets Ordinal datasets Crowdsourced datasets

Training size Methods Concrete Housing Energy Cancer Stock Machine Movie Music

InML 0.8002 0.8268 0.8969 0.6531 0.8887 0.9233 0.6997 0.7604

Cosine 0.6996 0.7001 0.6905 0.5000 0.5767 0.3200 0.5234 0.6557

Euc 0.7387 0.7283 0.8468 0.5306 0.8655 0.8717 0.5173 0.7091

GMML 0.7400 0.7835 0.8831 0.5514 0.8782 0.8733 0.5180 0.7343

50 ITML 0.7117 0.7500 0.7719 0.3299 0.6279 0.8132 0.5524 0.7296

LMNN 0.7713 0.8255 0.8890 0.6474 0.8799 0.8840 0.6767 0.7588

LowRank 0.6957 0.7746 0.8779 0.5340 0.8739 0.3300 0.5440 0.7091

R2ML 0.7707 0.7395 0.8368 0.5629 0.8666 0.8900 0.5652 0.6777

InML 0.8123 0.8596 0.9251 0.6759 0.9139 0.9300 0.7020 0.7868

Cosine 0.7031 0.7113 0.7056 0.5510 0.6155 0.3500 0.5352 0.6792

Euc 0.7542 0.7434 0.8727 0.5680 0.8866 0.8767 0.5290 0.7248

GMML 0.7471 0.8019 0.9030 0.5710 0.8939 0.8983 0.5358 0.7374

100 ITML 0.7335 0.7569 0.8021 0.3544 0.6674 0.8191 0.5673 0.7563

LMNN 0.7845 0.8425 0.9123 0.6533 0.9007 0.8872 0.6787 0.7781

LowRank 0.7193 0.7962 0.8983 0.5663 0.8575 0.3500 0.5652 0.7233

R2ML 0.7774 0.8110 0.8883 0.5714 0.9097 0.8933 0.6020 0.6934

5.2 Experiments for InML

In this section, we evaluate the performance of the proposed InML. The experiments are conducted

for 10 times and we report the average experimental results.

Performance comparison. We first evaluate the performance of InML under different training

dataset sizes. In this experiment, we consider two cases where the training set size is set as 50 and

100, respectively. For each dataset, we first randomly select half of all instances as the testing

set, and then randomly extract the training dataset from the remaining instances. For the case

where the training dataset size is set as 100, if the number of the instances used for training is less

than 100, we randomly select some instances from the testing set and add them into the training

dataset. Table 2 reports the classification accuracy of InML and that of the baseline methods. Note

that in this article, the accuracy is calculated based on the instance labels in the testing set and the

KNN classifier is adopted to evaluate the performance of the methods [14, 44, 51]. Specifically, to

determine the class label of a given testing instance, we first need to calculate the distances between

it and all the instances in the training set according to the learned distance metric learning model.

Then we derive its corresponding ranked list of the training instances sorted by the calculated

distances. Finally, the class label of this testing instances can be determined by majority voting

over its top-K closest (nearest) training instances. In this article, unless otherwise specified, the

value of the target neighbors K is set as 5. The results in Table 2 show that InML performs much

better than the baselines in all cases. This is mainly because InML can extract more information

from instance probabilities, while the baselines can only derive limited knowledge using the class

labels.

Convergence. Next, we evaluate the convergence of InML through calculating the objective

value in each iteration. The evolution of the objective value on the Concrete dataset is reported in

Figure 3, from which we can see the objective value gradually converges to 0 with the increase of

the iteration number, and this verifies that the convergence of InML can be guaranteed.
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Fig. 3. Convergence of InML on the Concrete dataset.

Fig. 4. G-mean on unbalanced datasets.

Performance on unbalanced datasets. Here, we evaluate the performance of the proposed

mechanism InML on the datasets which are unbalanced, i.e., there are only a small number of in-

stances that belong to the positive (or negative) category in the dataset. In this experiment, we

adopt the regression datasets (i.e., Concrete, Housing, and Energy) and set the binary threshold

as 10% instead of 30%. That is to say, only 10% of the instances in each dataset are positive. For

each dataset, we still randomly select half of all instances as the training dataset and take the re-

maining instances as the testing set. Then we calculate the G-mean which is used for performance

assessment over unbalanced dataset and is defined as the square root of the product of the sen-

sitivity and specificity for each method. Figure 4 shows the results, from which we can see InML

still has the best performance when the datasets are unbalanced. The reason is that the proposed

mechanism can extract more information through the ranking-based relative comparisons while

the baseline methods can only exploit the binary class labels.

