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Abstract—In many applications, one can obtain descriptions about the same objects or events from a variety of sources. As a result,

this will inevitably lead to data or information conflicts. One important problem is to identify the true information (i.e., the truths) among

conflicting sources of data. It is intuitive to trust reliable sources more when deriving the truths, but it is usually unknown which one is

more reliable a priori. Moreover, each source possesses a variety of properties with different data types. An accurate estimation of

source reliability has to be made by modeling multiple properties in a unified model. Existing conflict resolution work either does not

conduct source reliability estimation, or models multiple properties separately. In this paper, we propose to resolve conflicts among

multiple sources of heterogeneous data types. We model the problem using an optimization framework where truths and source

reliability are defined as two sets of unknown variables. The objective is to minimize the overall weighted deviation between the truths

and the multi-source observations where each source is weighted by its reliability. Different loss functions can be incorporated into this

framework to recognize the characteristics of various data types, and efficient computation approaches are developed. The proposed

framework is further adapted to deal with streaming data in an incremental fashion and large-scale data in MapReduce model.

Experiments on real-world weather, stock, and flight data as well as simulated multi-source data demonstrate the advantage of jointly

modeling different data types in the proposed framework.

Index Terms—Data fusion, truth discovery, heterogeneous data
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1 INTRODUCTION

RECENTLY, the Big Data challenge is motivated by a dra-
matic increase in our ability to extract and collect data

from the physical world. One important property of Big
Data is its wide variety, i.e., data about the same object can
be obtained from various sources. For example, customer
information can be found from multiple databases in a com-
pany, a patient’s medical records may be scattered in differ-
ent hospitals, and a natural event may be observed and
recorded by multiple laboratories.

Due to recording or transmission errors, device mal-
function, or malicious intent to manipulate the data, data
sources usually contain noisy, outdated, missing or erro-
neous records, and thus multiple sources may provide
conflicting information. In almost every industry, deci-
sions based on untrustworthy information can cause seri-
ous damage. For example, erroneous account information

in a company database may cause financial losses; wrong
diagnosis based on incorrect measurements of a patient
may lead to serious consequences; and scientific discover-
ies may be guided to the wrong direction if they are
derived from incorrect data. Therefore, it is critical to
identify the most trustworthy answers from multiple sources of
conflicting information. This is a non-trivial problem due to
the following two major challenges.

1.1 Source Reliability

Resolving conflicts from multiple sources have been stud-
ied in the database community for years [1], [2], [3] result-
ing in multiple ways to handle conflicts in data
integration. Among them, one commonly used approach
to eliminate conflicts for categorical data is to conduct
majority voting so that information with the highest num-
ber of occurrences is regarded as the correct answer; and
for continuous values, we can simply take the mean or
median as the answer. The issue of such Voting/Averag-
ing approaches is that they assume all the sources are
equally reliable, and thus the votes from different sources
are uniformly weighted. In the complicated world that
we have today, it is crucial to estimate source reliability to
find out the correct information from conflicting data,
especially when there exist sources providing low quality
information, such as faulty sensors that keep emanating
wrong data, and spam users who propagate false infor-
mation on the Internet. However, there is no oracle telling
us which source is more reliable and which piece of infor-
mation is correct.
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1.2 Heterogeneous Data

Motivated by the importance but lack of knowledge in
source reliability, many truth discovery approaches have
been proposed to estimate it and infer true facts [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23]. However, these approaches are mainly
designed for single-type data and they do not take advan-
tage of a joint inference on data with heterogeneous types.

In real data integration tasks, heterogeneous data is ubiq-
uitous. An object usually possesses multiple types of data.
For example, in the integration of multiple health record
databases, a patient’s record includes age, height, weight,
address, measurements, etc; we may want to infer correct
information for a city’s population, area, mayor, and found-
ing year among conflicting information presented on the
Internet; and when we combine the predictions from multi-
ple weather forecast tools, we need to resolve conflicts in
weather condition, temperature, humidity, wind speed,
wind direction, etc. In all these cases, the data to be inte-
grated involve categorical, continuous or even more compli-
cated data types.

Due to the wide existence of missing values, we usually
do not have sufficient amount of data to estimate source
reliability correctly purely from one type of data. When
source reliability is consistent on the entire data set, which
is often valid in reality, a model that infers from various
data types together will generate accurate estimates of
source reliability, which will in turn help infer accurate
information. Therefore, instead of separately inferring trust-
worthy information for individual data types, we should
develop a unified model that conducts a joint estimation on
all types of data simultaneously.

However, it is non-trivial to unify different types of data
in one model. During source reliability estimation, we need
to estimate how close a source input is to the correct answer,
but different data types should be treated differently in this
process because the concept of closeness varies among dif-
ferent data types. For categorical data, each observation will
be either correct or wrong (i.e., whether the observation is
the same as or different from the true fact). It is very differ-
ent when a property has continuous values. For example, if
the true temperature is 80 F, then an observation of 79 F is
closer to the true value than 70 F. If such differences are not
taken into account and we regard each continuous input as
a fact, we will inevitably make wrong estimates of source
reliability and derive incorrect results. Therefore, we need a
framework that can estimate information trustworthiness
and take each data type’s characteristics into account to
seamlessly integrate data of heterogeneous data types.

1.3 Summary of Proposed CRH Framework

These observationsmotivate us to develop aConflict Resolu-
tion on Heterogeneous Data (CRH) framework to infer the
truths (also referred to as the true information or correct
answers) from multiple conflicting sources each of which
involves a variety of data types. We formulate the problem as
an optimization problem to minimize the overall weighted
deviation between the identified truths and the input. The
weights in the objective function correspond to source reli-
ability degrees. We propose to leverage heterogeneous data
types by allowing any loss function for any type of data, and

find out both truths and source reliability by solving the joint
optimization problem. In the experiments (Section 3), we
show that the proposed CRH framework outperforms exist-
ing conflict resolution approaches applied separately or
jointly on heterogeneous data because each baseline app-
roach either does not conduct source reliability estimation, or
takes incomplete single-type data, or ignores the unique
characteristics of each data type. The proposed CRH frame-
work is also extended to work incrementally in streaming
data scenario, and further a parallel version of CRH is pre-
sented to handle large-scale data sets.

In summary, we make the following contributions:

� Wedesign a general optimization framework tomodel
the conflict resolution problem on heterogeneous data
by incorporating source reliability estimation. The
proposed objective function characterizes the overall
difference between unknown truths and input data
while modeling source reliability as unknown source
weights in the framework.

� Under this framework, weight assignment schemes
are introduced to capture source reliability distribu-
tions. Various loss functions can be plugged into the
framework to characterize different types of data. In
particular, we discuss several common choices and
illustrate their effectiveness in modeling conflict res-
olution on heterogeneous data.

� We propose an algorithm to solve the optimization
problem by iteratively updating truths and source
weights. We derive effective solutions for commonly
used loss functions and weight assignment schemes,
show the convergence of the algorithm, and demon-
strate that the running time is linear in the number
of observations. We propose an incremental version
of CRH to fit streaming scenarios, and develop a par-
allel version of CRH under MapReduce model.

� We validate the proposed algorithm on both real-
world and simulated data sets, and the results dem-
onstrate the advantages of the proposed approach in
resolving conflicts from multi-source heterogeneous
data. The CRH framework can improve the perfor-
mance of existing approaches due to its ability of
tightly coupling various data types in the conflict
resolution and source reliability estimation. Incre-
mental CRH demonstrates similar accuracy to CRH
but can run much faster and can be applied in real
time to deal with never-ending streaming data. Par-
allel CRH’s efficiency and ability to handle large-
scale data are demonstrated by experimental results
on Hadoop cluster.

2 METHODOLOGY

In this section, we describe our design of the CRH model,
which computes truths and sourceweights frommulti-source
heterogeneous data. We formulate the conflict resolution
problem as an optimization problemwhichmodels the truths
as the weighted combination of the observations from multi-
ple sources and incorporates a variety of loss functions for
heterogeneous data types. An iterative weight and truth com-
putation procedure is introduced to solve this optimization
problem. Under this general framework, we further develop
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both incremental and parallel versions of CRH for streaming
and large-scale data sets.

2.1 Problem Formulation

We start by introducing important terms and defining the
conflict resolution problem.

Definition 1. An object is a person or thing of interest; a prop-
erty is a feature used to describe the object; and a source
describes the place where information about objects’ properties
can be collected. An observation is the data describing a prop-
erty of an object from a source. An entry is a property of an
object, and the truth of an entry is defined as its accurate infor-
mation, which is unique.

