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Abstract—This paper explores direct phone-to-phone communication (via WiFi interface) among vehicles to support participatory

sensing applications. Sensing data usually contains location, speed, and fuel consumption of the car, and has a long time delay

between collected and transferred to the server. Direct communication among phones aboard is important in reducing data transfer

delay time and sharing participatory sensing information in an inexpensive manner. We design a practical and optimized

communication mechanism for direct phone-to-phone data transfer among phones aboard that strategically enables phone-to-phone

and/or phone-to-WiFiAP communications by optimally toggling the phones between the normal client and the hotspot modes. We take

advantage of the WiFi hotspot functionality on smartphones, and hence require neither involvement of participants nor changes to

existing wireless infrastructure and protocols. An analytical model is established to optimize toggling between client and hotspot modes

for optimal system efficiency. We fully implement this system on off-the-shelf Google Galaxy Nexus and Nexus S phones. Through a

35-vehicle two-month deployment study, as well as simulation experiments using the real-world T-drive 9,211-taxicab dataset, we

show that our solution significantly reduces data transfer delay time and maintains over 80 percent system efficiency under varying

system parameters.

Index Terms—Phone-to-phone communication, vehicular networking, WiFi hotspot, parameter optimization

Ç

1 INTRODUCTION

THIS paper presents a practical mobile phone sensing sys-
tem that utilizes direct phone-to-phone communication

between vehicles to improve performance of mobile partici-
patory sensing applications. Rather than designing a new
protocol to improve vehicle-to-vehicle and vehicle-to-
WiFiAP communications (e.g., see work on delay/disrup-
tion tolerant networks (DTN) [1], [2], [3], [4], mobile ad-hoc
networks (MANET) [5], [6], and vehicular networks [7], [8],
[9]), we present an optimized phone-to-phone communica-
tion scheme that uses only those capabilities exported to
the user on today’s smartphones. It strategically toggles
between the normal (client) and hotspot modes on smart-
phones as would be needed to collect data from phones and
upload to a remote back-end server. It does so without

needing to root or jailbreak smartphones, which makes
the functionality implementable as a third-party phone
application. Moreover, it requires neither involvement of
participants nor changes to existing wireless infrastructure
and protocols.

This work is motivated by the proliferation of sensor-
equipped smartphones in the past few years. According to
the International Data Corporation (IDC) Worldwide Quar-
terly Mobile Phone Tracker, it is estimated that 982 million
smartphones will be shipped worldwide in 2015 [10]. The
rich set of embedded sensors on smartphones makes mobile
phone sensing an useful paradigm to support many appli-
cations that require real-time situation awareness, such as
monitoring traffic congestion and commute delays. Vehicles
are becoming popular as carriers of mobile sensing plat-
forms for many reasons. First, their natural mobility
increases coverage for many participatory and social sens-
ing applications [11], [12]. Second, our daily commute itself
has become a target of many research efforts, such as those
that aim to save fuel consumption [13], find available park-
ing positions [14], avoid traffic jams or routes in bad condi-
tion [15], [16], [17], or share general road-side events [18].
Research communities have recently investigated incentive
mechanisms [19] to attract more smartphone users into
mobile sensing, developed solutions to preserve partic-
ipants’ privacy [20], and addressed the sparse deployment
problem [21] when mobile sensing systems do not have a
sufficient number of participants.

Accordingly, we envision a new brand of sensing
applications that use driver’s phones to share mobile
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sensory data among vehicles as well as with infrastruc-
ture servers. We assume that users will exploit their cellu-
lar data bandwidth to download results from such servers,
such as real-time traffic speed maps. However, they will
typically not want the same mobile sensing applications
to use their cellular communication for altruistic raw data
upload to the server, since unlimited data plans are no lon-
ger prevalent [22], [23]. Instead, the paper explores a
WiFi-based approach for uploading the sensor data
needed for the service.

Wi-Fi based store and forward of sensed real-time data
may result in a large latency [24], which motivates opti-
mizing data transfer among vehicles as well as between
vehicles and the infrastructure for faster offloading. Cur-
rent communication techniques on smartphones that sup-
port peer-to-peer sharing, such as WiFi ad-hoc mode [25]
and WiFi Direct [26], have significant limitations and are
not directly usable for mobile sensing. WiFi ad-hoc is not
supported on most popular phones unless rooted or jail-
broken and will probably not be in the near future due to
economic and political issues [27]. WiFi Direct was not
designed with opportunistic networking in mind, but
tries to connect WiFi enabled devices such as printers and
cameras in a secure way and as easily as possible. User
involvement is mandatory for WiFi Direct for security
reasons [28]. Also note that even if WiFi Direct can over-
come its mentioned limitations in the near future, the
phones still need to switch between the WiFi Direct “peer
mode” (to connect directly with other peers also in the
peer mode) and the normal WiFi client mode (to connect
to WiFi APs), as a phone in peer mode is not able to con-
nect to normal WiFi APs to offload data. Thus our
method actually generalizes to cover the WiFi Direct type
of scenarios in the future.

In contrast, we utilize a WiFi hotspot switching
approach that is compatible with existing WiFi APs as the
functionalities needed are supported by the standard
Android API and Java Reflection, which does not require
users to root or jailbreak smartphones. Two phones can
establish connections when one of them is in the hotspot
mode and the other in the client mode, and a phone can
offload data to access points when in the client mode. Ini-
tial efforts provided proof-of-concept prototypes [28].
Two important questions remain unanswered: first, is
automatic phone-to-phone data transfer achievable in a
highly mobile vehicular environment? Second, how to
switch between the hotspot and client modes in an effi-
cient way in order to minimize the expected wasted time
due to phones being in incompatible modes? Our paper
addresses the above questions, and makes the following
contributions.

� In this paper, we present a fully deployed smart-
phone-based vehicular mobile sensing system in
which automatic phone-to-phone communication is
achieved and is compatible with existing wireless
infrastructure. While social sensing regarding traffic
and daily commutes provides the motivating appli-
cations, this paper is strictly about the mobile com-
munication platform needed to support such
applications.

� An analytical model is established to optimize sys-
tem parameters in an adaptive fashion to achieve
high system efficiency, which means the ratio of
transfer time to meeting time of two cars (or a
car and a WiFi AP) and will be well explaned in
Section 3. We also provide empirical results to sup-
port several important design decisions in our
system.

� We evaluate our analytical model and demonstrate
the performance of our system by providing results
from a real 35-participant two-month deployment
using Google Android phones, as well as simulation
experiments using T-drive 9,211-taxicab dataset [29],
[30]. Results show that our solution significantly
reduces data transfer delay time and maintains
above 80 percent efficiency under varying system
parameters, even achieving 90 percent for parameter
settings of the latest smartphones.

The remainder of this paper is organized as follows.
After discussing related work in Section 2, we give detailed
problem descriptions in Section 3. We then present our ana-
lytical model and system designs in Sections 4 and 5. We
evaluate our system and solution in Section 6. Finally
Section 7 concludes.