Robustness. In real-world applications, the instance-wise probabilistic labels may be noisy due

to various reasons [24]. Thus, it is important to evaluate the robustness of InML when probabilistic

labels are perturbed by different levels of noise. In this experiment, we consider the following

three levels of noise: weak noise, moderate noise, and strong noise, which are generated from

0.05 ∗ N (0, 1), 0.15 ∗ N (0, 1), and 0.30 ∗ N (0, 1), respectively. Then we add the generated noise to

the associated probability for each instance. Please note that the summation would be projected

to range [0, 1] if it is larger than 1 or less than 0. For each dataset, we randomly select half of

all instances as the training dataset and take the remaining instances as the testing set. Table 3
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Table 3. The Accuracy of InML Under Different Noise Levels

Weak noise Moderate noise Strong noise
Methods Concrete Stock Machine Concrete Stock Machine Concrete Stock Machine

InML 0.7926 0.8739 0.9050 0.7917 0.8718 0.8800 0.7915 0.8717 0.8767

Cosine 0.6922 0.5756 0.3250 0.6715 0.5745 0.2950 0.6641 0.4636 0.2500

Euc 0.7293 0.7962 0.8400 0.7232 0.7721 0.8250 0.7080 0.7718 0.8017

GMML 0.7345 0.8221 0.8400 0.7322 0.8197 0.8342 0.7025 0.8109 0.8167

ITML 0.7112 0.6081 0.7965 0.7049 0.5960 0.7889 0.7002 0.5463 0.7345

LMNN 0.7688 0.8401 0.8550 0.7568 0.8272 0.8411 0.7479 0.7850 0.8052

LowRank 0.6667 0.7871 0.3300 0.5568 0.7535 0.2950 0.5326 0.7710 0.2517

R2ML 0.7526 0.7920 0.8400 0.7329 0.7917 0.8398 0.7145 0.8116 0.8300

Table 4. The Accuracy of InLoML Under Different Training Sizes

Airfoil Yacht Hydrodynamics
Methods 20 40 60 20 40 60

InLoML 0.7128 0.7251 0.7507 0.8084 0.8852 0.8942

InML 0.7036 0.7136 0.7348 0.8039 0.8710 0.8816

Euc 0.6888 0.6941 0.7014 0.6888 0.6941 0.7114

shows the accuracy of all the methods on the Concrete, Stock, and Machine datasets. The results

in this table show that InML significantly outperforms the baseline methods in all cases. More

importantly, compared with the baselines, InML performs more stably when the level of the noise

varies, and this verifies that the proposed mechanism is more robust against the noise. This is

mainly because we construct the relative constraints based on the ranking technique, instead of

using concrete numerical probabilities which are usually subject to noise in real world.

5.3 Experiments for InLoML

In this section, we evaluate the performance of of the proposed instance-level local metric-learning

mechanism InLoML on the Airfoil Self-Noise and Yacht Hydrodynamics datasets. The experiments

are conducted for 10 times and we report the average results. In the following, unless otherwise

stated, the number of the basis elements is set as 10 (i.e., S = 10) without loss of generality.

Performance comparison. In this experiment, we take InML and Euclidean as the baseline

methods and then compare the accuracy of the proposed InLoML with that of the two baselines.

For each dataset, we first randomly select half of all instances as the testing set, and then randomly

extract the training dataset from the remaining instances. Here we consider three cases where the

number of the training instances is set as 20, 40, and 60, respectively. The regularization parameter

ϒ is set as 1e − 5. The experimental results are reported in Table 4. From this table, we can see that

the proposed mechanism InLoML achieves the best performance in all cases, while InML and Euc

have relatively poor performance. The reason is that InLoML learns a set of local metrics instead

of a single global distance metric and can well capture the local data differences. Additionally, the

experimental results also show that the performance becomes better when the number of instances

in the training set increases.

The effect of the training size on the computational cost. In this experiment, we investigate

the effect of the training size (i.e., N ) on the computational cost of InLoML. Specifically, for a given

dataset, we evaluate the training time of InLoML under different training sizes. Figure 5 reports
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Fig. 5. The training time of InLoML under different training sizes.

Fig. 6. The training time of InLoML under different number of added feature dimensions.

the average results when the training size varies from 10 to 32 on the Airfoil Self-Noise dataset

and the Yacht Hydrodynamics dataset. As we can see, the training size exerts negligible influence

on the computational cost of InLoML. The results also verify that in our theoretical analysis in

Section 3.3, the number of parameters needed to be learned is independent of the training set

size N . Thus, in practical applications, we can use a moderately large training set to learn a good

learning model with high efficiency.