The mathematical notations are as follows. Suppose there
are N objects, each of which has M properties whose data
types can be different, and these objects are observed by K
sources. The observation of the mth property for the ith

object made by the kth source is v
ðkÞ
im . The collection of obser-

vations made on all the objects by the kth source is XðkÞ, and
it is a matrix whose imth entry is v

ðkÞ
im . v

ð�Þ
im denotes the truth

of the mth property for the ith object. The truths of all the

objects on all the properties are stored in a truth table Xð�Þ
whose imth entry is v

ð�Þ
im .

To simplify the notations, we assume that the observa-
tions of all the sources about all the objects are available in
the formulation. However, the proposed framework is gen-
eral enough to cover the cases with missing observations.
More discussion can be found in Section 2.5.

Definition 2 (Source Weights). Source weights are denoted
as W ¼ fw1; w2; . . . ; wKg in which wk is the reliability degree
of the kth source. A higher wk indicates that the kth source is
more reliable and observations from this source is more likely to
be accurate.

In real-world applications, ground truths and source reli-
ability are usually unknown a priori. In ensemble learning
[24] and mixture of experts [25], methods have been pro-
posed to combine different learners (sources) in weighted
manners, but these methods need supervision to derive the
weights for sources. In contrast, existing truth discovery
approaches [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16] and the proposed method estimate source reliabil-
ity in an unsupervised manner.

However, existing truth discovery approaches assume
that the data has only one type. For heterogeneous data, if
the source reliability estimation is conducted on individual
properties separately, the estimated reliability result is not
accurate enough due to insufficient observations. In the
light of this challenge, the proposed framework unifies het-
erogeneous properties in the source reliability estimation. It
will output both source weights and a truth table which are
computed simultaneously by estimating source reliability
from all the properties.

2.2 CRH Framework

The basic idea behind the proposed framework is that reli-
able sources provide trustworthy observations, so the truths
should be close to the observations from reliable sources,

and thus we should minimize the weighted deviation from
the truths to the multi-source input where the weight
reflects the reliability degree of sources. Based on this prin-
ciple, we propose the following optimization framework
that can unify heterogeneous properties in this process:

min
Xð�Þ;W

fðXð�Þ;WÞ ¼
XK
k¼1

wk

XN
i¼1

XM
m¼1

dmðvð�Þim; v
ðkÞ
imÞ

s.t. dðWÞ ¼ 1; W 2 S:
(1)

We are searching for the values for two sets of unknown
variables Xð�Þ and W, which correspond to the collection of
truths and source weights respectively, by minimizing the

objective function fðXð�Þ;WÞ. There are two types of func-
tions that need to be plugged into this framework:

� Loss function. dm refers to a loss function defined
based on the data type of themth property. This func-

tion measures the distance between the truth v
ð�Þ
im and

the observation v
ðkÞ
im . It should output a high value

when the observation deviates from the truth and a
low valuewhen the observation is close to the truth.

� Regularization function. dðWÞ reflects the distributions
of source weights. It is also required mathematically.
If each source weight wk is unconstrained, then the
optimization problem is unbounded because we can
simply take wk to be �1. To constrain the source
weightsW into a certain range, we need to specify the
regularization function dðWÞ and the domain S. Note
that we set the value of dðWÞ to be 1 for the sake of
simplicity. Different constants for dðWÞ do not affect
the results, as we can divide dðWÞ by the constant.

These two types of functions should be chosen based on
our knowledge on the characteristics of heterogeneous data
and the source reliability distributions, and more details
about these functions will be discussed later. Intuitively, if a
source is more reliable (i.e., wk is high), high penalty will be
received if this source’s observation is quite different from

the truth (i.e., difference between v
ð�Þ
im and v

ðkÞ
im is big). In con-

trast, the observation made by an unreliable source with a
low wk is allowed to be different from the truth. In order to

minimize the objective function, the truths Xð�Þ will rely
more on the sources with high weights.

The truths Xð�Þ and source weightsW should be learned
together by optimizing the objective function through a joint
procedure. In an optimization problem that involves two
sets of variables, it is natural to iteratively update the values
of one set to minimize the objective function while main-
taining the values of another set until convergence. This
iterative procedure, referred to as block coordinate descent
approach [26], will keep reducing the value of the objective
function. To minimize the objective function in Eq(1), we
iteratively conduct the following two steps.

Step I: Source Weights Update. With an estimation of the
truths Xð�Þ, we weight each source based on the differ-
ence between the truths and the observations made by
the source:

W  argmin
W

fðXð�Þ;WÞ s.t. dðWÞ ¼ 1; W 2 S: (2)
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At this step, we fix the values for the truths and com-
pute the source weights that jointly minimize the
objective function subject to the regularization
constraints.

Step II: Truths Update. At this step, the weight of each source
wk is fixed, and we update the truth for each entry to
minimize the difference between the truth and the
sources’ observations where sources are weighted by
their weights:

v
ð�Þ
im  argmin

v

XK
k¼1

wk � dmðv; vðkÞimÞ: (3)

By deriving the truth using this equation for every entry,
we can obtain the collection of truths Xð�Þ which minimizes

fðXð�Þ;WÞwith fixedW.

Algorithm 1. CRH Framework

Input: Data fromK sources: fXð1Þ; . . . ;XðKÞg.
Output: Truths Xð�Þ ¼ fvð�ÞimgN;M

i¼1;m¼1, source weights
W ¼ fw1; . . . ; wKg.
1: Initialize the truths Xð�Þ;
2: repeat
3: Update source weights W according to Eq(2) to reflect

sources’ reliability based on the estimated truths;
4: for i 1 to N do
5: form 1 toM do
6: Update the truth of the ith object on themth property

v
ð�Þ
im according to Eq(3) based on the current estima-
tion of source weights;

7: end for
8: end for
9: until Convergence criterion is satisfied;
10: return Xð�Þ andW.

The pseudo code of CRH framework is summarized in
Algorithm 1. We start with an initial estimate of truths and
then iteratively conduct the source weight update and truth
update steps until convergence. In the following, we explain
the two steps in detail using example functions, and discuss
the convergence and other practical issues.

2.3 Source Weight Assignment

First, we discuss the following regularization function:

dðWÞ ¼
XK
k¼1

expð�wkÞ: (4)

This function regularizes the value of wk by constraining the
sum of expð�wkÞ. Suppose that the truths are fixed, the opti-
mization problem Eq(1) with constraint Eq(4) is convex, and
the global optimal solution is given by

wk ¼ �log
PN

i¼1
PM

m¼1 dmðvð�Þim; v
ðkÞ
imÞPK

k0¼1
PN

i¼1
PM

m¼1 dmðvð�Þim; v
ðk0Þ
im Þ

 !
: (5)

This weight computation equation indicates that a
source’s weight is inversely proportional to the difference
between its observations and the truths at the log scale. The
negative log function maps a number in the range of 0 and 1

to a range of 0 and1, so it helps to enlarge the difference in
the source weights. A source whose observations are more
often close to the truths will have a higher weight. There-
fore, Eq(4) is a reasonable constraint function which leads to
meaningful and intuitive weight update formula.

In order to distinguish source weights even better so that
reliable sources can play a more important role in deriving
the truths, we use the maximum rather than the sum of the
deviations as the normalization factor when computing the
weights. It still ensures that a source’s weight is inversely
proportional to the difference between its observations and
the truths at the log scale.

The aforementioned weight assignment scheme consid-
ers a combination of sources. By setting different regulariza-
tion functions, we can conduct source selection under the
framework. For example, the following function defined
based on Lp-norm can be used to select sources:

dðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wp

1 þ wp
2 þ . . .þ wp

K
p
q

¼ 1;

wk 2 Rþ ðk ¼ 1; . . . ; KÞ;
(6)

where p is a positive integer. When p equals to 1 or 2, it cor-

responds to the most widely used L1-norm or L2-norm. If
Lp-norm regularization is employed, the optimal value of
the problem in Eq(1) will be 0, which is achieved when we
select one of the sources and set its weight to be 1, set all the
other source weights to be 0, and simply regard the chosen
source’s observations as the truths. Different from the regu-
larization function shown in Eq(4), this regularization func-
tion does not combine multiple sources but rather assumes
that there only exists one reliable source.