2 RELATED WORK

Prior work on vehicular mobile sensing and communica-
tion generally falls into one of two categories: either using
phones for data collection and uploading (to back-end
servers) without peer-to-peer communication; or using
DTN- or MANET- style vehicle-to-vehicle communication
but on dedicated hardware instead of phones. We are the
first to offer a fully deployed system that leverages both
phone-to-phone and phone-to-AP communications from
vehicle-resident smartphones, customized for the needs
of mobile sensing.

Several prior mobile social sensing applications leverage
smartphones placed in vehicles. For example, the Nericell
project [16] presents a system that performs rich sensing
using smart phones that users carry with them in normal
courses, to monitor road and traffic conditions. The
GreenGPS system [13] provides a service that computes
fuel-efficient routes for vehicles between arbitrary end-
points, by exploiting vehicular sensor measurements avail-
able through the On Board Diagnostic (OBD-II) interface of
the car and GPS sensors on smartphones. SignalGuru [15] is
a software service that relies solely on a collection of mobile
phones to detect and predict the traffic signal schedule, pro-
ducing a Green Light Optimal Speed Advisory (GLOSA).
These systems rely on WiFi access points, since transmitting
data through cellular data networks is expensive. However,
open public WiFi is becoming less prevalent as more access
points are becoming private or secure. Our paper aims to
overcome this drawback by allowing smart phones to
exchange data in an opportunistic way to maximize upload
opportunities.

Our application scenario requires moving wireless
nodes and sometimes information processing in intermit-
tently-connected networks. MANETs and DTNs are there-
fore important overlapping fields of research to our paper.
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For instance, CafNet [6] in the CarTel project [18] is a
delay-tolerant stack that enables mobile data muling and
allows data to be sent across an intermittently connected
network. The CafNet protocols allow cars to serve as data
mules, delivering data between nodes that are otherwise
not connected to one another. Similarly, the DieselNet
testbed [5] consists of 35 buses, each with a Diesel Brick,
which is based on a HaCom Open Brick computer. Multi-
Nets [31] investigates the switching between WiFi and cel-
lular modes on phones for energy and/or throughput
considerations. It is, however, not suitable for our targeted
vehicular mobile sensing/networking scenarios because
of limited WiFi accessibility in outdoor environments and
that we do not allow cellular data transmission due to the
constant generation of potentially huge amount of sensory
data. Other related work in this field include [1], [2], [3],
[4]. The main differences of our proposed system over this
work are two-fold. First, most of them use data mules for
data collections, instead, we systematically investigate the
performance of realistic opportunistic networking via
direct phone-to-phone communication, which is now pos-
sible with most popular mobile devices. Second, while
they mainly focus on the optimization of communication
stack to take advantage of short vehicle meeting times, we
aim to leverage commonly open APIs on smartphones
and hence restrict ourselves to what can be done with the
available stacks.

Our work is also related to efforts in the vehicle net-
working community, called VANET, where the goal is
usually to increase road safety and transport efficiency,
and provide Internet access on the move to ensure wireless
ubiquitous connectivity. Research challenges in evolving
connected vehicle architecture, such as leveraging street
parking to enable vehicular Internet access [7] and investi-
gating application-driven inter-and intra-cluster commu-
nication in VANETs [8], has been deeply investigated.
However, in mobile participatory sensing, the vehicle-to-
vehicle communication problem targets a different goal:
we aim to help participants who rarely approach wireless
access points themselves to deliver their sensory data to
the back-end server more quickly. There appears to be no
straightforward solution in the VANET regime to provide
automatic and efficient vehicle-to-vehicle communication
with smartphones.

Finally, existing communication techniques on smart-
phones that support peer-to-peer sharing, such as WiFi
ad-hoc [25] and WiFi Direct [26], have significant limita-
tions and are not directly usable for social sensing. WiFi
Ad-Hoc is still not supported on most popular phones
unless rooted or jailbroken and will probably not be in the
near future [27]. WiFi Direct is not designed with opportu-
nistic networking in mind, but tries to connect WiFi

enabled devices such as printers and cameras in a secure
way and as easily as possible [28]. In addition, once a
phone is set to WiFi ad-hoc or Direct mode to support
peer-to-peer communication, it is no longer able to con-
nect to WiFi APs and offload data to the back-end servers.
Our WiFi hotspot switching approach overcomes these
drawbacks and does not need to root or jailbreak smart-
phones [28], however, there is still a lack of real deploy-
ment for performance evaluation especially in highly
mobile environment, which incidentally is one main con-
tribution of our paper as well.

3 SYSTEM MODEL AND PROBLEM DESCRIPTION

Our system is aimed to operate in a vehicular mobile sens-
ing network where sensory data is generated and collected
from participants’ vehicle-resident smartphones, as illus-
trated in Fig. 1. the system is composed of n cars, each
with a smartphone inside to perform peer to peer data
exchange as well as data upload into the Cloud/web
server. WiFi coverage is only sparsely available within the
sensing area. When a car moves into the coverage area of
a WiFi access point, the phone transmits its locally stored
data to the back-end server via WiFi communications.
Moreover, we particularly allow phones to communicate
with each other in order to reduce data transfer delays.
Note that privacy and security issues are beyond the scope
of this paper.

While a significant car density may be observed in an
urban area, it may not be appropriate to assume that all or
even a large portion of drivers are running our system on
their phones. Instead, we make the more conservative
assumption that only a small fraction of phones are running
our system at any given time. Hence, it would be unusual
for more than two such phones to be within each other’s
communication range at a time. Therefore, in this work we
focus our analysis on pairwise encounters between phones,
as opposed to optimizing general multi-party communica-
tions within phone clusters. To demonstrate the validity of
our assumption, we record the number of vehicles in all
meeting events in the T-drive dataset containing 9,211 taxi-
cabs. We set the transmission range to be 30 m, according to
our own transmission tests using Google smartphones in
vehicles. We find that pairwise encounters make up about
80 percent of all meeting occurrences. Considering that the
scale of this dataset is already quite large, the ratio of pair-
wise encounters would further increase with less partici-
pants in realistic settings.

In our system, as a phone joins the vehicle network, it
enters the client mode, in which it searches for available
communication opportunities, with either a phone in hot-
spot mode or a WiFi AP. Meanwhile, a timer is started to
control how long the phone can stay in client mode search-
ing. When the timer expires, the phone switches itself to
become a WiFi hotspot. The phone then listens for incoming
connection attempts from other phones that are in client
mode. Similarly, another timer is used to switch the phone
back to client mode upon expiry.

In either client or hotspot mode, whenever the phone
sees a communication opportunity, the timer pauses as the
phone enters transmission mode, and the data exchange

Fig. 1. System model.
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starts with the other party (phone or back-end server via
WiFi AP). When the communication is terminated due to
either data transmission completion or cars moving out of
range, the phone goes back to its previous mode, with the
timer resumed.