The effect of the feature dimension. Next, we measure the effect of the feature dimension

(i.e., u) on the computational cost and accuracy of the proposed InLoML. In this experiment, the

training size is set as 40 (i.e., N = 40). For each dataset, we append different numbers of Gaussian

noisy features to expend its feature dimensions. More specifically, we vary the number of appended

noisy features from 1 to 23. Figure 6 shows the evolution of the training time (in seconds) with

respect to the number of appended features. The experimental results in this figure show that the

training time remains roughly stable when we increase the number of appended features. This is

also in accordance with the complexity analysis in Section 3.3, which shows that the computational

cost is independent of the feature dimension (i.e., u). Thus, the proposed InLoML is very efficient

to deal with the datasets with large dimensions. Additionally, we report the accuracy results of the

proposed InLoML under different input feature dimensions in Figure 7. From this figure, we can

observe that as we increase the number of the appended noisy features, the accuracy of the pro-

posed InLoML decreases. The reason is that the appended noisy features can hide the relationship

between the targeted metric learning task and the relevant input features.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 53. Publication date: July 2020.



53:26 M. Huai et al.

Fig. 7. The accuracy of InLoML under different number of added feature dimensions.

Fig. 8. The training time of InLoML under different number of basis elements.

The effect of the basis elements. In this experiment, we evaluate the effect of the number

of the basis elements (i.e., S) on the training time and accuracy of InLoML. In this experiment,

we still set the training sizes of the two regression datasets as 40 (i.e., N = 40). Figure 8 reports

the evolution of the training time of InLoML with respect to the number of basis elements. Here,

for each dataset, we vary the number of basis elements from 1 to 30. As it can be observed in

this figure, the training time of the proposed InLoML has a linear growth when we increase the

number of basis elements. This observation can also be derived from the computational analysis in

Section 3.3, which shows that the computational complexity is linearly proportional to the number

of basis elements (i.e., S). Figure 9 shows the accuracy of InLoML under different numbers of the

basis elements. Here, the number of the basis elements is varied from 1 to 50. From this figure, we

can see that with the increase of the number of basis elements, the classification accuracy of the

proposed InLoML first increases and then tends to be stable. This also accords with our intuition

that with sufficient basis elements, we can derived a well-trained local metric learning model.

5.4 Experiments for GrML

In this section, we evaluate the performance of GrML on three real-world datasets [50] (i.e., Iono-

sphere, Heart, and Diabetes). To generate the probabilistic examples, we randomly split the training

dataset into groups of data sizem. For each group, the associated probability (i.e., πk ) is the fraction

of positive instances in this group, and it can be easily calculated based on the true label informa-

tion of the datasets. In this experiment, we only take Cosine and Euclidean as baselines. The reason
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Fig. 9. The accuracy of InLoML under different number of basis elements.

Fig. 10. Relative accuracy of the group-level mechanism w.r.t. the size of training dataset.

is that other baselines need to access each instance’s label during the learning process and they

cannot address the group-wise probability. Additionally, we measure each method’s performance

by the relative accuracy, which is defined as the accuracy of GrML relative to the accuracy that can

be achieved by a metric-learning method (we use LMNN in this article) that has full access to the

deterministic labels. And the accuracy calculated here is based on the predicted similarity labels

of the testing instance pairs, which are calculated by using the learned distance metric.

Performance comparison. We first evaluate the performance of GrML when the training

dataset size and the group size vary. Here we consider eight cases where the training dataset size

varies from 8 to 64. For each case, we first randomly select half of all instances in each dataset as

the testing set, and then extract the training dataset from the remaining instances. In this exper-

iment, we choose the values of m = 4, 8, and 16. Figure 10 reports the relative accuracy of GrML

and that of the baseline methods on the three datasets. We can see GrML performs much better

than the baselines in all cases, and the advantage of GrML becomes large when the training set size

increases. Since Cosine and Euclidean only adopt cosine similarity and l2-norm distance to measure

the similarity of the instance pairs in the testing set, the performance of the two baselines keeps

stable when the training set size varies. Additionally, we can see that GrML achieves very high

relative accuracy (the minimum value is lager than 0.8). This means that the performance of GrML

is almost equivalent to that of the learning method which has full access to the instance labels.

The results in Figure 10 also show that the relative accuracy of GrML decreases when the group

size (i.e.,m) becomes larger. This is mainly because the groups become less informative when the

group size increases, which is consistent with the theoretical analysis in Section 4.3.