We can also incorporate integer constraints to conduct
source selection with more than one source, i.e., choose j
sources out of allK sources:

dðWÞ ¼ 1

j
ðw1 þ w2 þ . . .þ wKÞ ¼ 1;

wk 2 f0; 1g ðk ¼ 1; . . . ; KÞ:
(7)

If wk ¼ 1, the kth source is selected in truth computation,
otherwise its observations will be ignored when updating
the truths in the next step. Recent work [27] shows that both
economical and computational costs should be taken into
account when conducting source selection, which can be
formulated as extra constraints in our framework. Due to
the integer constraints defined in Eq(7), Eq(1) becomes an
integer programming problem. The details of the solution
are omitted here.

In many problems, we will benefit from integrating the
observations from multiple sources, but there is a variation
in the overall reliability degrees. Therefore, in this paper,
we focus on the weight assignment scheme with max nor-
malization factor where sources are integrated and variation
is emphasized.

2.4 Truth Computation

The truth computation step (Eq(3)) depends on the data
type and loss function. We respect the characteristics of
each data type and utilize different loss functions to
describe the deviation from the truths for different data

LI ETAL.: CONFLICTS TO HARMONY: A FRAMEWORK FOR RESOLVING CONFLICTS IN HETEROGENEOUS DATA BY TRUTH... 1989



types. Accordingly, truth computation will differ among
various data types. Below we discuss truth computation in
detail based on several loss functions for categorical and
continuous data, the two most common data types.

2.4.1 Categorical Data Type

On categorical data, the most commonly used loss function
is 0-1 loss in which an error is incurred if the observation is
different from the truth. Formally, if themth property is cat-

egorical, the deviation from the truth v
ð�Þ
im to the observation

v
ðkÞ
im is:

dmðvð�Þim; v
ðkÞ
imÞ ¼ 1 if v

ðkÞ
im 6¼ v

ð�Þ
im ,

0 otherwise:

�
(8)

Suppose that the weights are fixed, based on 0-1 loss
function, to minimize the objective function at this step (Eq
(3)), the truth on the mth property of the ith object should
be the value that receives the highest weighted votes among
all possible values:

v
ð�Þ
im  argmax

v

XK
k¼1

wk � 1ðv; vðkÞimÞ; (9)

where 1ðx; yÞ ¼ 1 if x ¼ y, and 0 otherwise. This computa-
tion follows the principle that an observation stated by reli-
able sources will be regarded as the truth.

For the scenarios where multiple values of v
ð�Þ
im are proba-

ble, we introduce a strategy to incorporate probability into
truth computation. This strategy is probabilistic-based and
we assume that observations from reliable sources should
have higher probability to be true. We represent categorical
data by binary index vectors, which characterize the proba-
bility distributions of observations over all possible values.

Formally, if themth property has Lm possible values and v
ðkÞ
im

is the lth value, then the index vector I
ðkÞ
im for v

ðkÞ
im is defined as:

I
ðkÞ
im ¼ ð0; . . . ; 1

l
; 0 . . . ; 0ÞT : (10)

We can use squared loss function to describe the distance
between the index vector I

ðkÞ
im and the truth vector I

ð�Þ
im :

dmðvð�Þim; v
ðkÞ
imÞ ¼ dmðIð�Þim ; I

ðkÞ
im Þ

¼ ðIð�Þim � I
ðkÞ
im ÞT ðIð�Þim � I

ðkÞ
im Þ;

(11)

where I
ð�Þ
im denotes the probability distribution of the truths,

in which v
ð�Þ
im is the corresponding value with the largest

probability in I
ð�Þ
im , i.e., the most possible value.

As the weights are fixed, the optimization problem Eq(1)
with Eq(11) is convex. The optimal I

ð�Þ
im is the weighted

mean of the probability vectors of all the sources:

I
ð�Þ
im  

PK
k¼1 wk � IðkÞimPK

k¼1 wk

: (12)

Comparing with the 0-1 loss strategy, this strategy gives
a soft decision instead of a hard decision. However, this
method has relatively high space complexity due to the
representation of categories for input data.

2.4.2 Continuous Data Type

As for the continuous data, the loss function should charac-
terize the distance from the input to the truth with respect
to the variance of entries across sources. One common loss
function is the normalized squared loss:

dmðvð�Þim; v
ðkÞ
imÞ ¼

ðvð�Þim � v
ðkÞ
imÞ2

stdðvð1Þim; . . . ; v
ðKÞ
im Þ

: (13)

Suppose that the weights are fixed, the optimization
problem Eq(1) with Eq(13) is convex. The truth that mini-
mizes the overall weighted distance should be the weighted
average of the observations:

v
ð�Þ
im  

PK
k¼1 wk � vðkÞimPK

k¼1 wk

: (14)

This truth computation strategy simulates the idea that
observations from a reliable source should contribute more
to the computation of the truth. However, this method is
sensitive to the existence of outliers, and thus can only work
well in the data set in which outliers are removed.

To mitigate the effect of outliers, we can use the normal-
ized absolute deviation as the loss function:

dmðvð�Þim; v
ðkÞ
imÞ ¼

jvð�Þim � v
ðkÞ
im j

stdðvð1Þim; . . . ; v
ðKÞ
im Þ

: (15)

Based on this, the truth that minimizes the overall weighted
absolute deviation should be the weighted median. Specifi-
cally, we use the following definition of weighted median
[28, Chapter 9]. Given a set of numbers fv1; :::; vKg with
weights fw1; :::wKg, the weighted median of this set is the

number vj, such that

X
k:vk <vj

wk <
1

2

XK
k¼1

wk &
X

k:vk > vj

wk4
1

2

XK
k¼1

wk: (16)

The sum of weights on the numbers that are smaller than
the weighted median, and the sum of weights on the num-
bers that are greater than the weighted median should both
be roughly half of the total weights on the whole set. To
find the weighted median, we compare the cumulative sum
computed on numbers smaller than vj or greater than vj.
Note that conventional median can be regarded as a special
case where we give the same weight to all the numbers so
that median becomes the number separating the higher half
from the lower half. It is known that median is less sensitive
to the existence of outliers, and thus the weighted median
approach for truth computation is more desirable in noisy
environments.

Besides the aforementioned loss functions, the proposed
general framework can take any loss function that is selected
based on data types and distributions. Some other examples
include Mahalanobis distance for continuous data, edit dis-
tance or KL divergence for text data, etc. To deal with com-
plex data types, we can either use loss functions defined on
raw data or on abstraction of raw data, such as motifs in time
series, frequent sub-graphs in graphs, and segments in
images. The framework can even be adapted to take the
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ensemble of multiple loss functions for a more robust loss
computation. We can also convert a similarity function into a
loss function, which allows the usage of numerous techni-
ques in similarity computation developed in the data inte-
gration community.

2.5 Discussions & Practical Issues

Here we discuss several important issues to make the
framework practical and analyze the time complexity of the
proposed CRH framework.

Initialization. The initialization of the truths can be
obtained using existing conflict resolution methods. In our
experiments, we find that the results from Voting=Averaging
approaches is typically a good start.

Convexity and convergence. The convexity depends on the
loss functions and regularization function. An example of a
family of convex loss functions is Bregman divergence [29],
which includes a variety of loss functions such as squared
loss, logistic loss, Itakura-Saito distance, squared Euclidean
distance, Mahalanobis distance, KL-divergence and general-
ized I-divergence. Using several loss functions discussed in
this paper, we prove the convergence of the CRH framework
as follows. When Eq(4) is used as constraint, Eq(11) or/and
Eq(13) is/are used as loss functions, the convergence of CRH
framework is guaranteed, and detailed proof can be found
at [30]. Although the analysis on non-convex or non-
differentiable functions need to be conducted differently
[31], [32], we find that some of these approaches workwell in
practice, such as the absolute deviation for continuous data.

In Algorithm 1, the convergence criterion is that the
decrease in the objective function is small enough compared
with the previous iteration. In the experiments, we find that
the convergence of CRH is easy to judge because the first
several iterations incur a huge decrease in the objective
function, and once it converges, the results become stable.

Normalization. Another important issue is the normaliza-
tion of deviations on each property. As illustrated in the
weight computation equation (Eq(5)), we need to sum up
the deviations to the truths across different properties. If
various loss functions applied on different properties have
significantly different scales, the weight computation will
be biased towards the property that has bigger range in the
deviation. To solve this issue, we normalize the output of
each loss function on each property so that the deviation
computed on all the properties fall into the same range.

Missing values. Note that for the sake of simplicity, we
assume that all the sources observe all the objects on all the
properties in the proposed optimization framework (Eq(1)),
but it can be easily modified to handle missing values when
different sources observe different subsets of the objects on
different subsets of properties. When the number of observa-
tionsmade by different sources is quite different, we can nor-
malize the overall distance of each source by the number of
observations.