As two phones approach each other, if they are both in
hotspot (or client) mode, they cannot communicate until
one of them toggles mode. Similarly, when a phone enters
an WiFi AP coverage area, it cannot offload data if it’s in
hotspot mode. Therefore, the time durations phones stay in
each mode is crucial. Under our described model, we are
then interested in solving the System Efficiency Optimization
problem, where System Efficiency is defined to be, of the
entire time duration that phones are within communication
range with each other (or WiFi APs), the proportion of time
when data transfer can actually take place. The problem is
challenging because the information when vehicles meet
each other or move into WiFi coverage area is NOT a priori.
In the next section, we establish an analytical model for the
optimal mode-toggling policy and provide our solution to
optimize important system parameters.

4 ANALYTICAL FORMULATION AND SOLUTION

In this section, we present the analytical formulation of the
optimal mode-toggling policy for maximizing the total
expected transmission duration in our targeted vehicular
phone-to-phone networks.

We learn from preliminary experiments that connection
rarely establishes in highway driving scenarios, regardless
of whether the two cars are moving towards the same or
opposite directions. On the other hand, when two cars meet
and move toward the same direction in an urban or residen-
tial area, data transfer duration typically lasts quite long,
which can also occur, for example, when the two cars close
to each other park in the same parking lot or are caught in a
traffic jam. Therefore, in these cases where the transmission
duration is either extremely short or long, the switching of
the phones’ modes does not play a dominating role in sys-
tem efficiency. Fig. 2 shows the distribution of car meeting
interval lengths within the T-drive dataset. We observe that
around 46 percent of meeting events last less than 5 sec-
onds, and less than 1 percent longer than 1 minute. Thus,
more than 50 percent of car meeting events are around the
middle of the distribution and potentially can benefit con-
siderably from our system.

A complete cycle of the hotspot switching procedure is
decomposed in Fig. 3. As seen, a phone switches from client
to hotspot mode with an overhead of t0 seconds, stays in hot-
spot mode for r seconds, switches back to client mode with

another t0-second overhead, and then stays in client mode
for s seconds, so on and so forth. Phones can retrieve the opti-
malmode-switching parameters from a central server.

For simplicity we assume that the hotspot-to-client and
client-to-hotspot switching overheads are the same, con-
firmed by our experiments. Given the previous description,
the switching procedure repeats with a period of 2t0 þ rþ s
seconds. Assuming the vehicle-vehicle and vehicle-AP
meeting rates are b and g, respectively (bþ g ¼ 1), we have
the following optimization objective function,

F ðb; gÞ ¼ max
r;s

ðb � T1 þ g � T2Þ;

in which T1 and T2 are the expected phone-to-phone and
phone-to-AP transmission durations, respectively. The opti-
mization is over design parameters r and s. Other parame-
ters are not design parameters.

Let the base function fðtÞ be a periodic function with
period f ¼ 2t0 þ rþ s,

fðtÞ ¼
0; 0 � t � t0
1; t0 < t � t0 þ r
0; t0 þ r < t � 2t0 þ r
�1; 2t0 þ r < t � 2t0 þ rþ s

8>><
>>:

When fðtÞ ¼ 0, the phone is switching between modes;
fðtÞ ¼ 1 indicates that the phone is in hotspot mode, and
fðtÞ ¼ �1 client mode. In our calculation, we assume that
the switching overhead does not dominate either of the
actual mode durations, i.e., r; s > t0.

Upon entering the communication range of each other,
the two vehicles v1 and v2 are at t1 and t2 withint their
respective base function fðtÞ periods, 0 � t1; t2 < 2t0 þ
rþ s. We describe the switching patterns of v1 and v2
as f1ðtÞ ¼ fðtþ t1Þ and f2ðtÞ ¼ fðtþ t2Þ; t 2 ½0; 2t0 þ rþ sÞ,
respectively. We then define t� to be the time since meet-
ing that the phones in two cars establish connection. It
follows that,

t� ¼ min
t
ft : f1ðtÞf2ðtÞ < 0g:

Since two cars can meet at any time, we consider t1 and t2
to be uniformly distributed over ½0; 2t0 þ rþ sÞ. We use M1

to denote the total time duration in which the two cars v1
and v2 are within communication range with each other. It
then follows that the two phones can only establish connec-
tion if M1 � t�. With these notations, we derive the analytic
formula of the expected transmission time

T1 ¼ Et1;t2 ½M1 � t��;
which can be computed generically as

1

f2

Z
t1

Z
t2

ðM1 � t�Þdt2dt1:

Fig. 2. Proportion of various meeting interval length from T-drive dataset.

Fig. 3. Hotspot-Client switching cycle.
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Now we compute the actual analytical expression for T1

for the various cases of t1 and t2 value ranges.

(I) We first consider the case where t1; t2 2 ½0; t0Þ. It’s
easily seen that f1ðtÞf2ðtÞ � 0 for any t. Therefore,
EðM1 � t�ÞIðt12½0;t0ÞÞIðt22½0;t0ÞÞ ¼ 0: Note that the I’s

are just indicator functions, which we omit in writing
for the rest of the derivations.

(II) Next we consider the case where t1 2 ½0; t0Þ;
t2 2 ½t0; t0 þ rÞ. Analyzing the physical process, we
have t� ¼ 2t0 þ r� t2 if and only if t2 � t1 � t0. Then,
ifM1 � t0 þ r � t�, we have

EðM1 � t�Þ

¼ 1

f2

Z t0

0

Z t0þr

t1þt0

ðM1 � 2t0 � rþ t2Þdt2dt1

¼ 1

2f2
ðM1 � t0Þ2t0 � 1

3
ðM1 � rÞ3 þ 1

3
ðM1 � t0 � rÞ3

� �
:

Alternatively if r � M1 < t0 þ r, to ensure M1 � t� ¼
2t0 þ r� t2, we need t2 � 2t0 þ r�M1. Now t2 has two pos-
sible lower bounds, t1 þ t0 and 2t0 þ r�M1. If t1 þ t0 >
2t0 þ r�M1, it can be inferred that t1 > t0 þ r�M1, then,

EðM1 � t�Þ ¼ 1

f2

Z
t1

Z
t2

ðM1 � t�Þdt2dt1

¼ 1

f2

Z t0

t0þr�M1

Z t0þr

t1þt0

ðM1 � 2t0 � rþ t2Þdt2dt1

¼ 1

2f2
ðM1 � t0Þ2ðM1 � rÞ � 1

3
ðM1 � rÞ3

� �
:

On the other hand if t1 þ t0 < 2t0 þ r�M1, it can be
inferred that t1 < t0 þ r�M1, then,

EðM1 � t�Þ ¼ 1

f2

Z
t1

Z
t2

ðM1 � t�Þdt2dt1

¼ 1

f2

Z t0þr�M1

0

Z t0þr

2t0þr�M1

ðM1 � 2t0 � rþ t2Þdt2dt1

¼ 1

2f2
ðM1 � t0Þ2ðt0 þ r�M1Þ:

Adding these two together, we thus have,

EðM1 � t�Þ ¼ 1

2f2
ðM1 � t0Þ2t0 � 1

3
ðM1 � rÞ3

� �
:

If t0 � M1 < r, to ensure M1 � t� ¼ 2t0 þ r� t2, we have
t2 � 2t0 þ r�M1 � t1 þ t0, then

EðM1 � t�Þ ¼ 1

f2

Z
t1

Z
t2

ðM1 � t�Þdt2dt1

¼ 1

f2

Z t0

0

Z t0þr

2t0þr�M1

ðM1 � 2t0 � rþ t2Þdt2dt1

¼ t0
2f2

ðM1 � t0Þ2:

We omit derivation details for the rest of the cases and
collect results for all cases in Table 1.