Distribution of the group-wise probabilities. Next, we study the effect of the group size

(i.e., m) on the distribution of the group probabilities. In this experiment, we adopt the Diabetes
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Fig. 11. The distribution of the group-wise probabilities.

Fig. 12. Convergence of the group-level mechanism on the Ionosphere dataset.

dataset and the Ionosphere dataset. We first split each dataset into subsets (or groups) with equal

size (m = 4, 16), and then compute the associated probability for each group based on the true

label information. Then, we use histograms to provide visual displays of the distribution of group

probabilities. To construct a histogram, we firstly divide the entire range of group probabilities

(i.e., [0, 1]) into a series of consecutive and non-overlapping intervals (bins) and then compute the

proportion of the groups that fall into each bin, with the sum of the heights equal to 1. Figure 11

shows the histograms of the two datasets, and each solid line represents a fit to the exponential

distribution. As Figure 11 shows, the proportion of groups whose group probabilities are closer to

0 and 1 decreases when we increase the group size (i.e., m) from 4 to 16, which means the groups

become less informative. This is consistent with the theoretical analysis and the experimental

results in Figure 10. From Figure 10, we can also see that GrML can achieve good performance

even in the challenging situation where m = 16, which means that the proposed mechanism is

insensitive to the changes of the group size.

Convergence. We also evaluate the convergence of GrML. In this experiment, the training

dataset size and the group size is set as 48 and 8, respectively. Then we calculate the KL-divergence

between values of {pk
i j } in consecutive iterations. The results on the Ionosphere dataset are reported

in Figure 12. Here we conduct the experiment for three times (i.e., Trail 1, Trail 2, and Trail 3). Each

time the instances in the training dataset are randomly selected. The results show that the KL-

divergences gradually converge to 0 with the increase of the iteration number, and this confirms

that the convergence of GrML can be guaranteed.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 53. Publication date: July 2020.



Learning Distance Metrics from Probabilistic Information 53:29

6 RELATED WORK

In the past few years, we have witnessed a great increase in the number of metric-learning

works [1, 2, 6, 9, 11–14, 16–19, 21, 22, 27, 31, 32, 37, 41, 42, 44, 47, 51, 52]. Existing

metric-learning works can be organized into the following two categories: global metric learn-

ing and local metric learning.

Global metric learning. Global metric-learning mechanisms [1, 2, 6, 9, 11, 14, 16–19, 21, 31,

41, 44, 47, 51, 52] aim to learn a single (or global) distance metric that can measure the similarity of

different instances from the global view. Traditional supervised global metric-learning works [11,

14, 19, 31, 41, 44, 51, 52] optimize the distance metrics with the assumption that the available train-

ing dataset is fully labeled. The authors in [11, 14, 44, 51, 52] address the binary datasets and use

the associated binary labels to generate a set of constraints which are then used as the supervised

information. [41] proposes a metric-learning method under the scenarios where some class labels

in the training dataset are mislabeled. The work in [31] deals with the metric-learning problem

where the training dataset has multiple class values. The authors in [19] present an algorithm to

learn distance metrics for multi-label problems where each training instance in the training set

is associated with a set of class labels. Additionally, there are some other global metric-learning

works [1, 2, 6, 21, 47] which address the semi-supervised metric-learning problems. Following the

entropy regularization, the authors in [21] present a metric-learning method which maximizes the

entropy of the probability on labeled isntances and minimizes it on unlabeled instances. Mean-

while, there exist some semi-supervised global metric-learning works [1, 2, 6, 47] that use a set of

pairwise similarity and dissimilarity constraints as the semi-supervised information to address dif-

ferent metric-learning problems. Xing et al. [47] propose a semi-supervised global metric-learning

method by using these pairwise similarity and dissimilarity constrains. Following this work, there

are several emerging metric-learning works [1, 2, 6] which study the metric-learning problems by

exploiting the given relevant constraints. And, there are some other global metric-learning works

[9, 16–18] that address the multiple instance problems where the given training dataset is provided

as a set of labeled bags. The goal of these global metric-learning works is to learn a distance metric,

which pushes bags that do not share any label apart, and makes bags that share a label closer [9,

17].