Source weight consistency. Similar to existing truth discov-
ery methods, CRH framework makes the source weight con-
sistency assumption, which assumes that a source provides
truths for all the objects and properties with the same proba-
bility. If the assumption does not hold[15], [33], [34], we can
adapt the proposed CRH framework to handle such cases
by dividing wk into fine-grained weights, each of which

corresponds to a local reliability degree of the source on a
subset of properties or objects.

Time complexity. The running time of CRH framework
might vary with respect to different loss functions and regu-
larization functions. If we utilize 0-1 loss function Eq(8) and
log regularization function Eq(5), the running time is linear
with respect to the total number of observations, i.e.,
OðKNMÞ, where K is the number of sources, N is the num-
ber of objects, andM is the number of properties.

2.6 Incremental CRH

In many real truth discovery scenarios, data from multiple
sources are collected in a “streaming” manner, i.e., data
arrive in sequential chunks. For example, when we crawl
the weather prediction information from multiple websites,
the data are collected day by day. It is impractical to wait
until all the data are collected to estimate source reliability
and find the truths. To fit such scenarios, we modify the
proposed CRH framework so that the truths and source
weights can be learned incrementally. This incremental
framework can also be applied to huge data sets that can
only tolerate one sequential scan of the data sets.

The basic idea is to obtain the truths for current chunk of
data based on the source weights learned from historical
data and update the source weights accordingly without
revisiting the past data. Applying this in CRH framework,
we modify the source weights and truths update steps to
conduct incremental CRH (I-CRH). Specifically, for each
new chunk of data, we first use the source weights learned
from previous data to update the truths, and then update
source weights based on the difference between the latest
truths and the observations. Note that the time window for
data collection decides the size of each data chunk.

To control the effect of past data on truth discovery, we
introduce a parameter in the I-CRH method: Decay rate a

determines the impact of the historical data on current
source weights estimation. Intuitively, the recent data
should play a more important role in source weight estima-
tion than the past data. Therefore, we introduce the decay
parameter a 2 ½0; 1�. The smaller a, the less impact from
past data in current source weights estimation.

The pseudo code of the I-CRH framework is summarized
in Algorithm 2. We start with an initialization of source
weights, and then conduct the truth computation and
source weight update steps for each data chunk.

Comparing with the CRH framework, I-CRH method is
more efficient. Although the proposed CRH framework
runs linearly with respect to the number of observations, it
requires several iterations to update truths and source
weights. The I-CRH, however, runs only one iteration for
each data chunk. The accuracy of the result obtained by
I-CRH method is expected to be a bit lower than CRH
method because I-CRH only scans data once and have less
computation steps, but this leads to better efficiency. I-CRH
is ideal in the scenarios when high-volume data arrives at
fast speed and requires fast processing.

2.7 Parallel CRH

Nowadays, with the explosion of data and the development
of computation devices, it becomes necessary to take the
advantage of distributed and parallel computing systems to
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process large-scale data sets. In this section, we adapt the
proposed CRH framework to parallel paradigm.

Algorithm 2. Incremental CRHMethod

Input: Stream data: fD1;D2; . . .g where Dl ¼ fXð1Þl ; . . . ;XðKÞl g,
and decay rate a
Output: Truths for the stream data fXð�Þ1 ;Xð�Þ2 ; . . .g where

Xð�Þl ¼ fvð�ÞimlgNl;Ml
i¼1;m¼1.

1: Initialize source weights wk ¼ 1, and set the accumulated
distance for each source ak ¼ 0;

2: for each timestamp l do
3: Compute the truth for each entry in the current data:

v
ð�Þ
iml  argminv

PK
k¼1 wk � dmðv; vðkÞimlÞ;

4: Update accumulated distance for each source: ak  
ak � aþ

PN
i¼1
PM

m¼1 dmðvð�Þiml; v
ðkÞ
imlÞ;

5: Update source weight wk according to the accumula-
ted distance;

6: end for
7: return Xð�Þ.

Many parallel programming models are feasible to paral-
lelize CRH method. Here we particularly discuss the adap-
tation of CRH method to fit MapReduce framework [35],
which has been widely used for large-scale data analysis on
the cloud. In MapReduce, the following steps are executed
in parallel: 1) the map stage scans the input and output
(key, value) pairs; and 2) the reduce stage processes the
(key, value) pairs and outputs the final results.

It is obvious that the truth computation step can be exe-
cuted independently for each object and thus this step is
easy to parallelize. The source weight assignment step can
be expressed using summation form [36], and thus it can be
parallelized by aggregating partial sums. Next we will illus-
trate the details of the parallel CRH method. Note that the
following procedure can work with various loss functions
and regularization functions.

2.7.1 Data Format

We first describe the format of data sets as input to parallel
CRHmethod. Since there is information from different sour-
ces for a particular entry, to be general, we assume that the
input is a tuple of three elements: the ID of the entry (denote
as eID), the information from a particular source about this
entry (denote as v), and the ID of this particular source
(denote as sID). Then each tuple of the input is denoted as
ðeID; v; sIDÞ.

The parallel CRH framework still works in an iterative
procedure, and each iteration consists of truth computation
and weight assignment steps. Next, we describe the details
of these two steps for parallel CRH.

2.7.2 Truth Computation

For truth computation step, we need one MapReduce proce-
dure. First, in Map function, all the input tuples are re-
organized into a key/value pair, where the key is the ID of
an entry, and the value includes the rest information. Before
the key/value pairs are fed into Reducers, they are grouped
according to the key values. The pairs with the same key,
i.e., the same entry ID, will go to the same Reducer. Then

we can easily calculate the truth for each entry based on Eq
(3). Note that in the truth computation formula, we also
need the source weight information. It is kept in an external
file and all Reducer nodes can read it. Initially, source
weights are set uniformly ( 1K for all sources). This file will
then be updated by source weight assignment step as
described below. Based on the source weights and key/
value pairs with the same entry ID, the Reducer computes
the truth for each entry, and outputs key/value pairs, where
the key is entry ID and the value is the corresponding truth.

2.7.3 Source Weight Assignment

For the source weight update step, we also need oneMapRe-
duce procedure. The general idea is that in Map phase, all
the partial errors are computed; then in Reduce phase, the
partial errors are summed up. The input format for Mappers
is the same as the one in truth computation, i.e., the tuple
ðeID; v; sIDÞ. As shown in Eq(5), the source weights are a
function of their errors, which is computed based on the esti-
mated truths and their claimed values: the claimed values
can be directly read from the input tuples; the estimated
truths, similar to the shared source weights, can be kept in an
external file and all Mapper nodes can access it. For each
input tuple, the Mapper simply compares the claimed value
with the estimated truths and emits the partial errors accord-
ing to the adopted distance function. Before the ðsID; errorÞ
pairs are fed into Reducers, they will be sorted by Hadoop.
Thus the pairs with the same key, i.e., the same source ID,
will feed to the same Reducer. Thenwe can aggregate all par-
tial errors for each source. As sourcesmay not have claims on
all entries, the aggregated errors should be normalized by
the number of sources’ observations.

As the number of observations can be quite large, the
overhead caused by the sorting operation and communica-
tion will dominate the running time. In order to reduce the
overhead, we further implement a Combiner function for
source weight assignment. This Combiner function is quite
similar to the Reducer, and the only difference is that it does
not sum up all the errors, instead, just part of the partial
error pairs within each Mapper.

2.7.4 Wrapper Function

To make all the above functions work together, we need a
wrapper function to control the iterative procedure. The
source weights are initialized by equal values and these
weights will be read by the Mappers in the truth computa-
tion step. After the truth computation step, we have the esti-
mated truths for all the entries, and this information is
written into an external file. Then by comparing the esti-
mated truths and input tuples, the source errors (and source
weights) are re-calculated, and the external source weight
file will be updated. We repeat the whole procedure until
the estimated truths converge or the iteration number meets
the threshold we set up.

2.8 Summary

Our major contribution is that we unify data of various
types in truth discovery to resolve conflicts on heteroge-
neous data. The proposed optimization framework (Eq(1)),
which targets at minimizing overall weighted difference
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between truths and input data, provides a nice way to com-
bine data of various types when deriving source weights
and truths. Under this general framework, we discussed
several common data types and loss functions, derived
effective solutions, and analyzed its convergence. Different
from existing truth discovery approaches that focus on facts
[4], [5], [9], [10] or continuous data [14], the proposed CRH
model learns source reliability degrees jointly from various
properties with different data types. Unique characteristics
of each data type are considered, and all types contribute to
source reliability estimation together. This joint inference
improves source reliability estimation and leads to better
truth discovery on heterogeneous data.