Since ½0; rþ t0Þ and ½rþ t0; fÞ are symmetric, we have

T1 ¼ E½M1 � t��
¼ 2rs

f2
M1 þ IðM1 <t0Þf1ðr; s;M1Þ þ IðM1�t0Þf2ðr; s;M1Þ

þ Iðt0�M1 <rþt0Þf3ðr; s;M1Þ þ IðM1�rþt0Þf4ðr; s;M1Þ
þ Iðt0�M1 <sþt0Þf5ðr; s;M1Þ þ IðM1�sþt0Þf6ðr; s;M1Þ;

TABLE 1
Case Analysis for Expected Transmission Times

t1 t2 t� M1 EðM1 � t�Þ
½0; t0Þ ½0; t0Þ 1 	 0
½0; t0Þ ½t0; t0 þ rÞ M1 � t0 þ r 1

2f2
ðM1 � t0Þ2 � 1

3 ðM1 � rÞ3 þ 1
3 ðM1 � t0 � rÞ3

h i
or 2t0 þ r� t2 r � M1 < t0 þ r 1

2f2
ðM1 � t0Þ2t0 � 1

3 ðM1 � rÞ3
h i

½t0; t0 þ rÞ ½0; t0Þ t0 � M1 < r t0
2f2

M1 � t0ð Þ2

½0; t0Þ ½t0 þ r; 2t0 þ rÞ maxðt0 � t1; 2t0 þ r� t2Þ M1 � t0 2
f2

M1
2 t20 � 1

3 t
3
0

� �
M1 < t0 1

3f2
M3

1

½0; t0Þ ½2t0 þ r; fÞ t0 � t1 M1 � t0 1
f2

1
3 t

3
0 � 1

2 ðM1 þ sÞt20 þM1st0
� �

M1 < t0 1
f2

1
2 sM

2
1 � 1

6M
3
1

� 	
½t0; t0 þ rÞ ½t0; t0 þ rÞ 2t0 þ r�maxðt1; t2Þ M1 � r 2

f2
r�t0
2 ðM1 � t0Þ2 � 1

6 ðM1 � t0Þ3 þ 1
6 ðM1 � rÞ3

h i
t0 � M1 < r 1

f2
ðr� t0ÞðM1 � t0Þ2 � 1

3 ðM1 � t0Þ3
h i

½t0; t0 þ rÞ ½t0 þ r; 2t0 þ rÞ 2t0 þ r� t2 M1 � t0 1
f2

r
2M

2
1 � r�t0

2 ðM1 � t0Þ2 � 1
6M

3
1 þ 1

6 ðM1 � t0Þ3
h i

M1 < t0 1
f2

r
2M

2
1 � 1

6M
3
1

� 	
½t0; t0 þ rÞ ½2t0 þ r; fÞ 0 	 M1rs

f2
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where

f1ðr; s;M1Þ ¼ sþ r

f2
M2

1

f2ðr; s;M1Þ ¼ 1

f2
2

3
M3

1 �
2

3
ðM1 � t0Þ3 � 2t0ðM1 � t0Þ2

�

þ 2M1t0ðrþ sÞþ 4

3
t30 � ð2M1 þ rþ sÞt20

�

f3ðr; s;M1Þ ¼ 1

f2
rðM1 � t0Þ2 � 1

3
ðM1 � t0Þ3

� �

f4ðr; s;M1Þ ¼ 1

f2
rðM1 � t0Þ2 þ 1

3
ðM1 � t0 � rÞ3 � 1

3
ðM1 � t0Þ3

� �

f5ðr; s;M1Þ ¼ 1

f2
sðM1 � t0Þ2 � 1

3
ðM1 � t0Þ3

� �

f6ðr; s;M1Þ ¼ 1

f2
sðM1 � t0Þ2 þ 1

3
ðM1 � t0 � sÞ3 � 1

3
ðM1 � t0Þ3

� �
:

Note that the conditions in the above equations are not
mutually exclusive, which, however, does not affect the
optimization.

For modeling phone-to-AP communication, assume that
there is a WiFi AP always in hotspot mode. A vehicle comes
in range of the AP and stays in range for M2 seconds. With
the same notations as above, we have

t� ¼
t0 � t1; t1 2 ½0; t0Þ
0; t1 2 ½t0; t0 þ rÞ
t0 þ sþ ð2t0 þ r� t1Þ; t1 2 ½t0 þ r; 2t0 þ rÞ
t0 þ ðf � t1Þ; t1 2 ½2t0 þ r; fÞ

8>><
>>:

:

Therefore, the expected connection time to a WiFi AP is,

T2 ¼ EðM2 � t�Þ

¼ M2r

f
þ IðM2 <t0Þ

M2
2

2f
þ IðM2�0Þ

1

2f
M2

2 � ðM2 � t0Þ2
h i

þ Iðt0�M2 <f�rÞ
1

2f
ðM2 � t0Þ2

þ IðM2�f�rÞ
1

2f
ðM2 � t0Þ2 � ðM2 � f þ rÞ2
h i

:

Again, the conditions in the above equation is not mutu-
ally exclusive.

Given the values of t0,M1,M2, b and g, we can then solve
F ðb; gÞ using off-the-shelf non-linear optimization solvers.
The evaluation of our solution is presented in Section 6.

5 SYSTEM DESIGN

In this section, we give an overview of our vehicular phone-
to-phone communication system, and discuss in detail a
few important design issues.

5.1 System Overview

Shown in Fig. 4b is our prototype system as installed in a
vehicle. A close-up shot of the various hardware compo-
nents used in our system is shown in Fig. 4a. The Android
phone (Galaxy Nexus [32] or Nexus S [33]) is placed under
the windshield of the vehicle and is connected to the car
charger.1 The prototype application running on the phones
collects and shares various driving data, including GPS tra-
jectories, car engine OBD (onboard diagnostic) readings [34],
as well as motion (accelerometer and gyroscope) data traces.
The collecting and sharing of such location, car engine and
motion data exemplifies a participatory sensing app that
has a focus on how people’s driving patterns and habits
affect their vehicles’ fuel consumptions. Our prototype sys-
tem operates in completely autonomous manners, needing
no human intervention.

The GPS, accelerometer, and gyroscope data traces are
collected from the phone’s corresponding built-in sensors.
The engine OBD data is read using the ELM 327 OBD-to-
bluetooth adapter plugged into the car’s OBD-II port, and
then transmitted to the phone via bluetooth.