Local metric learning. Although global metric learning provides an effective way to measure

the distances among all the instance pairs, it fails to take into account the local differences of the

input feature space. Thus, the learned global distance metric may not fit well the distance over the

data manifold. To address this problem, different local metric-learning works [13, 22, 27, 32, 42]

have been proposed, which allow the distance metrics to vary across the feature space to capture

the semantic distance much better. The authors in [22] aim to take the advantage of informa-

tion from parametric generative models in the context of metric learning. Specifically, they focus

on the bias in the information-theoretical error, and find an appropriate local metric that maxi-

mally reduces the bias based upon knowledge from generative models. Wang et al. [42] propose a

parametric local metric-learning method where a Mahalanobis distance metric is learned for each

training instance. More precisely, they parametrize the distance metric matrix of each instance as

a linear combination of basis metric matrices of a small set of anchor points, and this parametriza-

tion is derived from an error bound on local metric approximation. [27] proposes a coordinated

local metric-learning method, which can learn a set of local Mahalanobis metrics and integrate

them in a global representation. The authors in [13] propose a method of learning local similarity-

aware deep feature embeddings in an end-to-end manner. The proposed method can adaptively

measure the local feature similarity in a heterogeneous space, and the learned local-adaptive sim-

ilarity metric can be exploited to search for high-quality hard samples in local neighborhood to
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facilitate a more effective deep embedding learning. [32] proposes a new method for sparse com-

positional local Mahalanobis distance metric learning, and the proposed method learns a set of

distance metrics which are composed of local and global components.

However, the above discussed metric-learning works fail to deal with the probabilistic class

labels. In practice, learning from such probabilistic information is of great importance [50]. Some

works in other fields [8, 15, 23, 24, 26, 29, 30, 50] also consider how to learn models from the

probabilistic labels. However, the problem settings in these papers are quite different from ours.

The authors in [15] present learning models for the class ratio estimation problem, which takes an

unlabeled set of instances as input and predicts the proportions of instances in the set belonging

to different classes. [23] aims to learn a supervised classifier when only label proportions for bags

of observations are known. The article [24] presents an approach to learn a classifier from group

probabilities based on support vector regression and the idea of inverting a classifier calibration

process. The authors in [26] propose a method called proportion-SVM, which explicitly models

the latent unknown instance labels together with the known group label proportions in a large-

margin framework. By introducing pinball loss, [29] presents a method for learning from label

proportions, which is built upon a recursive algorithm to alternatively predict the unknown labels

and minimize the objective function. [30] proposes an end-to-end learning from label proportions

model based on convolutional neural network called IDLLP, which employs the idea of inverting

a classifier calibration process to learn a classifier from bag probabilities. [8] focuses on the binary

label setting and formalizes a model for learning a hypothesis class by only examples drawn from a

distribution and the proportion of them receiving each label, with the goal of finding a hypothesis

that matches these statistics on the underlying distribution.

In our preliminary work [10], we study how to effectively learn the distance metric from datasets

that contain probabilistic information, and then propose two novel metric-learning mechanisms

(InML and GrML). However, the two proposed global metric-learning mechanisms (i.e., InML and

GrML) can only learn a global distance metric from the given training dataset and they fail to

capture the local differences of the input feature space. In this article, we extend InML and GrML,

and propose two local metric-learning mechanisms, based on which we can learn a set of local

distance metrics that can well capture the local differences of the input feature space. For the pro-

posed instance-wise global method InML, we conduct experiments to show that it works well not

only on the balanced dataset but also on the unbalanced dataset. Although there exist some works

that also address the unbalanced dataset [43, 53], their problem settings are quite different from

ours. The authors in [43] study the problem of partial label learning and aim to induce a multi-class

classifier from training instances where each of them is associated with a set of candidate labels,

among which only one is valid. [53] investigates the problem of online active learning and pro-

poses an online adaptive active learning algorithm to handle imbalanced datastream under limited

query budgets. However, the goal of our proposed InML is to learn a distance metric function that

can effectively calculate the similarity degree of different instance pairs. Additionally, the input of

the proposed InML is different from that of the methods in [43, 53]. Specifically, the proposed InML

takes the probabilistic information instead of the deterministic class labels as the input, while [43,

53] only utilize the deterministic class labels.

7 CONCLUSIONS

In this article, we first propose an InML, based on which, a global distance metric can be learned

directly from the given training dataset with instance-wise probabilistic labels. To well capture

the local differences of the input feature space, we then extend InML and propose a novel In-

LoML, which aims to learn a set of instance specific local metrics from the instance-wise proba-

bilities. For the cases where the datasets are associated with group-wise probabilistic labels, we
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first design a GrML, which can learn the global distance metric directly from the group-wise prob-

abilistic labels with high accuracy. Furthermore, we also extend GrML and design an effective

GrLoML, based on which we can learn a set of group specific local distance metrics from the given

group-wise probabilities. Both theoretical analysis and extensive experiments on real-world

datasets are provided to demonstrate the advantages of the proposed metric-learning mechanisms.
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