Other contributions include the development of incre-
mental and parallel versions of CRH method. They are
designed for streaming or offline large-scale data sets. They
can run by scanning data only once or access the data in
parallel, which greatly reduce running time.

3 EXPERIMENTS

In this section, we report the experimental results on both
real-world and simulated data sets, which show that the
proposed CRH method is efficient and outperforms state-
of-the-art conflict resolution methods when integrating mul-
tiple sources of heterogeneous data. We first discuss the
experiment setup in Section 3.1, and then present experi-
mental results for CRH method in Section 3.2. Further, the
experiments for incremental and parallel CRH methods are
reported in Sections 3.3 and 3.4 respectively.

3.1 Experiment Setup

In this part, we present the performance measures and dis-
cuss the baseline methods.

3.1.1 Performance Measures

The problem setting is that we have multi-source input and
the ground truths. All the conflict resolution methods are
conducted in an unsupervised manner in the sense that the
ground truths will only be used in evaluation. In this experi-
ment, we focus on two types of data: categorical and contin-
uous. To evaluate the performance of various conflict
resolution methods, we adopt the following measures for
these two data types:

� Error rate: For categorical data, we use Error Rate as
the performance measure of an approach, which is
computed as the percentage of the approach’s output
that are different from the ground truths.

� MNAD: For continuous data, we can measure the
overall absolute distance from each method’s output
to the ground truths, which indicates how close the
output are to the ground truths. As different entries
may have different scales, we normalize the distance
on each entry by its own variance, and then calculate
their mean. This leads to the measure Mean Normal-
ized Absolute Distance (MNAD).

For both measures, the lower the value, the closer the
method’s estimation is to the ground truths and thus the bet-
ter the performance.

3.1.2 Baseline Methods

For the proposed CRH method, we use weighted voting (Eq
(9)) for categorical data due to its time and space efficiency.
On continuous data, we use weighted median (Eq(16)),
which is efficient and robust in noisy environment with out-
liers. Weight assignment is computed by the inverse loga-
rithm of the ratio between the deviation to the truth and the
maximum distance so that the difference in source reliabil-
ity is emphasized. We compare the proposed approach
with the following baseline methods that cover a wide vari-
ety of ways to resolve conflicts. These approaches can be
partitioned into three categories.

� Conflict resolution methods applied on continuous data
only. The following approaches can only be applied
on continuous data, and thus they will ignore the
input from categorical properties. Mean and Median
are traditional conflict resolution approaches that
simply take the mean or median of all observations
on each property of each object as the final output,
while Gaussian Truth Model (GTM) [14] is a Bayes-
ian probabilistic model based truth discovery
approach especially designed for continuous data.

� Conflict resolution methods applied on categorical data
only. We apply majority voting approach, which
takes the value that has the highest number of occur-
rences as output, on categorical properties only. This
is the traditional way of resolving conflicts in cate-
gorical data without source reliability estimation.

� Conflict resolution methods by truth discovery. Many of
the existing truth discovery approaches are devel-
oped to find true “facts” for categorical properties.
However, we can enforce them to handle data of het-
erogeneous types by regarding continuous observa-
tions as “facts” too. Among these methods,
Investment [9] and PooledInvestment [9] “invest” a
source’s reliability uniformly on the observations it
provides and the confidence of an observation is a
non-linear (Investment) or linear (PooledInvestment)
function defined on the sum of invested reliability
from its providers. 2-Estimates [5] takes the assump-
tion that “there is one and only one true value
for each entry”, and 3-Estimates [5] improves
2-Estimates by considering the difficulty of getting
the truth for each entry. Both TruthFinder [4] and
AccuSim [10] adopt Bayesian analysis, and similarity
function is used to adjust the vote of a value by con-
sidering the influences between facts. Meanwhile,
AccuSim considers complement vote which is
adopted by 2-Estimates and 3-Estimates. Note that
in [10], other algorithms have been proposed to
tackle source dependency issues in resolving con-
flicts, which are not compared here because we do
not consider source dependency in this paper but
leave it for future work.

The comparison between the proposed framework with
these baseline approaches on heterogeneous data can show
that 1) using both types of data jointly gives better source reli-
ability estimation than using individual data types separately,
but 2) an accurate weight can only be obtained by taking
unique characteristics of each data type into consideration.
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We implement all the baselines and set the parameters
according to their authors’ suggestions. All the experimen-
tal results in this section except for MapReduce experiments
are conducted on a Windows machine with 8G RAM, Intel
Core i7 processor.

3.2 Experimental Results of CRH Method

In this section, by comparing the proposed CRH approach
with the baseline methods, we show the power of simulta-
neously modeling various data types in a joint framework
on both real-world and simulated data sets. We also show
the efficiency of the proposed approach on single machine
and Hadoop cluster.

3.2.1 Real-World Data Sets

We use three real-world data sets to demonstrate the effec-
tiveness of the proposed method.

Weather forecast data set. Weather forecast integration task
is a good test bed because the data contains heterogeneous
types of properties. Specifically, we integrate weather fore-
casting data collected from three platforms: Wunder-
ground,1 HAM weather,2 and World Weather Online.3 On
each of them, we crawl the forecasts of three different days
as three different sources, so altogether there are nine sour-
ces. For each source, we collected data of three properties:
high temperature, low temperature and weather condition,
among which the first two are continuous and the last is cat-
egorical. To get ground truths, we crawl the true weather
information for each day. We collected the data for twenty
US cities over a month.

Stock data set. The stock data [11], crawled on every work
day in July 2011, consists of 1,000 stock symbols and 16
properties from 55 sources, and the ground truths are also
provided. Here, we treat the data set as heterogeneous.
More specifically, property volume, shares outstanding and
market cap are considered as continuous type, and the rest
ones are considered as categorical type.

Flight data set.The flight data [11], crawled over one-month
period starting from December 2011, consists of 1,200 flights
and 6 properties from 38 sources. We conduct pre-processing
on the data to convert the gate information into the same for-
mat and the time information into minutes. The ground
truths are also available. In this work, we show results on the
flight data by treating gate information as categorical type
and time information as continuous type. Note that we have
a different task setting compared with [11] for Stock and
Flight datawhenwe treat them as heterogeneous types.

Table 1 shows the statistics of these three data sets. Note
that the number of entries does not equal to the number of

ground truths because we only have a subset of entries
labeled with ground truths. The ground truths are not used
by any of the approaches, but only used in the evaluation.

In Table 2, we summarize the performance of all the
methods in terms of Error Rate on categorical data and
MNAD on continuous data for three real-wold data sets.
Although our approach outputs truths on both data types
simultaneously, we evaluate the performance separately on
these two data types due to the different measures for dif-
ferent data types. It can be seen that the proposed CRH
approach achieves better performance on both types of data
compared with all the baselines. For example, on weather
data, the number of mismatches from ground truths drops
from 266 (the best baseline) to 218 out of 580 entries by
using CRH (on categorical data). On Stock and Flight data
sets where baselines have already achieved good perfor-
mance, we still can see the performance improvement of
CRH over the best baseline (1,719! 1,657 out of 23,677, and
427 ! 414 out of 4,971). Similarly, the gain on continuous
data can be consistently observed on all three data sets.

By outperforming various conflict resolution approaches
applied separately on categorical data and continuous data,
the proposed CRH approach demonstrates its advantage in
modeling source reliability more accurately by jointly infer-
ring from both types of data. GTM can not estimate source
reliability accurately merely by continuous data which may
not have sufficient information. This also justifies our
assumption that each source’s reliability on continuous and
categorical data is consistent so the estimation over different
data types complements each other.

The reason that the proposed CRH approach beats the
other conflict resolution approaches that are applied on
both types of data is that these approaches cannot capture
the unique characteristics of each data type. This is further
supported by the fact that the performance of those
approaches is relatively better on categorical data, but devi-
ates more from the truths on the continuous data. In con-
trast to existing approaches, the proposed CRH framework
can take data type into consideration, which will provide a
better estimation of source reliability, and thus result in
more accurate truth estimation.