All collected sensory data is temporarily stored locally on
the phone in a database. Whenever an available WiFi AP is
detected in range, data is offloaded to the back-end server
and then deleted from the phone’s local storage. When two
vehicles are i) within the communication range of each
other, and ii) in compatible modes (i.e., one as a hotspot and
the other client), they exchange data until they move out of
each other’s communication range or complete sharing all
their stored data.

5.2 Design Issues

We next discuss several important issues in our system
design: 1) Adaptive system update; 2) which transport layer
protocol to use; 3) scheduling during data transfer; 4) data
prioritization; 5) multi-vehicle communication policy; and
6) learning WiFi AP maps.

Fig. 4. Hardware components, installation, and running screenshot of our prototype system.

1. Please note that in this paper we do not consider phone’s battery
consumption as it can be plugged into the car charger during in-vehicle
operation.
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5.2.1 Adaptive System Updates

In our targeted vehicular scenarios, phones enter and leave
communication ranges with each other or WiFi APs from
time to time. Therefore, the parameters M1 and M2 are not
unknown or fixed, especially when the system starts run-
ning with no available historical data. We explain here how
these parameters are computed and updated dynamically
as the system evolves.

We treat b, g, M1 and M2 as random variables. Then the
optimal values of r and s are

hr�; s�i ¼ argmax
r;s

EM1;M2
EðbÞT1 þEðgÞT2½ �:

Initially the distributions of these parameters are
unknown. We therefore just make an initial guess at this
stage. Then as the system runs, detailed data of the parame-
ters are sent back and the corresponding empirical distribu-
tion are updated. The parameters M1 and M2 represent the
time durations of two cars, or a car and a WiFi AP, being
within communication range of each other, respectively.
Thus, they are a function of car velocity and distance, which
is a known constant. The expectations of b and g can be esti-
mated by Nc=ðNc þNwÞ and Nw=ðNc þNwÞ, where Nc is the
total number of vehicle-to-vehicle meeting events and Nw

vehicle-to-AP. Whenever a phone-to-phone connection or a
phone-to-AP connection is established, the velocities of the
vehicles are transmitted and eventually will reach the back-
end server. As this information accumulates, the empirical
distributions of the parameters is updated. Consequently, a
new hr�; s�i is generated and then sent back to the vehicles.
As data accumulates, by the law of large number, the empir-
ical distributions converge to the true distributions of these
parameters, therefore, hs�; t�i will asymptotically lead to
optimal system performance.

To disseminate the updated parameters into the net-
work, we allow phones to receive this information via
the cellular data channel. As the amount of data needed
for this is negligible compared to other mobile sensing
data, the whole network is updated immediately with
only a tiny extra cost.

5.2.2 Transport Layer Protocol

TCP and UDP have their own strengths and weaknesses. To
decide which one to use, we conduct a series of experiments
to compare their performance in our system. During each
experiment, two vehicles start at two ends of a long street,
and move toward each other at fixed speeds until they reach
the other end of the street. One phone serves as the hotspot
and the other client. The client continuously sends data
packets to the hotspot after connecting to it upon entering
communication range. Packet sequence numbers are used
to simulate sensory data for transmissions. TCP and UDP
communications are measured separately. In addition, we
optimize the TCP real-time responses to improve system
efficiency by turning off the Nagle’s Delay option [35],
which is used to purposefully delay transmission, increas-
ing bandwidth at the expense of latency. The packet recep-
tion ratio (PRR) under varying car speeds, ranging from 10
to 30 mph, is recorded. The experiments are repeated on dif-
ferent streets to minimize the effect of external noise.

Results are shown in Fig. 5a, from which we see that
UDP results in significant packet losses, only receiving
about 40 percent of packets on average under all speeds.
We also measure the PRR in the stationary case when two
vehicles are parked near each other. We find that packet
losses rarely occur, implying that the losses are mainly due
to unreliable wireless links in mobile situations. Worse, we
observed that the UDP packet losses occurred throughout
the transmission period. Also, we measure that the inter-
packet latency is around 1.5 millisecond for UDP and 1.9
millisecond for TCP under all speeds. This result indicates
that the data transfer efficiency of TCP is comparable to
UDP when the Nagle’s Delay option is turned off, and the
number of packets received using UDP is only 51 percent of
the number using TCP, thus TCP results in a more efficient
data transmissions. Therefore, we chose to use TCP in our
system.

5.2.3 Scheduling During Data Transfer

Upon establishing connection between two phones, we can
either schedule the transfers to take place in a serial manner
(e.g., A sends to B, then B sends to A), or have them in paral-
lel, i.e., two separate threads on each phone, one for sending
and the other receiving, so the OS takes care of the lower-
level scheduling. The former approach achieves controlled
scheduling, but it is difficult to decide an appropriate time
slot value, and introduces switching overhead. For the lat-
ter, we need to check whether transmission performance is
affected and fairness provided. Therefore, we repeat the
two-vehicle experiment with the latter approach. The inter-
packet delay times on both sides is shown in Fig. 5b. We see
that the data transfer with two threads is reasonably fair for
both directions—the average inter-packet latency at the hot-
spot side is 2.62 ms, only slightly higher than the 1.96 ms
measured at the other side. Considering that the inter-
packet delay is 1.9 millisecond when transferring in one
direction, using two separate threads can improve the trans-
mission efficiency by 69.5 percent. Thus we choose this
approach in our system design.

5.2.4 Data Prioritization

A data prioritization algorithm is designed to handle the
undeterministic meeting time problem in participatory
sensing applications. This algorithm enhances system per-
formance by assigning different priorities to generated sen-
sory data, such that representative data are transmitted

Fig. 5. Empirical results for design decisions.
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first, followed by more detailed data. Hence, if data transfer
is interrupted before all data can be transmitted, the most
informative data will have been transmitted for the given
transfer size.

The importance of data can be assessed differently under
different application scenarios. In the absence of an applica-
tion-specific assessment, many generic approaches have
been proposed, such as FIFO, Latest-first, and Random.
However, we argue that a different metric should be used
in mobile participatory sensing applications, because data
objects have affinity to the physical world, in that they are
related to state of the world at a given location and time. To
maximize coverage of the physical world to which the data
pertains, it is therefore best to increase the “diversity” of
transmitted data, which is a sampling problem. By maxi-
mizing diversity, the receiver gets the “big picture” quicker,
as opposed to delivering lots of pieces of some content, and
none or little of other content. The idea of maximizing diver-
sity of unstructured data (such as images) was recently
investigated in PhotoNet. While PhotoNet explicitly consid-
ered pictorial data, we evaluate our solution using other
types of sensory data from a real testbed and compare it
with conventional solutions including the timestamp-based
and random exchange methods.

Our data prioritization algorithm works as follows: 1) We
define semantic distance to prepresent how “different” two
pieces of data are. This distance metric can be different in
various participatory sensing applications. Some common
distance measures include the Euclidean Distance for GPS
location data and Kullback-Leibler Divergence for pictures.
2) After defining the semantic distance, we divide all sen-
sory data into several clusters. Each cluster represents one
certain physical event. Clustering itself is well-known to be
NP-hard, and can be approximated by Lloyd’s algorithm.
Since the vehicle-to-vehicle meeting rate is typically small
in delay-tolerant vehicle networks, we can run the cluster-
ing algorithm in the background on each phone, and update
clusters as new sensory data are generated. 3) Finally, when
two vehicles meet, each of them sends data to its peer by
sampling these clusters in a round-robin way, starting with
the centroid of each cluster.