As source reliability is the key to obtain correct truths, we
further show the source reliability degrees estimated for the
nine sources by various approaches on the weather forecast
data set. We choose this data set because it consists of nine
sources only, which is more practical to demonstrate. We
first compute the true source reliability by comparing the
observations made by each source with the ground truths.
Reliability of a source is defined as the probability that the
source makes correct statements on categorical data, and
the chance that the source makes statements close to the
truth on continuous data. To simplify the presentation, we
combine the reliability scores of continuous and categorical
data into one score for each source. To make it clear, we
show the source reliability degrees in three plots presented
in Fig. 1, each of which shows the comparison between the
ground truths and some of the approaches.

Fig. 1a shows that the source reliability degree estimated
by CRH method is in general consistent with that obtained
from the ground truths. By characterizing different data
types in a joint model, CRH can successfully distinguish

TABLE 1
Statistics of Real-World Data Sets

Weather Data Stock Data Flight Data

# Observations 16,038 11,748,734 2,790,734
# Entries 1,920 326,423 204,422
# Ground Truths 1,740 29,198 16,572

1. http://www.wunderground.com
2. http://www.hamweather.com
3. http://www.worldweatheronline.com
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good sources from bad ones, and accordingly derive the
truth based on good sources. In Figs. 1b and 1c, we show
the reliability degrees of ninr sources estimated by GTM,
AccuSim, 3-Estimates and PooledInvestment compared
with the ground truth reliability. We particularly show the
results on these approaches because 3-Estimates and
PooledInvestment are improved solutions compared with
2-Estimates and Investment respectively claimed in the cor-
responding papers, and TruthFinder has similar perfor-
mance with AccuSim on this data set. As different methods
adopt various functions to estimate the source reliability
scores, to make them comparable, we normalize all the
scores into the range ½0; 1�. Among these approaches,
3-Estimates and GTM calculate the unreliability degrees, so
we convert their scores to reliability degrees to show the
comparison. The plots show that the baseline methods can
capture the difference among sources in making accurate
claims to a certain extent, but the patterns in source reliabil-
ity detected by them are not very consistent with the ground
truths, which can thus explain the increased error in truth
detection in Table 2.

3.2.2 Noisy Multi-Source Simulations

To further demonstrate the advantages of the proposed
framework in the environment involving various reliability
degrees and different loss functions, we conduct experi-
ments on simulated data sets generated from UCI machine
learning data sets. We choose two data sets: UCI Adult4 and
Bank5 data sets, each of which has both continuous and

categorical properties. The original data sets are regarded as
the ground truths, and based on each of them, we generate
a data set consisting of multiple conflicting sources by
injecting different levels of noise into the ground truths as
the input to our approach and baseline methods. Gaussian
noise is added to each continuous property, and values in
categorical properties are randomly flipped to generate facts
that deviate from the ground truths. To better simulate the
real-world data, we round the continuous type data based
on their physical meaning. A parameter g is used to control
the reliability degree of each source (a lower g indicates a
lower chance that the ground truths are altered to generate
observations). For continuous data, g is proportional to the
variance of the Gaussian noise. For categorical data, a
threshold u (u 2 ½0; 1�) is set according to g. For each object,
we first draw a random number x from Uniformð0; 1Þ. If
x < u, the corresponding claimed value from will be per-
turbed by randomly choosing one of the other possible val-
ues. Otherwise, the original value is kept. In this way, we
generate data sets which contain 8 sources with various
degrees of reliability (g ¼ f0:1; 0:4; 0:7; 1; 1:3; 1:6; 1:9; 2g).
Table 3 shows the statistics of these two data sets.

Table 4 summarizes the results of all the approaches on
these two data sets. It can be seen that CRH can fully recover

TABLE 2
Performance Comparison on Real-World Data Sets

Weather Data Stock Data Flight Data

Method Error Rate MNAD Error Rate MNAD Error Rate MNAD

CRH 0.3759 4.6947 0.0700 2.6445 0.0823 4.8613
Mean NA 4.7840 NA 7.1858 NA 8.2894
Median NA 4.9878 NA 3.9334 NA 7.8471
GTM NA 4.7914 NA 3.4253 NA 7.6703
Voting 0.4844 NA 0.0817 NA 0.0859 NA
Investment 0.4913 5.2361 0.0983 2.8081 0.0919 6.4153
PooledInvestment 0.4948 5.5788 0.0990 2.7940 0.0925 5.8562
2-Estimates 0.5327 5.5258 0.0726 2.8509 0.0885 7.4347
3-Estimates 0.4810 5.1943 0.0818 2.7749 0.0881 7.1983
TruthFinder 0.4586 5.1293 0.1194 2.7140 0.0950 8.1351
AccuSim 0.4672 5.0862 0.0726 2.8503 0.0881 7.3204

Fig. 1. Comparison of source reliability degrees with ground truths.

TABLE 3
Statistics of Simulated Data Sets

Adult Data Bank Data

# Observations 3,646,832 5,787,008
# Entries 455,854 723,376
# Ground Truths 455,854 723,3764. http://archive.ics.uci.edu/ml/datasets/Adult

5. http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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all the truths on categorical data, and find the true value for
continuous data with very small distance by inferring accu-
rate source reliability degrees. Similar to the experiments on
the weather data set, we can still observe the great improve-
ment in truth detection performance compared with base-
line approaches due to the proposed method’s advantage in
source reliability estimation. Existing approaches cannot
provide accurate estimate of source reliability because they
either take incomplete data (only categorical or continuous),
or do not model the characteristics of both data types jointly.

On these simulated data sets, we also investigate how the
performance of the proposed CRH approach varies with
respect to different distributions of source reliability
degrees. To illustrate the effect more clearly, we choose two
reliability degrees: g ¼ 0:1 and g ¼ 2, which correspond to
reliable and unreliable sources respectively. We now fix the
total number of sources as 8, and change the number of reli-
able sources to conduct a series of experiments. Figs. 2 and
3 show the performance of the proposed approach and
baseline methods on Adult and Bank data sets respectively.
In each of them, we show the performance on categorical
and continuous data respectively when we vary the number
of reliable sources from 0 to 8 (out of 8 sources in total).

The following observations can be made from the results:
1) The plots support our previous findings that the CRH

framework outperforms existing conflict resolution techni-
ques, which ignore the unique characteristics of each data
type. When sources are equally reliable or unreliable (num-
ber of reliable sources equals to 0 or 8), the CRH model
achieves similar performance as that of voting/averaging
approaches. However, when the reliability degree varies
across sources,CRH performsmuch better. 2) In general, it is
easier to detect truths when we have a bigger number of reli-
able sources. However, on categorical data, even when only
1 out of 8 sources is reliable, CRH can still discover most of
the truths. Clearly, the proposed approach can successfully
infer source reliability and thus detect the truths that are
stated by the minority. 3) On continuous data, we can see
that the convergence rate is slower than that on categorical
data. Conflict resolution on continuous data is in general
more difficult due to the higher complexity of the truth space
andmore complicated definition of closeness to the truths.

3.3 Experimental Results of I-CRH Method

We apply the incremental CRH (I-CRH) method on three
real world data sets: weather data set, stock data set, and
flight data set. Table 5 summarizes the performance of CRH
and I-CRH in terms of Error Rate on categorical data,
MNAD on continuous data and running time (in seconds).
We can observe that though I-CRH method performs
slightly worse than CRH framework on Error Rate and
MNAD, its running time is significantly shorter than CRH.

To demonstrate the performance of I-CRH method, we
plot the source reliability degrees it estimates on weather
data set. We first show the source reliability degrees at each
timestamp in Fig. 4a. It is clear that all source reliability
degrees reach a stable stage after few timestamps. To fur-
ther validate whether the stabilized source weights esti-
mated by I-CRH method are consistent with the estimation
by CRH framework, we shows its estimated source reliabil-
ity degrees at the first timestamp and the sixth timestamp
(when they become stable) comparing with the source reli-
ability degrees estimated by the CRH framework in Fig. 4b.
Although at the first timestamp, I-CRH and CRH methods
have slightly different estimation on source weights, I-CRH
converges to CRH after few timestamps. It implies that the
I-CRH method can provide similar result as CRH method

TABLE 4
Performance Comparison on Simulated Data Sets

Adult Data Bank Data

Method Error Rate MNAD Error Rate MNAD

CRH 0.0000 0.0637 0.0000 0.0789
Mean NA 0.3673 NA 0.3671
Median NA 0.2470 NA 0.2491
GTM NA 0.0810 NA 0.0948
Voting 0.1029 NA 0.2314 NA
Investment 0.0530 0.1391 0.1197 0.1588
PooledInvestment 0.0215 0.1008 0.0241 0.0866
2-Estimates 0.0497 0.1355 0.1152 0.1583
3-Estimates 0.0497 0.1355 0.1152 0.1583
TruthFinder 0.0346 0.1272 0.1097 0.1589
AccuSim 0.0288 0.1145 0.0681 0.1571

Fig. 2. Performance w.r.t. # reliable sources on adult data set.