5.2.5 Multi-Vehicle Communication Policy

We briefly talk about the scenario under which multiple
vehicles are within communication range of each other. In
our smartphone-based vehicular sensing system, let’s
assume they form a star-topology network, the hotspot acts
as the center and other clients connect to it. The number of
clients is limited by the capacity of the hotspot (e.g., the
maximum number of connections for iPhone 5 is five, as
confirmed by AT&T and Verizon). The hotspot communi-
cates to its clients simultaneously via multiple threads, and
data from one client flows to others through the hotspot.

One choice in the multi-vehicle scenario is to switch their
roles dynamically for better global communication opportu-
nity. For instance, a client A connects to a hotspot B, and
they start transmitting data. Then A notices that another
three hotspots, C, D, and E, appear in its wifi list. Hence, the
best way for this local area network is to switch A as a hot-
spot, and the other four phones as clients, so as to get every-
one involved in communication. However, this approach

suffers from two main drawbacks. First, it requires an extra
switch time for the client (e.g., A) to notify each hotspot to
switch to client and then switch itself into a hotspot. Second,
the mobility of these vehicles are undeterministic, thus it is
hard to judge whether this switching process is worthy in
general. Therefore, we decide not to support multi-vehicle
communication in our system, as also reasoned about in
Section 3.

5.2.6 WiFi AP Maps

We also recognize that having prior knowledge about WiFi
AP maps could help optimize our system. Several such
maps exist, being managed by the government [36] and
wireless operators [37]. However, the availability of these
maps is a big challenge since they are typically not made
public. What’s more, WiFi APs are generally designed to
cover indoor environments (e.g., Cafe, office, etc) and thus
are not largely accessible in vehicular settings. One possibil-
ity is to let participants’ phones record local WiFi AP infor-
mation and share to the central server. The server can then
derive a global map and broadcast it back to all participants.
This approach, however, is problematic as different partici-
pants may have different accesses to different APs. This
may lead to inaccurate estimations. In addition, the highly
mobile vehicular environment can lead to unstable commu-
nication patterns and subsequent conflicting results on the
central server. We thus decide not to assume the availability
of WiFi AP map information in this paper.

6 EVALUATION

After describing our analytical model and discussed system
design details, in this section we evaluate the performance
of our automatic phone-to-phone communication scheme
for vehicular networking applications. We report findings
from our campus-wide deployment, and present optimiza-
tion results through simulation experiments using a larger-
scale real-world taxicab dataset.

6.1 Experiment Setup

We conducted a human subject study.2 35 people partici-
pated (university faculty, staff, and students of both gen-
ders, ranging from early 20 s into late 40 s, from various
departments) averaging 2 weeks each, and collectively
drove for around 4,000 miles. While we expect a mobile
sensing application to run on participants’ own phones, in
our study we gave people phones pre-loaded with our test
application. A mixture of both Galaxy Nexus and Nexus S
phones were given to participants to be installed in their
own vehicles. No specific driving routes were pre-selected;
all participants were asked to drive normally and carry out
their daily routines as usual. Comprehensive logging infor-
mation was displayed on the phone during the running of
the system, as illustrated in Fig. 4c, to notify the participants
of the status of the system if they were interested.

TCP communication is used with Nagle’s Delay dis-
abled, as we learn from our prior tests that having this
option enabled has negative impact on communication

2. The study was conducted under IRB protocol #10092.
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throughput. The switching overhead is estimated to be at
about 3.5 seconds for Galaxy Nexus and 6.9 seconds for
Nexus S phones. During the data transfer process, two sepa-
rate threads are spawn concurrently, one for sending and
the other receiving. Fifty consecutive data samples are com-
bined into one larger packet before sending in order to
improve throughput.

6.2 Experiment Results

6.2.1 Analysis

We estimate the values of t0, M1, M2, b and g from data
collected in our deployment, and investigate the relation-
ship between optimal parameters and various system
coefficients, under varying average meeting time dura-
tions (M1;M2) and vehicle-AP to vehicle-vehicle meeting
ratios (g

b
).

Fig. 6a shows how optimal time frame lengths
(2t0 þ rþ s) are affected by meeting times and ratios. We
see that, when the average meeting time is below 40 s, meet-
ing ratios have little effect on optimal time frame lengths.
When the average meeting time increases beyond 40 s, the
optimal frame lengths differ considerably as the meeting
ratio varies—the more dominant vehicle-AP meetings are
(as opposed to vehicle-vehicle meetings), the shorter the
optimal frame lengths become. We also notice that as the
average meeting time increases beyond 40s, the growth of
the optimal frame length slows down.

Fig. 6b illustrates how optimal client mode proportion
( s
2t0þrþs) changes with different meeting times and ratios.
We observe that, as the vehicle-vehicle meeting ratio
decreases, the optimal client proportion increases. In partic-
ular, when vehicle-vehicle meetings are about 10 times that
of vehicle-AP ones, the hotspot and client proportions are
roughly the same with each other; On the other hand, the
optimal client mode proportion increases beyond 80 percent
when vehicle-AP meetings become dominant. These results
suggest the following, i) In a dense vehicular network, in
order to achieve the highest system efficiency, phones
should spend approximately the same amount of time in
hotspot and client modes; and ii) In a sparse vehicular net-
work, phones should stay in client mode as much as possi-
ble in order to maximize the probability of communicating
with WiFi APs. We can also easily see from the figure that
the optimal client mode proportion increases when the
average meeting time lengthens.

Fig. 6c shows the optimal estimated system efficiency

(b T1ðr�;s�Þ
M1

þ g
T2ðr�;s�Þ

M2
, note that T1 and T2 are functions that

take the optimal parameters r�; s� as inputs) varies with

meeting times and ratios. We see that the efficiency

increases monotonically with both the average meeting

time and vehicle-AP meeting ratio.It is quite promising that

data communication takes up over 55 percent of meeting
times in almost all cases, and even reaching above 90 per-

cent in certain cases (higher vehicle-AP meeting ratio and

long meeting time).

6.2.2 Deployment Results

First of all, we observe large variations in the frequencies of
offloading events (where data are sent to the backend server
via WiFi APs) among different users. Many users rarely
move under WiFi AP coverage areas during the deployment
period. As shown in Fig. 7, 64 percent of users meet access
points less than once per day on average, and only 8 percent
of users can offload data more than three times per day. We
also notice that there are 28 percent of users who offloaded
data only once or not at all during the entire deployment
study. These results indicate that the end-to-end delay time
for uploading sensory data can be very high due to the fact
that open wireless access points are not widespread. This
greatly reduces performance in participatory sensing appli-
cations where eventual data upload is expected within a
short period of time.

Next, we observe that 13 out of the 25 participants met
others at least once during the deployment. Several users
(e.g., User 1, 5, 7, 16, and 20) were involved in vehicle-to-
vehicle communications at least twice. Some users received
a lot more data from peers than others. For instance, User 5
obtained 11.2 megabytes of sensory data and User 20 got 8.6
megabytes. We found in some meeting events that no data
were actually exchanged. There are two possible reasons for
this; the hotspot is just about to switch to the peer mode, or
they ran outside the range of each other. After removing
this type of event, we sort out eight total encounter events
where sensory data sharing actually took place. This may
seem little, but is in fact significant considering we had only
25 users and their routes spanned 2.7 square miles. In a

Fig. 6. Results under varying vehicle-AP/vehicle-vehicle meeting time durations and ratios.

Fig. 7. Percentages of offloading events per day.
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deployed participatory sensing service, the odds of encoun-
ters grow quadratically in the number of participants, and
the number of participants will likely be at least an order of
magnitude or two higher than that of our small scale study.

Information about encounter events is summarized in
Table 2. Among them, four events were between a Galaxy
Nexus phone and a Nexus S phone, and the other four were
between two Nexus S phones. Four events lasted longer
than two minutes, while the other four were very short,
ranging from 1 second to 5 seconds. As we looked into the
GPS data, three of these four short durations occured
because they finished exchanging their sensory data in local
databases and no new data were generated, and one
because they drove outside the communication range of
each other.

We also calculate the total throughput in these eight shar-
ing events. As shown in Table 2, the throughput achieved
was as high as 746.5 kbps. Additionally, large variations in
throughputs is observed, again. One important reason is
that, after the exchange of sensory data from local databases
is finished, new sensor readings continue to be generated
continuously. The connection is kept and each phone waits
for the next packet containing 50 samples from the other
phone. This system behavior significantly expands the
duration of data sharing and reduces the actual throughput,
but in fact most time is spent on waiting for new packets
with idle communication channels.

Fig. 8 presents the amount of offloaded data for those
participants who received data from others. Data offloaded
for oneself and peers are recorded separately. We can see

that two users offloaded more shared data than self-gener-
ated data. For instance, User 5 offloaded 581 kilobytes of
data generated by itself and 1,231 kilobytes of shared data.
Similarly, User 15 offloaded 4,700 and 8,625 kilobytes of
self-generated and shared data, respectively. These results
show that vehicle-to-vehicle communication can help
improve the packet reception ratio within the network.

To further investigate the benefits brought about by shar-
ing data among peers, we inspected the sensory data recep-
tion process at the server side for several users after the
deployment. For instance, Fig. 9 shows the fraction of all
generated data that are delivered to the server at different
time within the deployment for User 5. The reason we select
User 5 is that, this participant only offloaded data once in 18
days, and shared data with peers three times. If the system
were to run without phone-to-phone communication, only
34.4 percent of the data would be delivered at the hour of
212 approximately. However, with the sharing scheme
enabled, the server got 0.44 percent of data 30 minutes after
the deployment started. This value increased to 17.4 percent
at point 42 when more data are offloaded by another partici-
pant. For these 17.4 percent of data, the end-to-end delay
time was reduced by 81 percent. In addition, the fraction of
received data finally reached 70.8 percent because another
user helped offload more data at the point of 343. Even if
we assume that these extra 36.4 percent of data are off-
loaded at the end of deployment in the non-DTN scenario,
enabling phone-to-phone communication decreases the
overall average end-to-end latency by 46.1 percent, which is
a significant improvement. As a result, in this case, our solu-
tion leads to a 106 percent increase in packet reception ratio
and 46.1 percent decrease in delay time for participants
who rarely reach access points.

Next, we take a look at the location and time information
of the sharing events in our deployment study. Exploiting
the temporal/spatial characteristics may increase potential
benefits of vehicle-to-vehicle communication in the future,
leading to more efficient data transmission protocols based
on social clusters, and specific rules in hotspot switching
models, that allow staying longer in the peer mode or the
hotspot mode depending on how likely it is to meet other
peers or access points based on historical data.

Fig. 10 shows the locations of the sharing events listed in
Table 2. We can see that the eight sharing events took place
at five different locations. Three of the locations are parking

TABLE 2
More Information on Sharing Events (Event 1-4 Involve Data

Sharing between a Galaxy Nexus Phone and a Nexus S Phone,
whereas Event 5-8 Two Nexus S Phones)

Event Peers Duration (s) Throughput (kbps)

1 1,5 139 71.9
2 1,5 136 178.1
3 1,15 219 324.8
4 1,5 477 147.6
5 20,21 1.1 610.5
6 20,1 5.4 136.3
7 12,14 0.8 746.5
8 23,24 5.4 7.3

Fig. 8. Data offloaded for self and others.

Fig. 9. Replay of fractions of data received at server side for User 5 with
and without phone-to-phone communications.
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lots, one at a stop sign, and one on a street. Among the three
parking lot cases, two are near department buildings on
campus, and one is in a residential area. Three sharing
events occurred in the residential area’s parking lot, possi-
bly indicating that some users may live close to each other,
or they have common friends in the same area. Two events
occurred in a parking lot near department buildings, which
implies that several users may work in the same or nearby
departments, and they sometimes drive to work around the
same time.

We also recorded the timestamps of all data sharing
events, as shown in Table 3. It is easy to see that six different
days in a week appear in the table, which means the sharing
events widely spread weekdays and weekends. In addition,
we observe that five events are in the afternoon, two in the
evening, and only one in the morning.

6.2.3 Data Prioritization

We proceed to evaluate the diversity-based data prioritiza-
tion algorithm, taking advantage of the sensory data we col-
lected during deployment. Our algorithm is compared with
two conventional methods, timestamp-based (oldest-first)
and random, under the same experimental settings.

Each piece of data in our deployment includes five por-
tions: 1) the node ID that generates this data (indicated by
phone IMEI, note that this may be a shared data and thus a
different IMEI), 2) timestamp, 3) GPS location, 4) driving
status (i.e., speed, acceleration, and gyro), and 5) OBD-II
data. Each data sample is 207 bytes long. In our implemen-
tation of semantic distance between sensory data, we use
the timestamp and nodeID as a combinational binary
decider. If the time gap between two data points is beyond
some threshold (30 minutes in our experiment), or the node
IDs are different, we assume they belong to different clus-
ters and assign a large distance value to them. Otherwise,
the Euclidean distance of GPS locations is calculated as the
semantic distance between the two data items. In this way,
sensory data are classified into 907 clusters and transmitted
based on these clusters in a round-robin fashion.

During our experiment, two vehicles start at two ends of
a long street initially, and run facing each other at fixed
speed until they reach the other end of the street. Each of
them has a Galaxy Nexus S phone placed under the wind-
shield. Each phone has 20,000 pieces of continuous data in
local storage. One of them is set as the hotspot and the other
peer, and they start exchanging data with TCP when enter-
ing the communication range of each another, using the
three candidate prioritization algorithms separately. The

timespan of these 20,000 data is equally divided into 1,000
regions, and the fraction of regions covered by received
data is recorded. The experiments are repeated to eliminate
the effect of noise.