Fig. 3. Performance w.r.t. # reliable sources on bank data set.
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after several timestamps when source weight consistency
assumption holds.

We also check the effect of time window size and decay
rate in I-CRHmethod. Timewindow controls the size of each
chunk of data and a determines the impact of past data on
source weight estimation. Fig. 5 shows the performance with
respect to the time window size. Note that the time window
determines how often we apply the I-CRH method to the
data. When the window size is too small, there are not suffi-
cient data to estimate accurate source weights so the error
rate is high. However, once there are enough data, the perfor-
mance improves. Although performancemay drop slightly if
window size is too large, the performance of I-CRH is mostly
steady with various time window sizes. Fig. 6 shows the
effect of the decay rate a. It can be seen that the performance
of I-CRH is not sensitive to different values of a.

3.4 Experimental Results of Parallel CRH Method

In this section, we evaluate the running time of CRH on
Hadoop cluster using simulated data sets. Based on the
Adult data set, we generate large-scale data sets by adding
different noise levels on the original data set as we discussed
before. By controlling the number of instances and proper-
ties, we can vary the number of entries. On the other side, we
can easily change the number of sources. For each simulated
source, we generate the claimed value for all the entries, so
the number of observation is the product of the number of
entries and the number of sources. The proposed CRH
framework is implemented using MapReduce model. The
experiments are conducted on a Dell Hadoop cluster with
Intel Xeon E5-2403 processor (4x 1.80 GHz, 48 GB RAM).

As shown in Table 6, the number of observations vary
from 104 to 108. The fusion process using the MapReduce

version of the proposed approach can finish in a short time.
The running time mainly comes from the setup overhead
when the number of observations is not very large, but the
speed-up in the execution time is more obvious when the
number of observations increases. For example, on a data

set with size 108, the whole process only takes 669 s.
To make the result more interpretable, we plot the run-

ning time with respect to the number of entries or the num-
ber of sources. From Fig. 7, we can observe that when we
keep the number of sources unchanged, the running time
linearly grows with the number of entries. We also shows
the result from another perspective: When we keep the
number of entries unchanged, the running time linearly
grows with the number of sources.

It is also important to check the effect of the number of
nodes in Hadoop system.Here we only show the experiment
with different number of Reducer nodes. For the number of
Mapper nodes, results are similar. We keep the number of
observation unchanged (4� 108), start with only two

TABLE 5
Performance Comparison of CRH and I-CRH

Weather Data Stock Data Flight Data

Method Error Rate MNAD Time (s) Error Rate MNAD Time (s) Error Rate MNAD Time (s)

CRH 0.3759 4.6947 13.182 0.0700 2.6445 162.24 0.0823 4.8613 138.64
I-CRH 0.4 4.7996 3.8064 0.0749 2.6494 70.091 0.0837 5.2295 79.794

Fig. 4. Source reliability degree comparison.

Fig. 5. Error rate and MNAD w.r.t. time window.

Fig. 6. Error rate and MNAD w.r.t. decay rate a.

TABLE 6
Running Time on Hadoop Cluster

# Observations Time (s)

1� 104 94

1� 105 96

1� 106 100

1� 107 193

1� 108 669

4� 108 1,384

Pearson Correlation 0.9811
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Reducer nodes, and then include more nodes to do the
Reducer jobs. Fig. 8 shows the running time with respect to
the number of Reducer nodes. For MapReduce, it is not nec-
essary thatmore nodes lead to faster speed, because the over-
head such as communication cost has to be considered. For a
given input, its size along with other factors determine the
optimal number of reducers. For example, from Fig. 8 we can
see that with 10 Reducer nodes, the system achieves the best
performance. When we set the number of reducers to be 25,
it takes even longer time to complete the task.

4 CONCLUSIONS

To extract insightful knowledge from an overwhelming
amount of information generated by numerous industries, it
is crucial to automatically identify trustworthy information
and sources from multiple conflicting data sources. As het-
erogeneous data is ubiquitous, a joint estimation on various
data types can lead to better estimation of truths and source
reliability. However, existing conflict resolution work either
regards all the sources equally reliable, or models different
data types individually. Therefore, we propose to model the
conflict resolution problem on data of heterogeneous types
using a general optimization framework called CRH that
integrates the truth finding process on various data types
seamlessly. In this model, truth is defined as the value that
incurs the smallest weighted deviation from multi-source
input in which weights represent source reliability degrees.
We derive a two-step iterative procedure including the com-
putation of truths and source weights as a solution to the
optimization problem. The advantage of this framework is
its ability of taking various loss and regularization functions
to characterize different data types and weight distributions
effectively. We also extend the CRH method to streaming
and parallel processing scenarios by developing effective
incremental and MapReduce based CRH methods. We
conduct experiments on weather, stock and flight data sets
collected from multiple platforms as well as simulated
multi-source data generated from UCI machine learning
data sets. Results demonstrate the advantage of the proposed
CRH approach over existing conflict resolution approaches
in finding truths fromheterogeneous data. Further, the incre-
mental and parallel CRH methods demonstrate high effi-
ciency and scalability on streaming and large-scale data sets.

ACKNOWLEDGMENTS

Yaliang Li and Qi Li contributed equally to this work and
should be considered as joint first authors. The work was
supported in part by the US National Science Foundation
under Grant US National Science Foundation IIS-1319973
and CNS-1566374, the US Army Research Laboratory under
Cooperative Agreement No. W911NF-09-2-0053 (NS-CTA),
and the US Army Research Office under Cooperative
Agreement No. W911NF-13-1-0193.

REFERENCES

[1] J. Bleiholder and F. Naumann, “Data fusion,” ACM Comput. Sur-
veys, vol. 41, no. 1, pp. 1:1–1:41, 2009.

[2] X. L. Dong and F. Naumann, “Data fusion: Resolving data con-
flicts for integration,” Proc. VLDB Endowment, vol. 2, no. 2,
pp. 1654–1655, 2009.

[3] Z. Jiang, “A decision-theoretic framework for numerical attribute
value reconciliation,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 7,
pp. 1153–1169, Jul. 2012.

[4] X. Yin, J. Han, and P. S. Yu, “Truth discovery with multiple conflict-
ing information providers on the web,” in Proc. 13th ACM SIGKDD
Int. Conf. Knowl. Discovery DataMining, 2007, pp. 1048–1052.

[5] A. Galland, S. Abiteboul, A. Marian, and P. Senellart,
“Corroborating information from disagreeing views,” in Proc. 3rd
ACM Int. Conf. Web Search Data Mining, 2010, pp. 131–140.

[6] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han, “A Bayesian
approach to discovering truth from conflicting sources for data inte-
gration,” Proc. VLDB Endowment, vol. 5, no. 6, pp. 550–561, 2012.

[7] X. L. Dong and D. Srivastava, “Big data integration,” in Proc. Int.
Conf. Data Eng., 2013, pp. 1245–1248.

[8] V. Vydiswaran, C. Zhai, and D. Roth, “Content-driven trust prop-
agation framework,” in Proc. ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2011, pp. 974–982.

[9] J. Pasternack and D. Roth, “Making better informed trust deci-
sions with generalized fact-finding,” in Proc. 22nd Int. Joint Conf.
Artif. Intell., 2011, pp. 2324–2329.

[10] X. L. Dong, L. Berti-Equille, and D. Srivastava,, “Integrating con-
flicting data: The role of source dependence,” Proc. VLDB Endow-
ment, vol. 2, no. 1, pp. 550–561, 2009.

[11] X. Li, X. L. Dong, K. B. Lyons, W. Meng, and D. Srivastava,, “Truth
finding on the deep web: Is the problem solved?” Proc. VLDB
Endowment, vol. 6, no. 2, pp. 97–108, 2012.

[12] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discov-
ery in social sensing: A maximum likelihood estimation
approach,” in Proc. 11th Int. Conf. Inf. Process. Sensor Netw., 2012,
pp. 233–244.

[13] L. Su, Q. Li, S. Hu, S. Wang, J. Gao, H. Liu, T. Abdelzaher, J. Han,
X. Liu, Y. Gao, and L. Kaplan, “Generalized decision aggregation
in distributed sensing systems,” in Proc. IEEE Real-Time Syst.
Symp., 2014, pp. 1–10.