Fig. 11 shows the region coverage under varying driving
speeds, with our proposed diversity-based approach, ran-
dom transmission, and timestamp-based oldest-first
approach. We can see that the region coverage slightly
decreases as the speed increases for all candidates, this is
reasonable since the number of received packets drops
gradually. Additionally, when the speed varies from 15 to
30 mph, the coverage of diversity-based approach decreases
from 96 to 85 percent, while the random approach drops
from 74 to 63 percent and the timestamp-based approach
from 22 to 13 percent, respectively. The average coverage
for three candidate algorithms are 89.8, 70.5, and 17.5 per-
cent, respectively. This is mainly because both the random
and timestamp-based methods are not designed to reach as
many regions as possible. These results demonstrate that
the diversity-based method outperforms the other two can-
didates to achieve the highest region coverage.

6.3 Larger-Scale Simulation Results

Our deployment and human subject study help us get initial
ideas of how our proposed system behaves. To analyze the
system performance in a much larger scale, we turn to simu-
lation experiments using the T-drive real-world taxicab
dataset [29], [30], which contains the GPS trajectories of
10,357 taxicabs during the period of February 2nd through
February 8th, 2008 in Beijing. To better represent our mobile
sensing application scenario, we select the central part of
city and filter out the suburb area where vehicles are sparse.

Fig. 10. Locations for sharing events.

TABLE 3
Times of Sharing Events

Event Day of Week Time of Day

1 Thursday 16:27
2 Saturday 10:23
3 Friday 22:52
4 Sunday 22:07
5 Wednesday 15:09
6 Saturday 17:39
7 Tuesday 17:45
8 Wednesday 15:24

Fig. 11. Region coverage under varying driving speeds.
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Thus our experiments contain 9,211 taxicabs, covering the
central Beijing area. We focus on evaluating the system effi-
ciency of our proposed optimization approach in this set of
larger-scale simulation experiments.

We assume that 10 percent of this area is covered byWiFi
APs to measure the performance of offloading events. This
number is motivated by results from other large cities such
as San Francisco and Seattle [38]. These WiFi APs are spread
out equally in the central part of the area.

The communication range of WiFi APs and taxicabs are
set to 250 and 30 meters, respectively. Both are based on our
actual measurements. We also experiment with the situa-
tions where the taxicabs’ communication range varies from
30m to 50 m, 100 m, and 200 m, in order to investigate the
cases where the next generation phones are more powerful
and capable of achieving larger communication ranges.
Other system settings and parameters, including data gen-
eration and offload process, follow that of our small-scale
deployment study.

We carry out the simulation using the T-drive dataset as
follows. For the first 24-hour’s data, we first extract meeting
intervals by recording all vehicle-vehicle and vehicle-AP
pairs that are in communication range at each time point,
then compute the optimal parameters based on the analyti-
cal model discussed in Section 4. Finally we apply these
parameters to the meeting intervals and calculate the
overall system efficiency under three different candidate
approaches: Adaptive, Static, and Baseline. Adaptive updates
system parameters every hour based on historical data and
applies them to all vehicles in the network. Static only uses
the data from the first hour to calculate the optimal parame-
ters, and then remains the same during the whole process.
Baseline considers the baseline case in which phone-to-
phone communication is not enabled.

We first investigate how system efficiency changes as the
switching overhead (t0) varies. Fig. 12a shows the results
with the mode switching overhead ranging from 1s to 10 s,
where phones’ communication range is set to be 30 m. We
see that the system efficiency for Adaptive performs slightly
better than that of Static and is over 80 percent for all cases,
specifically, 90 and 90 percent for Nexus 4 (t0 ¼ 2:1 sec-
onds), 88 and 86 percent for Galaxy Nexus (t0 ¼ 3:5 sec-
onds), and 84 and 79 percent for Nexus S (t0 ¼ 6:9 seconds).
This indicates that our proposed solution can achieve high
system efficiency using off-the-shelf smartphones and thus
is highly practical. Also, since the Baseline approach does
not allow phone-phone communication functionality at all,

the system efficiency remains at 33 percent, which is just the
ratio of overall phone-AP to all meeting time.

Fig. 12b shows the system efficiency under varying
phone communication ranges when the mode switching
overhead is 3.5 and 6.9 seconds, to emulate the use of
Galaxy Nexus (G.N) and Nexus S (N.S) phones. We see
that the efficiency of both Adaptive and Static does not
change much as the transmission range increases. The
efficiency of Baseline decreases as transmission range goes
up. We also notice that, again, the system efficiency for
Adaptive performs only slightly better than Static for both
phones. This suggests that in a relatively dense vehicular
network setting, our proposed solution quickly converges
to optimal system parameters and does not need exten-
sive training phase.

We next study the time-of-day system efficiency in an
hour-by-hour fashion. As Fig. 12c shows, the system effi-
ciency measurements for both Adaptive and Static do not
change much throughout the day, implying that both
approaches work quite well consistently. On the other
hand, we see that the Baseline approach leads to large oscil-
lations, mainly due to the shift of traffic patterns throughout
the day, with a higher vehicle-AP meeting ratio in the even-
ing. Therefore, our proposed approach, be it Adaptive or
Static, delivers a much more stable and predictable system
performance than the baseline.

Finally, Fig. 13 shows the application-level benefit that
direct phone-to-phone communication brings about. We
record the delay time of delivery for data generated in the
first hour by all 9,211 taxicabs, with and without our solu-
tion and under varying transmission ranges. The through-
put of phone-to-phone communication bandwidth is set to
746.5 kbps, obtained from measurements in our deploy-
ment. As we can see, enabling phone-to-phone communi-
cation largely decreases the delay time of data delivery, by

Fig. 12. Experimental results of system efficiency.

Fig. 13. Improvement of delay time with phone-to-phone communication.
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more than 40 percent and up to about 50 percent on aver-
age for all communication ranges tested. More concretely,
our solution helps reduce the average delay time from
5.0 to 2.7 hours, and the median from 1.3 to 0.3 hour. In
addition, as the transmission range increases, the improve-
ment by our solution also increases because it leads to
more occurrences of data transfers among taxicabs. These
results indicate that direct phone-to-phone communication
significantly improves data collection and sharing in
vehicular networking applications.

7 CONCLUSION

In this paper, we present the design, implementation, and
evaluation of a novel optimized vehicular mobile system
that leverages both phone-to-phone and phone-to-AP com-
munications from vehicle-resident smartphones. Our pro-
posed solution optimizes vehicle meeting communication
efficiency, does not require any change to existing infra-
structure, and is completely transparent to end users.
Results from our 35-vehicle two-month campus-wide
deployment and a large-scale real-world dataset simulation
demonstrate that our approach significantly reduces data
transfer delay time and maintains over 80 percent (90 per-
cent in certain cases) system efficiency. Given the popularity
of smartphones and importance of vehicular networks, we
believe that this work will motivate further research on
leveraging human encounters in mobile sensing and net-
working applications.
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