[14] B. Zhao and J. Han, “A probabilistic model for estimating real-
valued truth from conflicting sources,” in Proc. 10th Int. Workshop
Quality Databases, 2012.

[15] G.-J. Qi, C. C. Aggarwal, J. Han, and T. Huang, “Mining collective
intelligence in diverse groups,” in Proc. 22nd Int. Conf. World Wide
Web, 2013, pp. 1041–1052.

[16] A. Marian and M. Wu, “Corroborating information from web
sources,” IEEE Data Eng. Bull., vol. 34, no. 3, pp. 11–17, Sept. 2011.

[17] J. Pasternack and D. Roth, “Latent credibility analysis,” in Proc.
Int. Conf. World Wide Web, 2013, pp. 1009–1020.

[18] X. L. Dong and D. Srivastava, “Compact explanation of data fusion
decisions,” inProc. Int. Conf.WorldWideWeb, 2013, pp. 379–390.

[19] R. Pochampally, A. D. Sarma, X. L. Dong, A. Meliou, and
D. Srivastava, “Fusing data with correlations,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2014, pp. 433–444.

[20] T. Rekatsinas, X. L. Dong, and D. Srivastava, “Characterizing and
selecting fresh data sources,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2014, pp. 919–930.

[21] D. Yu, H. Huang, T. Cassidy, H. Ji, C. Wang, S. Zhi, J. Han,
C. Voss, and M. Magdon-Ismail, “The wisdom of minority: Unsu-
pervised slot filling validation based on multi-dimensional truth-
finding,” in Proc. 25th Int. Conf. Comput. Linguistics, 2014,
pp. 1567–1578.

Fig. 7. Running time w.r.t. number of observations.

Fig. 8. Running time w.r.t. number of reducers.

1998 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 8, AUGUST 2016



[22] S. Wang, L. Su, S. Li, S. Hu, T. Amin, H. Wang, S. Yao, L. Kaplan,
and T. Abdelzaher, “Scalable social sensing of interdependent
phenomena,” in Proc. 14th Int. Conf. Inf. Process. Sensor Netw.,
2015, pp. 202–213.

[23] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and
J. Han, “A confidence-aware approach for truth discovery on long-
tail data,” Proc. VLDBEndowment, vol. 8, no. 4, pp. 425–436, 2014.

[24] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms.
London, U.K.: Chapman & Hall, 2012.

[25] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: A litera-
ture survey,” Artif. Intell. Rev., vol. 42, no. 2, pp. 275–293, 2014.

[26] D. P. Bertsekas, Non-Linear Programming. Belmont, MA, USA:
Athena Scientific, 1999.

[27] X. L. Dong, B. Saha, and D. Srivastava,, “Less is more: Selecting
sources wisely for integration,” Proc. VLDB Endowment, vol. 6,
no. 2, pp. 37–48, 2012.

[28] T. H. Cormen, R. L. Rivest, C. E. Leiserson, and C. Stein, Introduc-
tion to Algorithms. Cambridge, MA, USA: MIT press, 2009.

[29] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering
with Bregman divergences,” J. Mach. Learn. Res., vol. 6, pp. 1705–
1749, 2005.

[30] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving con-
flicts in heterogeneous data by truth discovery and source reliabil-
ity estimation,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2014, pp. 1187–1198.

[31] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” J. Optimization Theory Appl.,
vol. 109, no. 3, pp. 475–494, 2001.

[32] J. Nocedal and S. Wright, Numerical Optimization. New York, NY,
USA: Springer, 2006.

[33] M. Gupta, Y. Sun, and J. Han, “Trust analysis with clustering,” in
Proc. 20th Int. Conf. Companion World Wide Web, 2011, pp. 53–54.

[34] F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao, H. Ji, and
J. Han, “Faitcrowd: Fine grained truth discovery for crowd-
sourced data aggregation,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2015, pp. 745–754.

[35] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[36] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” in
Proc. Adv. Neural Inf. Process. Syst., 2006, pp. 281–288.

Yaliang Li received the BS degree from the Nanj-
ing University of Posts and Telecommunications
in 2010 and is currently working toward the PhD
degree in the Department of Computer Science
and Engineering at SUNY Buffalo. His research
topics include truth discovery, text and web min-
ing, privacy-preserving data mining, and data
mining application in healthcare.

Qi Li received the BS degree in mathematics
from Xidian University and the MS degree in sta-
tistics from the University of Illinois at Urbana-
Champaign, in 2010 and 2012, respectively. She
is currently working toward the PhD degree in the
Department of Computer Science and Engineer-
ing at SUNY Buffalo. Her research interest
includes truth discovery, data aggregation, and
crowdsourcing.

Jing Gao received the PhD degree from the
Computer Science Department, University of Illi-
nois at Urbana-Champaign in 2011, and subse-
quently joined SUNY Buffalo in 2012. She is an
assistant professor in the Department of Com-
puter Science and Engineering at SUNY Buffalo.
She is broadly interested in data and information
analysis with a focus on truth discovery, informa-
tion integration, ensemble methods, mining data
streams, transfer learning, and anomaly detec-
tion. She is a member of the IEEE.

Lu Su received the MS degree in statistics and
the PhD degree in computer science, both from
the University of Illinois at Urbana-Champaign, in
2013 and 2012, respectively. He is an assistant
professor in the Department of Computer Sci-
ence and Engineering at SUNY Buffalo. His
research focuses on the general areas of cyber-
physical systems, wireless and sensor networks,
and mobile computing. He was with the IBM
T. J. Watson Research Center and National
Center for Supercomputing Applications. He is a
member of the ACM and the IEEE.

Bo Zhao received the PhD degree from the Uni-
versity of Illinois at Urbana-Champaign. He is a
senior engineer at LinkedIn, before that he was a
researcher at Microsoft Research Silicon Valley.
His research interests include truth discovery,
data integration, knowledge bases, crowdsourc-
ing, and more recently recommender systems.

Wei Fan received the PhD degree in computer
science from Columbia University in 2001. He is
currently the senior director and deputy head of
Baidu Big Data Lab in Sunnyvale, California. His
main research interests and experiences are in
various areas of data mining and database sys-
tems, such as, deep learning, stream computing,
high-performance computing, extremely skewed
distribution, cost-sensitive learning, risk analysis,
ensemble methods, easy-to-use nonparametric
methods, graph mining, predictive feature discov-

ery, feature selection, sample selection bias, transfer learning, time
series analysis, bioinformatics, social network analysis, novel applica-
tions, and commercial data mining systems. His coauthored paper
received ICDM’06/KDD11/KDD12/KDD13/KDD97 Best Paper & Best
Paper Runner-up Awards. He led the team that used his Random Deci-
sion Tree (www.dice.com) method to win the 2008 ICDM Data Mining
Cup Championship. He received the 2010 IBM Outstanding Technical
Achievement Award for his contribution to IBM Infosphere Streams. He
is the associate editor of the ACM Transactions on Knowledge Discov-
ery and Data Mining (TKDD). During his times as the associate director
in Huawei Noah’s Ark Lab in Hong Kong from August 2012 to December
2014, he has led his colleagues to develop Huawei StreamSMART a
streaming platform for online and real-time processing, query, and min-
ing of very fast streaming data. StreamSMART is three to five times
faster than STORM and 10 times faster than SparkStreaming, and was
used in Beijing Telecom, Saudi Arabia STC, Norway Telenor, and a few
other mobile carriers in Asia. Since joining Baidu Big Data Lab, he has
been working on medical and healthcare research and applications,
such as deep learning-based disease diagnosis based on NLP input as
well as medical dialogue robot.

Jiawei Han is Abel Bliss professor, the Depart-
ment of Computer Science, University of Illinois
at Urbana-Champaign. His research interests
include data mining, data warehousing, informa-
tion network analysis, etc., with more than
600 conference and journal publications. He is
the director of IPAN, supported by the Network
Science Collaborative Technology Alliance pro-
gram of the US Army Research Lab, and the
codirector of KnowEnG: A Knowledge Engine for
Genomics, one of the NIH supported Big Data to

Knowledge (BD2K) Centers. He is a fellow of the ACM and the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ETAL.: CONFLICTS TO HARMONY: A FRAMEWORK FOR RESOLVING CONFLICTS IN HETEROGENEOUS DATA BY TRUTH... 1999

www.dice.com


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


